### AI in Medical Imaging

### DSMMR Årsmøde 2.9.2020

### Aasa Feragen

Section for Image Analysis and Computer Graphics DTU Compute

# How many of you use AI clinically?

### What is AI?

### "All the impressive achievements of deep learning amount to just curve fitting"

–Judea Pearl



### What is AI?



Figure: Linear regression = line fitting

### What is AI?

Whatever your problem, the key is to phrase it as 'curve' fitting.



Figure: Neural network training = function fitting

# Al in medical imaging: Diagnosis/Risk scoring/anomaly detection/decision support



### Al in medical imaging: Image processing - Registration



### Al in medical imaging: Image processing - Segmentation



Figure: Left: Ronneberger et al, 2015. Right: Arnavaz et al, 2020

# Al in medical imaging: Image processing – Tractography, microstructural properties

#### Learn to Track: Deep Learning for Tractography

Philippe Poulin<sup>1</sup>, Marc-Alexandre Côté<sup>2</sup>, Jean-Christophe Houde<sup>2</sup>, Laurent Petit<sup>4</sup>, Peter F. Neher<sup>3</sup>, Klaus H. Maic-Hein<sup>3</sup>, Hugo Larochelle<sup>1</sup>, and Maxime Descoteaux<sup>2</sup>

<sup>1</sup> Computer Science Department, Université de Sherbrooke, Sharbrooke, Canada 2 Sherbrooke, Conandi 2 Sherbrooke, Conandi 2 Sherbrooke, Cometrity Hangken, Ladoratory (SCI), Computer Science Department, Université de Sherbrooke, Sherbrooke, Canada Medical Image Computing (MC), German Cazere Tensearch: Center (DKPZ), Medical Mange Computing (MC), German Cazere Tensearch: Center (DKPZ), Medical Mange Cazere (DKPZ), Med





(a) predicted



(b) ground truth



(c) overlap



(d) overreach

### AI in medical imaging: Image synthesis - CT from MR



Al in medical imaging: Image processing: Denoising; high quality from low quality; movement removal



NeuroImage Volume 130, 15 April 2016, Pages 63-76



Training shortest-path tractography: Automatic learning of spatial priors

Niklas Kasenburg <sup>a</sup> A 🖾, Matthew Liptrot <sup>a, b</sup>, Nina Linde Reislev <sup>c</sup>, Silas N. Ørting <sup>a</sup>, Mads Nielsen <sup>a</sup>, Ellen Garde <sup>c</sup>, Aasa Feragen <sup>a</sup>



### The sky is the limit!

### **The sky is the limit!** Alas – There are still issues..

Uncertainty quantification. Predictions are good, certain predictions are better, knowing how certain is best









- Neural networks are largely black box
- Diagnosing with good accuracy is great, but knowing what caused the diagnosis is even better



- Neural networks are largely black box
- Diagnosing with good accuracy is great, but knowing what caused the diagnosis is even better
- Understanding mistakes are yet even better...



- Neural networks are largely black box
- Diagnosing with good accuracy is great, but knowing what caused the diagnosis is even better
- Understanding mistakes are yet even better...
- Model communication, visualization, interaction important, nontrivial open problems





Sources of bias in ML algorithms:

- Discrimination embedded in training data
- Imbalanced training data

A computer assisted diagnosis example

- State-of-the-art CNN diagnosing thoracic diseases from X-ray<sup>1</sup>
- ▶ Increased % females  $\Rightarrow$  improved female test diagnosis
- ▶ Increased % females  $\Rightarrow$  decreased male test diagnosis
- Predictor trained only on females performs better on men



Figure: Diagnostic accuracy of Pneumothorax for female (left) and male (right) test subjects as a function of % females in training set

<sup>1</sup>Larrazabal et al, PNAS 2020

Sources of bias in ML algorithms;

- Discrimination embedded in training data
- Imbalanced training data
- Different levels of label noise (diagnosis errors) give different training conditions for different groups
- Different feature distributions in different groups (different disease patterns and/or anatomical features) give different training conditions for different groups



Is AI just glorified curve fitting? Yes! But if you have a great curve fitter, everything looks like a curve!

### Outlook

- Is AI just glorified curve fitting? Yes! But if you have a great curve fitter, everything looks like a curve!
- At this point, AI is all over in the scanner, in the processing, in the analysis – working quite well!

### Outlook

- Is AI just glorified curve fitting? Yes! But if you have a great curve fitter, everything looks like a curve!
- At this point, AI is all over in the scanner, in the processing, in the analysis – working quite well!
- But there are still pitfalls (and they are very interesting!)
  - Uncertainty modelling/quantification
  - Interpretability/transparency
  - Bias, fairness, ethics detecting and fixing