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Bias in healthcare AI
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Case 1. A simulated example

Imagine using predicted depression risk scores for prioritizing
resources such as referral to a psychologist
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Bias in algorithms: A toy illustration

It is well known that:
I Depression is diagnosed more

frequently in women than in men
I This can partially be explained by

different cultural perceptions of
women and men
(Sigmon et al, 2005)

I If the diagnostic criteria are adapted to male symptoms, then
the prevalence of depression among men increases (Martin et
al, 2013)

If the data used for training ML algorithms to predict depression
risk is skewed, then the trained algorithm will produce skewed
predictions – it will be unfair. Let’s simulate this.
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Bias in algorithms: A toy illustration
Imagine a disease model where
I Disease is scored from 0=healthy to 10=severe
I A true diagnosis corresponds to true score > 5
I Blue people (e.g. men) are systematically underdiagnosed due

to differences in cultural perceptions of gender (e.g as with
depression, Sigmon et al. 2005)
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Bias in algorithms: A toy illustration
Setting a diagnostic threshold at diagnosed disease score = 5, we
see that:

I For the red group, we have no false diagnoses
I For the blue group, false negative diagnoses are made
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Bias in algorithms: A toy illustration

Solution: Population-specific thresholds
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Bias in algorithms: A toy illustration
In a different disease model, the diagnostic criteria are more
appropriate for the red group than for the blue, as in (Martin et al,
2013)
I Here, the score=5 threshold creates false positives and

negatives in the blue group
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Bias in algorithms: A toy illustration
Below, see the group-wise diagnostic accuracy for the two different
classes
I We are uncapable of reaching perfect accuracy for the blue

group
I Two thresholds for the red group give the same accuracy as

the best seen for the blue group
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Bias in algorithms: A toy illustration
Let’s see what those thresholds do:

I Blue group has positive TP, TN, FP and FN
I

I Note: Although we have sacrificed performance in the red
group, we still have a bias in our errors.
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Bias in algorithms: A toy illustration
Let’s see what those thresholds do:
I Blue group has positive TP, TN, FP and FN
I Red group has positive TP, TN and FP, but no FN

I Note: Although we have sacrificed performance in the red
group, we still have a bias in our errors.
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Bias in algorithms: A toy illustration
Let’s see what those thresholds do:
I Blue group has positive TP, TN, FP and FN
I Red group has positive TP, TN and FN, but no FP
I Note: Although we have sacrificed performance in the red

group, we still have a bias in our errors.
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Case 2: Image-based diagnosis
of thoracic disorders
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Bias in algorithms: A computer assisted diagnosis example

I State-of-the-art CNN diagnosing thoracic diseases from X-ray1

I Increased % females ⇒ improved female test diagnosis
I Increased % females ⇒ decreased male test diagnosis
I Predictor trained only on females performs better on men

Figure: Diagnostic accuracy of Pneumothorax for female test subjects as
a function of % females in training set

1Larrazabal et al, PNAS 2020
20 / 39



Bias in algorithms: A computer assisted diagnosis example

I State-of-the-art CNN diagnosing thoracic diseases from X-ray1

I Increased % females ⇒ improved female test diagnosis

I Increased % females ⇒ decreased male test diagnosis
I Predictor trained only on females performs better on men

Figure: Diagnostic accuracy of Pneumothorax for female test subjects as
a function of % females in training set

1Larrazabal et al, PNAS 2020
21 / 39



Bias in algorithms: A computer assisted diagnosis example

I State-of-the-art CNN diagnosing thoracic diseases from X-ray1

I Increased % females ⇒ improved female test diagnosis
I Increased % females ⇒ decreased male test diagnosis

I Predictor trained only on females performs better on men

Figure: Diagnostic accuracy of Pneumothorax for male test subjects as a
function of % females in training set
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Bias in algorithms: A computer assisted diagnosis example

I State-of-the-art CNN diagnosing thoracic diseases from X-ray1

I Increased % females ⇒ improved female test diagnosis
I Increased % females ⇒ decreased male test diagnosis
I Predictor trained only on females performs better on men

Figure: Diagnostic accuracy of Pneumothorax for female (left) and male
(right) test subjects as a function of % females in training set

1Larrazabal et al, PNAS 2020
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Sources of bias in ML algorithms
I Discrimination embedded in training data
I Imbalanced training data
I Different levels of label noise (diagnosis errors) give different

training conditions for different groups
I Different feature distributions in different groups (different

disease patterns and/or anatomical features) give different
training conditions for different groups

Additionally:
I In medicine, our entire knowledge base is based on the white,

male anatomy
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Algorithms are new, bias is not

Algorithms come with potential for
early discovery of bias
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What is bias?

I Over- or under-representation is not a discriminating bias in
itself – for instance, breast cancer is more prevalent in women
than in men

I Data- and algorithmic bias refers to systematic errors that
differ between groups.

I In order to detect this bias, we need to access the true labels
(e.g. true diagnosis)

I This is often impossible – thus, our analysis depends on
finding a reliable proxy for the true label.

True diagnosisObserved diagnosis Measured well-being
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Quality of labels:
Proxy variables for bias detection and better training?

COMPAS case2: Racial bias in predicting risk of re-offense among
US criminals.

Proxy variable for criminality used in COMPAS: previous verdicts;
in analysis that documented unfairness: 2-year re-offense.

2https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing
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Quality of labels:
Proxy variables for bias detection and better training?
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Quality of labels:
Proxy variables for bias detection and better training?

Open problem: Proxy variables for diagnosis?

True diagnosisObserved diagnosis Measured well-being

Survival? Perceived quality of life? Continued need for treatment?
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Algorithmic fairness
A number of candidate definitions for a “fair ML algorithm” have
been proposed:
I Predicted outcome should be independent of sensitive

variables

I Individual fairness: Similar subjects should get similar
predictions
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Algorithmic fairness
A number of candidate definitions for a “fair ML algorithm” have
been proposed:
I Group fairness: Different groups should have same

predictive performance
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Do we allow lowering diagnostic performance for women when
it is hard to diagnose men?

I Equalized odds/Equality of opportunity: Different groups
should have similar rates of specific error types
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Fairness for healthcare AI: An open problem

I What is fairness?
I Fairness is more than accuracy and error rates – access to

resources
I Current “fair” algorithms would likely be considered unethical,

possibly illegal

I AI/ML can be part of the solution
I Important: Bias did not come with the algorithms – it was

already there in the data
I Trained ML algorithms come with a potential for discovering

bias before a single real prediction is made – as opposed to
with biased human operators
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