AI in Medical Imaging

DSMMR Årsmøde
2.9.2020

Aasa Feragen
Section for Image Analysis and Computer Graphics
DTU Compute
How many of you use AI clinically?
What is AI?

“All the impressive achievements of deep learning amount to just curve fitting”

– Judea Pearl
What is AI?

Figure: Linear regression = line fitting

\[f(x) = w^T x \]
What is AI?

Whatever your problem, the key is to phrase it as ‘curve” fitting.

Optimize loss:

\[L(y, f(x)) \]

\[f_1(x) \quad f_2(x) \]

\[x = (x_1, x_2, x_3) \]

Figure: Neural network training \(=\) function fitting
AI in medical imaging: Diagnosis/Risk scoring/anomaly detection/decision support

Deep Multi-modal Latent Representation Learning for Automated Dementia Diagnosis

Tao Zhou, Mingxu Liu, Huaizhao Fu, Ling Shao, and Dingguo Zhang

1 Institute of Artificial Intelligence
2 School of Biomedical Sciences, University of Exeter
3 Department of Radiology and BiRC, University of Nebraska Medical Center
4 Department of Biostatistics, School of Medicine, University of Nebraska Medical Center

Early Prediction of Alzheimer’s Disease Progression Using Variational Autoencoders

Authors: Simama Basu, Konrad Wapnir, Ajar Zandifar, Louis Collins, Adriana Romero, Delina Precup

Conference paper

Unsupervised Anomaly Localization Using Variational Auto-Encoders

Authors: David Zimmerer, Fabio Pardi

Conference paper

First Online: 10 October
AI in medical imaging: Image processing – Registration

Moving 3D Image (m)

Fixed 3D Image (f)

Registration Field (φ)

Spatial Transform

Moved (m ◦ φ)

Source

TopAwaRe_D

TopAwaRe_PD

Target

I

W^{-1}_ψ

Ω_I

$I_\psi = I \circ W_{\psi}^{-1}$

$I_{\alpha,\psi} = I_\psi \circ W_{\alpha}$

$I_{\alpha,\psi} = I_{\alpha,\psi} \circ W_\psi$

$M = I_{\alpha} \circ W_\phi$

S

Ω_I

$\Omega_{I_{\alpha,\psi}}$

$\Omega_{I_{\alpha}}$

Ω_S

Ω_S
Al in medical imaging: Image processing – Segmentation

Figure: Left: Ronneberger et al, 2015. Right: Arnavaz et al, 2020
AI in medical imaging: Image processing – Tractography, microstructural properties

Learn to Track: Deep Learning for Tractography

Philippe Poulin1, Marc-Alexandre Côté2, Jean-Christophe Houde2, Laurent Petit4, Peter F. Neher3, Klaus H. Maier-Hein1, Hugo Larochelle3, and Maxime Descoteaux2

1 Computer Science Department, Université de Sherbrooke, Sherbrooke, Canada
2 Sherbrooke Connectivity Imaging Laboratory (SCIL), Computer Science
Department, Université de Sherbrooke, Sherbrooke, Canada
3 Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany
4 Groupe d’Imagerie Neurofonctionnelle, IMN, CNRS, CEA, Université de Bordeaux, France

(a) predicted
(b) ground truth
(c) overlap
(d) overreach
AI in medical imaging: Image synthesis – CT from MR

Deep learning-based MR-to-CT synthesis: The influence of varying gradient echo-based MR images as input channels for CT scans.

Joen Willemsen, Matteo Maspero, Cornells A.T. van den Berg, Harrie Weinans, Max A. Viergever. See all authors.

DOI: doi.org/10.1002/mrm.28008 | Citations: 2
AI in medical imaging: Image processing: Denoising; high quality from low quality; movement removal

Training shortest-path tractography: Automatic learning of spatial priors

Niklas Kasenburg a, b, c, Matthew Liptrot a, b, Nina Linde Reislev c, Silas N. Ørting a, Mads Nielsen a, Ellen Garde c, Aasa Feragen d
The sky is the limit!
The sky is the limit!
Alas – There are still issues..
Uncertainty quantification. Predictions are good, certain predictions are better, knowing how certain is best
Interpretability and transparency

- Neural networks are largely black box

Diagnosing with good accuracy is great, but knowing what caused the diagnosis is even better...

Model communication, visualization, interaction – important, nontrivial open problems
Interpretability and transparency

- Neural networks are largely black box
- Diagnosing with good accuracy is great, but knowing what *caused* the diagnosis is even better
Interpretability and transparency

- Neural networks are largely black box
- Diagnosing with good accuracy is great, but knowing what *caused* the diagnosis is even better
- Understanding mistakes are yet even better...

![Diagram of a neural network](image)
Interpretability and transparency

- Neural networks are largely black box
- Diagnosing with good accuracy is great, but knowing what *caused* the diagnosis is even better
- Understanding mistakes are yet even better...
- Model communication, visualization, interaction – important, nontrivial open problems
Bias and Fairness

The female problem: how male bias in medical trials ruined women’s health

Centuries of female exclusion has meant women’s diseases are often missed, misdiagnosed or remain a total mystery.

Racial bias in a medical algorithm favors white patients over sicker black patients

Scientists discovered racial biases in a widely used medical algorithm that predicts which patients will have complex health needs. (iStock)
Bias and Fairness

Sources of bias in ML algorithms:

- Discrimination embedded in training data
- Imbalanced training data
Bias and Fairness

A computer assisted diagnosis example

- State-of-the-art CNN diagnosing thoracic diseases from X-ray\(^1\)
- Increased % females \Rightarrow improved female test diagnosis
- Increased % females \Rightarrow decreased male test diagnosis
- *Predictor trained only on females performs better on men*

![Figure: Diagnostic accuracy of Pneumothorax for female (left) and male (right) test subjects as a function of % females in training set](image)

\(^1\)Larrazabal et al, PNAS 2020
Bias and Fairness

Sources of bias in ML algorithms;

- Discrimination embedded in training data
- Imbalanced training data
- Different levels of label noise (diagnosis errors) give different training conditions for different groups
- Different feature distributions in different groups (different disease patterns and/or anatomical features) give different training conditions for different groups
Outlook

- Is AI just glorified curve fitting? Yes! But if you have a great curve fitter, everything looks like a curve!
Outlook

- Is AI just glorified curve fitting? Yes! But if you have a great curve fitter, everything looks like a curve!
- At this point, AI is all over – in the scanner, in the processing, in the analysis – working quite well!
Is AI just glorified curve fitting? Yes! But if you have a great curve fitter, everything looks like a curve!

At this point, AI is all over – in the scanner, in the processing, in the analysis – working quite well!

But there are still pitfalls (and they are very interesting!)
 - Uncertainty modelling/quantification
 - Interpretability/transparency
 - Bias, fairness, ethics – detecting and fixing