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How many of you use AI
clinically?
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What is AI?

“All the impressive achievements of deep learning amount to
just curve fitting”

–Judea Pearl
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What is AI?

Figure: Linear regression = line fitting
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What is AI?

Whatever your problem, the key is to phrase it as ‘curve” fitting.

Optimize loss:

Figure: Neural network training = function fitting
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AI in medical imaging: Diagnosis/Risk scoring/anomaly
detection/decision support
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AI in medical imaging: Image processing – Registration
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AI in medical imaging: Image processing – Segmentation
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Figure: Left: Ronneberger et al, 2015. Right: Arnavaz et al, 2020
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AI in medical imaging: Image processing – Tractography,
microstructural properties
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AI in medical imaging: Image synthesis – CT from MR
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AI in medical imaging: Image processing: Denoising; high
quality from low quality; movement removal
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The sky is the limit!

Alas – There are still issues..
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The sky is the limit!
Alas – There are still issues..
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Uncertainty quantification. Predictions are good, certain
predictions are better, knowing how certain is best
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Interpretability and transparency

I Neural networks are largely black box

I Diagnosing with good accuracy is great, but knowing what
caused the diagnosis is even better

I Understanding mistakes are yet even better...
I Model communication, visualization, interaction – important,

nontrivial open problems

=y!
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Bias and Fairness

19 / 25



Bias and Fairness

Sources of bias in ML algorithms:
I Discrimination embedded in training data
I Imbalanced training data
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Bias and Fairness
A computer assisted diagnosis example
I State-of-the-art CNN diagnosing thoracic diseases from X-ray1

I Increased % females ⇒ improved female test diagnosis
I Increased % females ⇒ decreased male test diagnosis
I Predictor trained only on females performs better on men

Figure: Diagnostic accuracy of Pneumothorax for female (left) and male
(right) test subjects as a function of % females in training set

1Larrazabal et al, PNAS 2020
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Bias and Fairness

Sources of bias in ML algorithms;
I Discrimination embedded in training data
I Imbalanced training data
I Different levels of label noise (diagnosis errors) give different

training conditions for different groups
I Different feature distributions in different groups (different

disease patterns and/or anatomical features) give different
training conditions for different groups
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Outlook

I Is AI just glorified curve fitting? Yes! But if you have a great
curve fitter, everything looks like a curve!

I At this point, AI is all over – in the scanner, in the processing,
in the analysis – working quite well!

I But there are still pitfalls (and they are very interesting!)
I Uncertainty modelling/quantification
I Interpretability/transparency
I Bias, fairness, ethics – detecting and fixing
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