The geometry of graph space:
Towards graph-valued statistics

Anna Calissano!, Aasa Feragen?, Simone Vantinit

1 MOX - Modelling and Scientific Computing - Politecnico di Milano
2 Section for Image Analysis & Computer Graphics, DTU Compute
afhar@dtu.dk

Session on Statistical methods for Non-Euclidean Data @CMStatistics

London, 16.12.2019 gl

Universitet oo
>



This work belongs to the PhD of Anna Calissano
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Graphs as data objects — they are everywherel!

» Scene understanding, social networks, chemo/bioinformatics,
brain connectivity
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Graphs as data objects — they are everywherel!

» Variable nodes, variable edges, attributes on nodes and edges
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A space of graphs!

» A (weighted) graph can be represented by its adjacency
matrix A € R™" =: A
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!Jain et al, JMLR 2009, Pattern Recognition 2016
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A space of graphs!

» A (weighted) graph can be represented by its adjacency

matrix A € R™" =: A
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» Each graph has multiple adjacency matrix representations

! Jain et al, JMLR 2009, Pattern Recognition 2016
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A space of graphs!

» A (weighted) graph can be represented by its adjacency
matrix A € R™" =: A
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» Each graph has multiple adjacency matrix representations

» A graph space with unique graph representations: The
quotient

G:=A/S,

with respect to the node permutation group S,

!Jain et al, JMLR 2009, Pattern Recognition 2016
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A general space of graphs

» Easy to accommodate graphs with different numbers of nodes:
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A general space of graphs

» Easy to accommodate graphs with different numbers of nodes:

7\

» Easy to extend to vector valued node and edge weights

AER™ M= A ~ Ac (RY)™" = A
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Use of Jain's graph space for statistics

» Jain, Obermayer: Structure Spaces. Journal of Machine Learning
Research. (2009)

» Jain, Obermayer: Large Sample Statistics in the Domain of Graphs.
SSPR/SPR (2010)

» Jain, Obermayer: Maximum Likelihood for Gaussians on Graphs. GbRPR
(2011)

» Jain: Maximum likelihood method for parameter estimation of
bell-shaped functions on graphs. Pattern Recognition Letters (2012)

» Calissano, Feragen, Vantini: Analysis of Populations of Networks:
Structure Spaces and the Computation of Summary Statistics. ICSA
(2019)

» Guo, Srivastava, Sarkar: A Quotient Space Formulation for Statistical
Analysis of Graphical Data. arXiv preprint arXiv:1909.12907 (2019).

» Kolaczyk, Lin, Rosenberg, Xu, Walters: Averages of Unlabeled Networks:
Geometric Characterization and Asymptotic Behavior. arXiv preprint
arXiv:1709.02793 (2019).
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The geometry of graph space

Theorem
Graph-space geodesics are not necessarily unique.
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The geometry of graph space

Theorem
Graph-space curvature is unbounded from above.

[a] a a a
] *Cl bec bA l)‘c

Geodesic space M, with k <0 M, with k =0 M, with k >0

Curvature bounded from above by « if for all geodesic triangles in
X /G are thinner than their corresponding comparison triangles in
M.

dx;c([x],[a]) < dm,(x,3) :
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First statistic: Fréchet mean
[m] = argminggex /e Y dx/e([x] [x))
i=1...n

Theorem
Fréchet means are not generally unique in graph space X/G.
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Existing algorithms and heuristics for computing Fréchet
means in nonlinear spaces

Iterative weighted midpoints / stochastic gradient descent
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Note: Proofs of convergence usually require being able to work in
a neighborhood with unique geodesics.
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Existing algorithms and heuristics for computing Fréchet

means in nonlinear spaces

We choose: Align all and compute (AAC) / Generalized Procrustes
analysis
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Existing algorithms and heuristics for computing Fréchet

means in nonlinear spaces

We choose: Align all and compute (AAC) / Generalized Procrustes
analysis

Guarantee convergence to local minimum for generic dataset.
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Examples: Synthetic dataset

TRy Sy ey g 7 e

Sample randomly from five shown equivalence classes
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Examples: Synthetic dataset

Fréchet mean:

S

Estimation of Fréchet Mean

Theoretical Fréchet Mean
on X space

Ty

Estimation of Fréchet Mean
on Graph Space with AAC
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Mobility networks Lombardia region
Dataset:
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Mobility networks Lombardia region

Fréchet mean:

12235

6117
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Next: Principal components via AAC

Result: Principal components 1-d represented as subspaces of
RHXH
initialize by aligning all data graphs to a random adjacency
matrix;
while While not converged do
perform PCA in R™";
choose representatives of all data graphs in optimal position

with the first PC in R™%",
end

Algorithm 1: PCA via AAC
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Example: Synthetic dataset

Dataset

T T

Sampled randomly from each of the 5 shown equivalence classes.
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Example: Synthetic dataset
PCA in space of adjacency matrices.

Geodesic Principal Components in X with AAC

. °

214 Geodesic Principal Component (12.3%)
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Example: Synthetic dataset
PCA in graph space (with AAC algorithm):

Geodesic Principal Components in Graph Space with AAC

777
7

15t Geodesic Principal Component (71.3%)
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214 Geodesic Principal Component (19.4%)
—
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Example: Handwritten letter “A”

Dataset:
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Example: Handwritten letter “A”

Principal components in graph space:

1% Geodesic Principal Component (22%)

2% Geodesic Principal Component (19%)

31 Geodesic Principal Component (13%)
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Mobility networks Lombardia region
Dataset:
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Mobility networks Lombardia region
Principal components in graph space:

Variation of Private along the 15t GPCA

Explaining 71,9% of the total variability "
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Discussion

Advantages:

> Total space is (R9)"%", easing generalization of Euclidean
methods

Limitations:
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Discussion

Advantages:
> Total space is (R9)"%", easing generalization of Euclidean
methods

» Jain et al, and by now others, have developed a wide range of
theoretical and practical tools for distance-based statistics and
learning on graphs in these spaces

Limitations:

» Distances are generally NP-complete due to graph matching

problem ~~ approximations

» Graph space geometry is highly non-Euclidean (and it is not a
manifold); this is likely to affect statistics in ways we do not
yet understand.
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Discussion: Align all and compute

> "Tangent space” approach: Align all points with a
representative of the mean and perform statistics in the total
space (< tangent space statistics in manifolds). This is done
in Guo et al (2019).
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Discussion: Align all and compute

> "Tangent space” approach: Align all points with a
representative of the mean and perform statistics in the total
space (< tangent space statistics in manifolds). This is done
in Guo et al (2019).

» As we know it from manifolds, such an approach leads to
increased distortion with distance to mean.

» Non-uniqueness of geodesics lead to further issues as you
move outside the injectivity radius from the mean.

» Aligning with higher principal components, as we do, can help
alleviate this problem — but NB! Don’t go too high... if you
include them all you will stay put. So how many?
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Open problems

» For geometric graphs, Jain’s model does not capture well
contracting branches:

» This is likely to significantly complicate geometry and
computation.
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Open problems

> Ability to merge nodes
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