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Case I: Uncertainty in Tractography

Figure: Left: Voxel-wise heatmap, Kasenburg et al NeuroImage’16.
Right: Envelope of Gaussian Process tract (cluster) estimate, Mallasto
and Feragen NIPS’17.

I What uncertainty do we quantify? Application dependent.
I How do we visualize/communicate uncertainty?
I How does it act in population analysis?
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What does uncertainty measure?
Example: Tractography1

single path distribution data uncertainty

I Uncertainty due to noise
I Signal loss due to anatomical effects
I Poor model fit
I Otherwise lack of support in data

1Hauberg et al, MICCAI’15
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What does uncertainty measure?
Example: Daily temperature in Siberian city

I Data (temperature curve) is estimated from measurements
with high level of variation

I Temperature curve should reflect natural variation – should be
represented as distributions over curves, not as curves
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What does uncertainty measure?

I Uncertainty can also measure of natural variation in the data

5 / 20



Case II: The role of uncertainty when data is estimated
from data

The standard machine learning scenario:
I Data resides in some space X ; aim to learn a predictive

function h : X → Y
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I What when the observation is a distribution, not a point?
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To the learning problem...

I So we want to do statistics on uncertain curves
I First problem: What does it mean for two uncertain curves to

be similar/dissimilar?
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Wasserstein (earth mover’s) distance1

how far?
how much mass needs to move?

W2(µ, ν) =

√
inf

γ∈Γ(µ,ν)

∫
M×M

d2(x , y)dγ(x , y)

I Wasserstein distances between GPs are approximated
arbitrarily well by Wasserstein distances between
approximating GDs

I Wasserstein means for sets of GPs are approximated arbitrarily
well by Wasserstein means for sets of approximating GDs

I Wasserstein for GDs is computationally nice
(distances: analytical, means: iterative)

1Mallasto and Feragen, NIPS’17
9 / 20



Learning with Wasserstein distances between GPs2

Figure: Clustering, hypothesis testing between populations of GPs

With a distance d between GPs, we can define
I mean GPs (cluster means)
I hierarchical clustering
I permutation tests for equal means
I etc

2Mallasto and Feragen, NIPS’17
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Learning with Wasserstein distances between GPs2

Figure: Wasserstein means utilize the point-wise uncertainty.

NB! Uncertainty is not a bad thing! Can contain highly relevant
information. Not clear that we always want to minimize
uncertainty in our estimates.

2Mallasto and Feragen, NIPS’17
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Learning with Wasserstein distances between GPs2

I With weighted means for GPs, we can perform kernel
regression.

Figure: Kernel regression on GPs: Predicted temperature curve
distributions over 30 Russian weather stations in the period 1940-2009

2Mallasto and Feragen, NIPS’17
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Case III: The effect of geometric constraints

I GPs satisfy geometric constraints: k has to be a covariance
function (positive definiteness).

I This led to the question: Can geometric constraints help learn
structure?

I  Uncertainty quantification in Riemannian submanifold
learning
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Latent variable models
I The Gaussian Process Latent Variable Model (GPLVM) is a

submanifold learning algorithm, where the learned embedding

f : U ⊂ Rn → RN

from chart onto submanifold is a GP: f ∼ GP(µ, k)
I For data that lies on a manifold, we thought: Waste of

resources to learn what you already know (the manifold)
I We extended GPLVM to take values strictly on the manifold3.

Let’s see what happened...

3Mallasto, Hauberg, Feragen, In review’18
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Performance of the Wrapped Gaussian Process Latent
Variable Model

Figure: Mean reconstruction errors (top = intrinsic distance, bottom =
Euclidean distance)

I Conclusion: These datasets were not particularly big, but
even in the Euclidean models, the mean function learned the
manifold anyway!
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Performance of the Wrapped Gaussian Process Latent
Variable Model

Figure: Comparison of quantiles in the data and the estimated model.
The bars represent the frequency of occurances, where the fraction of
samples, given by the x-value, lie closer to the mean prediction than a
test point. The continuous curves represent the cumulative distributions.
Whenever the cumulative distribution lies above x = y , we are
overestimating the corresponding quantile.

I Conclusion: In the Euclidean models, the covariance function
does not learn the manifold on its own

I Explanation: The uncertainty covers up a poor model fit of
the parameterized covariance, which assigns positive
probability mass to impossible points.
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Main points

I Uncertainty covers a number of aspects:
I Sample size
I Uncertainty due to noise
I Signal loss due to anatomical effects
I Poor model fit
I Otherwise lack of support in data

Different aspects need different modelling and
communication.

I Incorporating uncertainty in population analysis – first
steps; many to be taken

I Utilizing geometric constraints in submanifold learning:
Uncertainty quantification benefits from prior knowledge
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