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Today’s goal

I To convince you that uncertainty quantification is an
important and nontrivial problem for data analysis

I This will be exemplified using tractography from medical
imaging –

I – but also other, simpler types of data
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Part 1: Quantifying spatial
uncertainty in tractography
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Diffusion MRI

4 / 26



Diffusion MRI

5 / 26



Diffusion MRI
I DWI hypothesis: Water diffuses along fibers, not across
I Diffusion tensor imaging assumes signal in direction q of form

S(q) = e−∆qTDq

for a covariance matrix (diffusion tensor) D (∆ is some
constant)

I Goal of Tractography: Estimate brain fiber trajectories

Figure: Field of diffusion tensors estimated from data
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Uncertainty in Tractography

Figure: Voxel-wise heatmap,
Kasenburg et al
NeuroImage’16.

I What uncertainty do we
quantify?

I Standard heatmaps model
probability of connection to a
seed point. Not spatial
uncertainty, although this
interpretation is tempting.

I However, for many applications,
we want spatial uncertainty
(e.g. surgical planning)
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Alternative approach: Tractography via probabilistic
numerics (MICCAI’14, MICCAI’15)

I Tractography reduced to solving the differential equation

c̈d(t) = −ΓT
d · (ċ(t)⊗ ċ(t)),

with boundary values c(0) = a, c(1) = b
I Probabilistic numerics view: Estimate the curve c from c̈ and

ċ using GP regression.
I The result is a GP distribution over curve trajectories

a

b
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Gaussian Processes
I A Gaussian process (GP) is a collection of random variables,

any finite number of which have a joint Gaussian distribution.

I Interpretation: A GP is a distribution in an
infinite-dimensional vector space, whose restriction to a
finite-dimensional subspace is always a Gaussian distribution.

I A GP f is completely specified by a mean function c : R→ R3

and covariance function k : R× R→ R with

c(t) = E(f (t))
k(t, t ′) = E((f (t)− c(t))(f (t ′)− c(t ′)))

I We write f ∼ GP(c , k).
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Samples from posterior white-matter trajectory

single path distribution data uncertainty
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Where did this leave us?

I We got a parametrized model of spatial uncertainty
I However, we are not done:

I Only worked for DTI
I Only worked for shortest-path tractography
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Let’s rethink the problem – an IVP solution
I Standard fiber tracking can be thought of as solving the noisy

ordinary differential equation (ODE)

γ̇(t) + ε = v(γ(t))

with initial value γ(0) = x0.
I The vector field v is observed via diffusion.
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I A simpler ODE, the usual IVP formulation, extends more
easily to more complex fODFs.
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Let’s rethink the problem – an IVP solution
The algorithm (Schober et al, Stat. Comp. 2018):
I Kalman filter tracking, followed by a smoother estimating the

final solution covariance utilizing all visited locations.
I Numerically advantageous, as the shortest path problem

required a numerically less stable boundary value solver for a
more complex, second order, differential equation.

Figure: Two single trajectories from the CST, visualized via GP samples
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Part 2:
Outlook for population analysis
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Challenge 1: Interpretation.
What does uncertainty measure?

Tractography example:

single path distribution data uncertainty

I Uncertainty due to noise
I Signal loss due to anatomical effects
I Poor model fit
I Otherwise lack of support in data
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Challenge 1: Interpretation.
What does uncertainty measure?

Example: Daily temperature in Siberian city

I Data (temperature curve) is estimated from measurements
with high level of variation

I Temperature curve should reflect natural variation – should be
represented as distributions over curves, not as curves
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Challenge 1: Interpretation.
What does uncertainty measure?

I Uncertainty can also measure of natural variation in the data
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Challenge 2: Ignoring uncertainty in population analysis is
a problem

I Left: Small sample of uncertain yearly temperature curves
represented as Gaussian Processes (GPs) from a Siberian
metereological station.

I Bottom right: The mean and pointwise standard deviation of
the mean temperature curves (the best estimates).
This is what we routinely do in medical imaging.

I Top right: An alternative mean that incorporates the
covariance structure of the GP samples (NeurIPS’17).
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Challenge 3: Ignoring uncertainty in population analysis is
a common problem

I In most population analysis in medical imaging, the “data” is
estimated from data

I Algorithms that quantify uncertainty are starting to appear
I Incorporating uncertainty in population analysis is not

currently tackled
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Challenge 4: Ignoring uncertainty can lead to incorrect
“significant” differences
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Is there anything to be done? First steps (NIPS’17)...

how far?
how much mass needs to move?

I Deriving algorithms for Wasserstein distances and means for
GPs, we can use distance-based learning:
I mean GPs (cluster means)
I hierarchical clustering
I permutation tests for equal means

Figure: Clustering, hypothesis testing between populations of GPs
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Is there anything to be done? First steps (NIPS’17)...

Figure: Wasserstein means utilize the point-wise uncertainty.

NB! Uncertainty is not a bad thing! Can contain highly relevant
information. Not clear that we always want to minimize
uncertainty in our estimates.
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Is there anything to be done? First steps (NIPS’17)...

I With weighted means for GPs, we can perform kernel
regression.

Figure: Kernel regression on GPs: Predicted temperature curve
distributions over 30 Russian weather stations in the period 1940-2009
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Resulting research challenges

I What uncertainty should we quantify? Application dependent.

I How do we visualize/communicate uncertainty?
I How can we correctly propagate the subject-wise uncertainty

into population analysis?
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Main points

I Different applications need different uncertainty quantification
I Take care to interpret uncertainty correctly
I Exemplified via tractography
I Tractography models with spatial uncertainty

I Uncertainty covers a number of aspects:
I Sample size
I Uncertainty due to noise
I Signal loss due to anatomical effects
I Poor model fit
I Otherwise lack of support in data

I Different aspects need different modelling and communication.
I Incorporating uncertainty in population analysis – first

steps; many to be taken
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