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Graphs as data objects – they are everywhere!

I Scene understanding, social networks, chemo/bioinformatics,
brain connectivity

I Variable nodes, variable edges, attributes on nodes and edges
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A space of graphs1

I A (weighted) graph can be represented by its adjacency
matrix A ∈ Rn×n =: A
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I Each graph has multiple adjacency matrix representations
I A graph space with unique graph representations: The

quotient
G := A/Sn

with respect to the node permutation group Sn

1Jain et al, JMLR 2009, Pattern Recognition 2016
5 / 45



A space of graphs1

I A (weighted) graph can be represented by its adjacency
matrix A ∈ Rn×n =: A

1

2 3

4

1 2

34

I Each graph has multiple adjacency matrix representations

I A graph space with unique graph representations: The
quotient

G := A/Sn
with respect to the node permutation group Sn

1Jain et al, JMLR 2009, Pattern Recognition 2016
6 / 45



A space of graphs1

I A (weighted) graph can be represented by its adjacency
matrix A ∈ Rn×n =: A

1

2 3

4

1 2

34

I Each graph has multiple adjacency matrix representations
I A graph space with unique graph representations: The

quotient
G := A/Sn

with respect to the node permutation group Sn

1Jain et al, JMLR 2009, Pattern Recognition 2016
7 / 45



A general space of graphs

I Easy to accommodate graphs with different numbers of nodes:

I Easy to extend to vector valued node and edge weights

A ∈ Rn×n =: A  A ∈ (Rd)n×n =: A
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Use of Jain’s graph space for statistics

I Jain, Obermayer: Structure Spaces. Journal of Machine Learning
Research. (2009)

I Jain, Obermayer: Large Sample Statistics in the Domain of Graphs.
SSPR/SPR (2010)

I Jain, Obermayer: Maximum Likelihood for Gaussians on Graphs. GbRPR
(2011)

I Jain: Maximum likelihood method for parameter estimation of
bell-shaped functions on graphs. Pattern Recognition Letters (2012)

I Calissano, Feragen, Vantini: Analysis of Populations of Networks:
Structure Spaces and the Computation of Summary Statistics. ICSA
(2019)

I Guo, Srivastava, Sarkar: A Quotient Space Formulation for Statistical
Analysis of Graphical Data. arXiv preprint arXiv:1909.12907 (2019).

I Kolaczyk, Lin, Rosenberg, Xu, Walters: Averages of Unlabeled Networks:
Geometric Characterization and Asymptotic Behavior. arXiv preprint
arXiv:1709.02793 (2019).
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The geometry of graph space

Theorem
Graph-space geodesics are not necessarily unique.
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The geometry of graph space

Theorem
Graph-space curvature is unbounded from above.

Curvature bounded from above by κ if for all geodesic triangles in
X/G are thinner than their corresponding comparison triangles in
Mκ.

dX/G ([x ], [a]) ≤ dMκ(x̄ , ā) :
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First statistic: Fréchet mean

[m] = argmin[x]∈X/G
∑

i=1...n

d2
X/G ([x ], [xi ])

Theorem
Fréchet means are not generally unique in graph space X/G .
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Existing algorithms and heuristics for computing Fréchet
means in nonlinear spaces

Iterative weighted midpoints / stochastic gradient descent

Note: Proofs of convergence usually require being able to work in
a neighborhood with unique geodesics.
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Existing algorithms and heuristics for computing Fréchet
means in nonlinear spaces

We choose: Align all and compute (AAC) / Generalized Procrustes
analysis

Guarantee convergence to local minimum for generic dataset.

16 / 45



Existing algorithms and heuristics for computing Fréchet
means in nonlinear spaces

We choose: Align all and compute (AAC) / Generalized Procrustes
analysis

x

Guarantee convergence to local minimum for generic dataset.

17 / 45



Existing algorithms and heuristics for computing Fréchet
means in nonlinear spaces

We choose: Align all and compute (AAC) / Generalized Procrustes
analysis

x

Guarantee convergence to local minimum for generic dataset.

18 / 45



Existing algorithms and heuristics for computing Fréchet
means in nonlinear spaces

We choose: Align all and compute (AAC) / Generalized Procrustes
analysis

Guarantee convergence to local minimum for generic dataset.

19 / 45



Existing algorithms and heuristics for computing Fréchet
means in nonlinear spaces

We choose: Align all and compute (AAC) / Generalized Procrustes
analysis

x

Guarantee convergence to local minimum for generic dataset.

20 / 45



Existing algorithms and heuristics for computing Fréchet
means in nonlinear spaces

We choose: Align all and compute (AAC) / Generalized Procrustes
analysis

x

Guarantee convergence to local minimum for generic dataset.

21 / 45



Existing algorithms and heuristics for computing Fréchet
means in nonlinear spaces

We choose: Align all and compute (AAC) / Generalized Procrustes
analysis

Guarantee convergence to local minimum for generic dataset.

22 / 45



Existing algorithms and heuristics for computing Fréchet
means in nonlinear spaces

We choose: Align all and compute (AAC) / Generalized Procrustes
analysis

x

Guarantee convergence to local minimum for generic dataset.
23 / 45



Examples: Synthetic dataset

Sample randomly from five shown equivalence classes
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Examples: Synthetic dataset

Fréchet mean:
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Mobility networks Lombardia region
Dataset:
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Mobility networks Lombardia region

Fréchet mean:
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Next: Principal components via AAC

Result: Principal components 1-d represented as subspaces of
Rn×n

initialize by aligning all data graphs to a random adjacency
matrix;

while While not converged do
perform PCA in Rn×n;
choose representatives of all data graphs in optimal position
with the first PC in Rn×n.

end
Algorithm 1: PCA via AAC
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Example: Synthetic dataset

Dataset

Sampled randomly from each of the 5 shown equivalence classes.
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Example: Synthetic dataset

PCA in space of adjacency matrices.
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Example: Synthetic dataset

PCA in graph space (with AAC algorithm):
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Example: Handwritten letter “A”

Dataset:
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Example: Handwritten letter “A”

Principal components in graph space:
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Mobility networks Lombardia region
Dataset:
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Mobility networks Lombardia region
Principal components in graph space:
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Discussion

Advantages:
I Total space is (Rd)n×n, easing generalization of Euclidean

methods

I Jain et al, and by now others, have developed a wide range of
theoretical and practical tools for distance-based statistics and
learning on graphs in these spaces

Limitations:

I Distances are generally NP-complete due to graph matching
problem  approximations

I Graph space geometry is highly non-Euclidean (and it is not a
manifold); this is likely to affect statistics in ways we do not
yet understand.
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Discussion: Align all and compute

I ”Tangent space“ approach: Align all points with a
representative of the mean and perform statistics in the total
space (⇔ tangent space statistics in manifolds). This is done
in Guo et al (2019).

I As we know it from manifolds, such an approach leads to
increased distortion with distance to mean.

I Non-uniqueness of geodesics lead to further issues as you
move outside the injectivity radius from the mean.

I Aligning with higher principal components, as we do, can help
alleviate this problem – but NB! Don’t go too high... if you
include them all you will stay put. So how many?
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Open problems
I For geometric graphs, Jain’s model does not capture well

contracting branches:
I This is likely to significantly complicate geometry and

computation.

0

1

1

1 =

0

1

1

1 =

Modelling choice:
What does the 0 attribute represent?

Effect of modelling choice on Fréchet mean

Effect of modelling choice on limits
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Open problems

I Ability to merge nodes

Effect of modelling choice on limits
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