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Abstract

In this paper, we proposethe use of the Level–Set
Methodas the underlying technology of a volumesculpt-
ing system.Themainmotivationis that this leadsto a very
generictechnique for deformation of volumetricsolids. In
addition, our methodpreservesa distancefieldvolumerep-
resentation. A scalingwindowis usedto adapt theLevel–
SetMethodto local deformations andto allow the userto
control theintensityof thetool. Level–Setbasedtoolshave
beenimplemented in an interactivesculptingsystem,and
weshowsculpturescreatedusingthesystem.

1. Intr oduction

Interactivemodellingof 3Dshapesonacomputershould
beassimpleandintuitiveasdoodling 2D shapesusingpen-
cil andpaper. Simpler, in fact,sinceonacomputerchanges
canalwaysbeundone,andtheuseris morefreeto explore
andexperiment.

Volume sculpting is a methodthat seemsto hold the
promiseof powerful andintuitive3D shapemodelling, and
althoughit appearsthatvolumesculptingis notyetawidely
usedtechnique, the methodhasproven to be effective for
sculptingobjectsof complex topology andorganic appear-
ance.

The pastten yearshave seena number of publications
pertaining to volumesculpting[3, 14, 24, 9, 31, 25, 5,2, 23,
13] aswell asa commercial systemfrom SensAbleTech-
nologies. The proposalsarediverse,anda number of the
systemssupport advanced3D input and output facilities.
However, the systemsaresimilar with respectto the tools
they support. This is trueat leastif wefocusonthesystems
basedon the grey–level volume representation (seenext
section). In this caseall manipulationsareblock manipu-
lationswherea region of thevolumeis traversedandsome
operation performedon eachvoxel therein. This modeof
operation hassomedrawbacks. In particular, it doesnot
leadto generic technique for deformations,andit is impos-
sibleto assignaprecisesignificanceto a voxel.

As a remedy, we proposeto usethe Level–SetMethod
(LSM) asthebasictechnology of a sculptingsystem.This
approachlendsitself well to any sort of deformative ma-
nipulationof volumetricsolids,andit maintainsa“cleaner”
volume representationwherevoxels have (andretain) the
property that their value is the signedshortestdistanceto
theboundaryof therepresentedsolid.

2. Background

Existing volumesculptingsystemscan,roughly, be di-
vided into threecategories: Systemsthat employ the bi-
nary volumerepresentation, e.g. [24, 9, 25], andsystems
which employ thegrey–level or scalar volumerepresenta-
tion [3, 14, 31, 5, 23, 13]. In addition a number of sys-
temsarerelatedto volume sculptingsystems,but differ in
significantways: For instance,someauthors have investi-
gatedAdaptiveDistanceFields [17, 22] or volumeswhere
thevoxelsarelinked[16].

In thispaper, wefocusonthesystemsbasedonthescalar
volume representation,sincethebinary representationdoes
not lend itself well to the sculptingof solidswith smooth
surfaces. The alternative approachessolve certain prob-
lems,but they alsointroducenew difficulties. For instance,
Adaptive DistanceFields allow for higher resolution fea-
tures,but seemto besuitableonly for volumetric CSGand
notmanipulationsthatdeform thesolid. Thelinkedvolume
representationis an augmentedbinary volume representa-
tion, andlike binaryvolumesprobably not suitablefor the
sculptingof solidswith smoothsurfaces.

In thecaseof thescalarvolumerepresentation,it is gen-
erally assumedthat voxels are placedat the points of an
isotropic 3D lattice. The distancebetweentwo adjacent
voxels (onevoxel unit – ��� ) is oftena convenientunit. A
scalarvalueis associatedwith eachvoxel. We canseethis
valueasasampleof aV–model [30] alsocalledacharacter-
istic function. A V–model is, essentially, animplicit surface
representationof a solid. More precisely, givena solid � ,
anassociatedV–model�	� ��
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the solid. The iso–value% is arbitrary, andin the follow-
ing we alwaysassumethat %1(32 . In thecontext of scalar
volumes,theprocessof samplinga V–model is calledvox-
elization. In otherwords,in the context of scalarvolume,
voxelizationdenotestheconversionfrom somerepresenta-
tion to thevolumetric by wayof aV–model representation.

It is known that
�	� ��
 should besmoothandvaryslowly

with respectto thevoxel grid. It would seemlogical to use
a V–model that jumpsfrom, say, zeroto oneon thebound-
ary of a solid. However, sucha functionis, of course,rich
in high frequency componentsandwhenit is sampled(at
thevoxel positions),thereconstruction(thevalueis recon-
structedusinginterpolation betweenvoxel values)will ex-
hibit artefacts.Seealso[15, 20, 7].

