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How many of you use Al
clinically?



What is Al?

“All the impressive achievements of deep learning amount to
just curve fitting”
—Judea Pearl
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What is Al?
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Figure: Linear regression = line fitting
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What is Al?

Whatever your problem, the key is to phrase it as ‘curve” fitting.
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Figure: Neural network training = function fitting
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Al in medical imaging: Diagnosis/Risk scoring/anomaly
detection/decision support
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Al in medical imaging: Image processing — Registration
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Al in medical imaging: Image processing — Segmentation

Original image U-net segmentatlon Expert annotation

Figure: Left: Ronneberger et al, 2015. Right: Arnavaz et al, 2020
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Al in medical imaging: Image processing — Tractography,

microstructural properties

Learn to Track: Deep Learning for Tractography

=
Philippe Poulin’, Mare-Alexandre Cot¢2, Jean-Christophe Houde?, Laurent I T l
Petit?, Peter F. Neher?, Klaus H. Maier-Hein®, Hugo Larochelle!, and Maxime B B B ol T
Descoteaux? H i i
(o (ef © 5

Deptnent, Uit de S brocke, Canada @ jwla @ l =z
Medical Image Computing (MIC), G er Research Center (DKFZ) sl e >
Hei poooB P

(a) FENN training (b) RNN training (¢) RNN tracking

(a) predicted (b) ground truth (c) overlap (d) overreach

9/25



Al in medical imaging: Image synthesis — CT from MR
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Al in medical imaging: Image processing: Denoising; high
quality from low quality; movement removal

Neurolmage
Volume 130, 15 April 2016, Pages 63-76

Training shortest-path tractography: Automatic
learning of spatial priors
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The sky is the limit!



The sky is the limit!
Alas — There are still issues..



Uncertainty quantification. Predictions are good, certain
predictions are better, knowing how certain is best
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Interpretability and transparency

» Neural networks are largely black box
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Interpretability and transparency

» Neural networks are largely black box

» Diagnosing with good accuracy is great, but knowing what
caused the diagnosis is even better
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Interpretability and transparency

» Neural networks are largely black box

» Diagnosing with good accuracy is great, but knowing what
caused the diagnosis is even better

» Understanding mistakes are yet even better...
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Interpretability and transparency

» Neural networks are largely black box

» Diagnosing with good accuracy is great, but knowing what
caused the diagnosis is even better

» Understanding mistakes are yet even better...

» Model communication, visualization, interaction — important,
nontrivial open problems
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Bias and Fairness
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Bias and Fairness

Sources of bias in ML algorithms:
» Discrimination embedded in training data

» Imbalanced training data
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Bias and Fairness
A computer assisted diagnosis example
» State-of-the-art CNN diagnosing thoracic diseases from X-ray!
» Increased % females = improved female test diagnosis
» Increased % females = decreased male test diagnosis
» Predictor trained only on females performs better on men
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Figure: Diagnostic accuracy of Pneumothorax for female (left) and male
(right) test subjects as a function of % females in training set

!l arrazabal et al, PNAS 2020
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Bias and Fairness

Sources of bias in ML algorithms;

>
>
>

Discrimination embedded in training data
Imbalanced training data

Different levels of label noise (diagnosis errors) give different
training conditions for different groups

Different feature distributions in different groups (different
disease patterns and/or anatomical features) give different
training conditions for different groups
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Outlook

» Is Al just glorified curve fitting? Yes! But if you have a great
curve fitter, everything looks like a curve!
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Outlook

» Is Al just glorified curve fitting? Yes! But if you have a great
curve fitter, everything looks like a curve!

> At this point, Al is all over — in the scanner, in the processing,
in the analysis — working quite well!
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Outlook

» Is Al just glorified curve fitting? Yes! But if you have a great
curve fitter, everything looks like a curve!

> At this point, Al is all over — in the scanner, in the processing,
in the analysis — working quite well!

» But there are still pitfalls (and they are very interesting!)

» Uncertainty modelling/quantification
» Interpretability/transparency
» Bias, fairness, ethics — detecting and fixing
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