Detecting Hierarchical Structure in Networks

AbstractMany real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose a generative
Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure. On synthetic and real data we
demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network.
TypeConference paper [With referee]
ConferenceCognitive Information Processing
Electronic version(s)[pdf]
BibTeX data [bibtex]
IMM Group(s)Intelligent Signal Processing