In the following, we will assumethat the V–model is
simply the signedshortestdistanceto the boundaryof the
solidclampedto a certainrange,i.e.�	� �)
 �'! 
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where
?

is thewidth of thetransitionregionandA C �'! 
)(3G = 5H7JIEK<L�MON CQP8P !R=1S P8P !0+ �587TIEK<L�MON C$P8P !U=VS PHP !XW+ � (2)

Voxels in the transitionregion arecalledtransitionvoxels,
andvoxels outsidethe transitionregion arecalledinterior
or exterior depending on their sign. To avoid artefactsin
reconstruction,it is bestif

?
is about 2.5 �Y� or larger[7, 30].

Thisvaluehasbeenusedin thework presentedhere.
Thescalarvolumerepresentationwill becalledthedis-

tancefield volumerepresentation (DFV) whenvoxels are
sampledfrom a function of the type (1). Distancefield
volumeshold a number of advantages.First of all, finding
thedistanceto a solid is a common operation in computer
graphics. HenceDFVs canbe generated using technolo-
giesalsousedfor e.g. collision detection. Secondly, the
value of a transitionvoxel now hasa cleargeometricsig-
nificance. Finally, certainoperationsaresimplified. In this
paper, weshallseethatit is easierto computecurvatureand
findpointsontheboundaryof asolidif thevolumeis aDFV
thanit is in general for scalarvolumes.

Sculptingsystemsbasedon thescalarvolume represen-
tationaregenerally similar in theway manipulationswork
(a notableexception beingthe method proposedby Arata
et al. in [2] wherevoxels represent cellular automatathat
exchangematerial.). The userpositions a tool somewhere
insidethevolume,andthetool affectsa boxshapedRegion
of Influence(ROI). For eachvoxel of value Z andposition!

in the ROI, a simpleoperation is carriedout. Typically
either

1. Z is replacedby aweightedaverageof Z andthevalues
of neighbouring voxels.

Figure 1. Volume sculptures. Normal models
are on the left, dilated on the right, old system
on top, new system belo w.

2. Z is replaced by a combination of Z and the value
of a V–model evaluated at the voxel position. Z\[] � Z�� �_^"`F`�ab�'! 
E
 where

�c^"`F`Ba
is theV–modelof a tool.

1. is the simplestto explain. The averaging corresponds
to convolving the volume with a blurring kernel, and the
resultis thattherepresentedsolid becomessmoother. 2. is
reallyvolumetricCSG.Many implementationsarepossible.
If thevolumeis a DFV, ] � �����d
Q(e4:587 � �����d
 is sometimes
usedsincefor most(but not all!) voxels thecorrectsigned
shortestdistanceis the minimum of the shortestdistance
[6, 21]. However, many otherper–voxel operations have
beenproposed.

The motivation for the work presented hereis twofold.
First of all, the two operations above allow for smoothing
andvolumetric CSGbut do not provide a general method
for deforming volumetric solids. Secondly, the above
method doesnot preserve thedistancefield representation.
This easilyleadsto noiseat otheriso–valuesthan %f(\2 as
illustratedin Figure1. Themodelon top is sculptedusing
thesystemdiscussedin [5] whereasthemethods presented
in this paperareusedfor themodel below. Dilatedmodels
areon the right. Notice that the dilatedversionof the top
model exhibits considerablenoisewhereasthemodel below
doesnot.



In the following, we will discusstheLevel–SetMethod
which hasbeenadaptedto volume sculpting. Using this
method it is possibleto perform more general deforma-
tions. Moreover, the Level–SetMethodpreservesthe dis-
tancefield representation.In practicalterms,werebuild the
transitionregion for eachmanipulationto ensurethatvoxel
valuescorrespond to distanceswith reasonable precision.

TheLevel–SetMethodis aflexible tool whichhasfound
diverse applications. In the context of volume graphics,
LSM has recently beenusedfor segmentation problems
[32], andthemetamorphosisof volumetric solids[4].

3. The Level–SetMethod

The Level–Setmethod [27] is a technique for tracking
theevolution of a deforming interfaceor surface.Theaim
of this sectionis to inform the readerabout how it works
andhow it is implemented. For thefiner detailson e.g.up-
winding, stability and convergence,the reader is referred
to [27, 19]. Assumethat we are dealingwith a surfacegh�'i 
h�j� � where

i
is the time parameterization.

g
is

assumedto change according to somespeedfunction that
pushes

g
in thenormal direction.

Themotionof
g

isexpressedthrougharelationshipwith
anembedding function kl�nm ��o mqp*�rm . For all points
on
g

thevalueof k mustbezero.Thisleadsto theequationk �'gs�'i 
F� i 
)(t2 (3)

where
gh�"i 
 denotes thesetof pointsbelonging to

g
at timei

. (3) simply saysthat
gs�'i 
 is an isosurface(here calleda

level–set) of k �>u � i 
 . Becausethis holds for any point in
time,both

g
and k mayevolve but theLevel–Setequation

continuesto hold implying thatATk �'gh�"i 
F� i 
 W A i (t2 (4)

Toseehow thechangeof k and
g

arecoupled,wecompute
thederivativeusingthechainruleADk �"gh�'i 
v� i 
 W A i ( - k-wiyxsz:k u A gA i (5)

where z{k|(~} N��N�� N��N�� N��N��_� . Becauseall motion is in the

normal direction, we canwrite thechangeof
g

in termsof
aspeedfunction � timesthenormal � ���� � � ���A gh�"i 
A i (*� z{kP8P z{k P8P (6)

Thus � �'! 
 where
!�+eg

is a voxel position is literally
the speedat which that point on

g
moves in the normal

direction. Plugging (6) backinto (5), we obtaintheLevel–
Setequation - k-wi xh� PHP z{k PHP (�2 (7)

The Level–SetMethodworks on a discretegrid repre-
sentationof k , thatis (assuming below thatunit timestepis
usedandthatthegrid spacingis alsounit)k
��� �����O���D�_(�k � ���������D�������J�6�n�B��� i 

This is a4D discretefunction, but, in general,only onetime
stepis stored. In otherwords, k is really representedby a
3D voxel grid. Moreover, theinitial value, kQ� is typically a
distancefield. In otherwords,thevoxel gridsthatareused
throughout this paper are preciselythe sametype of rep-
resentationasthediscretizedembedding function k which
theLevel–SetMethodworkson.Thetimederivativeof k is
approximatedusing- k-�i0�t� p�� k�(�k
� p�� � �����O����� = k
��� �����O���D� (8)

andif thatestimateof thederivative is pluggedinto (7), we
obtaina method for computing onetimestep:k � p�� � ���b�O������(�k � � ���b������� = � PHP z{k ��P8P (9)

wherethe gradient P8P z{k � PHP must be computed using one
sidedderivativesin theupwinddirection[27]. The reason
is thatthesolutionotherwisehasa tendency to become un-
stablein thepresenceof discontinuitiesin theevolving sur-
face. However, basedon the observation that PHP z{k PHP ( �
everywhere(except at singularities) in a distancefield, we
havesimplifiedtheformulatok
� p�� � �����O�����_(�k
��� �����O����� = � (10)

It might be thought that this could introduce numerical
problems,but wehavenotobservedill effects.

An important questionis how to define � . Adalsteins-
son et al. have shown that if the speedfunction fulfillsz6� u z{k*(�2 then k remains a distancefield [1]. In other
words,thespeedfunction shouldbeconstantalongthegra-
dientdirection. To achievethis, � is alwaysevaluatedat the
closestsurfacepoint – i.e. thepoint we reachby following
thegradient towardsthesurface. Sincewe aredealingwith
distancefields,it is easyto find theclosestsurfacepoint to
apoint

!
usingtheboundarymapping¡¢�"! 
£( !U= z{k@k �'! 
 (11)

In thefollowing, it is understoodthat to evaluate thespeed
function, theboundarymapping is first usedto find theclos-
estsurfacepoint (the foot point), andthenthe speedfunc-
tion is evaluatedthere.

3.1. Alter nativeTechnique: CIR

The CIR (Courant IsaacsonRees)schemehasrecently
beenusedto solve the Level–Setequation by JohnStrain



[29]. Saywe arefollowing thecharacteristiccurve ¤ �"i 
 de-
finedby ¤Y¥ �'i 
�(��Qz{k ¤ � 2O
�( ! (12)

for somepoint
!

, thenAA i k � ¤ �"i 
F� i 
)( - k-�i xUz{k u ¤ ¥ ( - k-�i xy� PHP z{k PHP (�2 (13)

In otherwords, k is constantalong ¤ . At any givenpoint,
we canapproximatea stepalong ¤ by the speedfunction
timesthegradient,andthat leadsto theCIR schemewhich
is, essentially, to trackthecharacteristiccurve from a voxel
positiononetime–stepbackandthenassignthevalueatthat
point.

The algorithm as implemented by Strain consistsof
three stepscarried out for all grid points. Let the grid
point be

!
. First we evaluatethe speedfunction � �'! 
 .

A step back along the characteristic is approximatedby¤V( !¦= � �'! 
Ez{k where(asusual)unit time stepis as-
sumed. The valueof k at ¤ is computed. Strainusesthe
so–calledENO scheme[19] to find thevalue at ¤ (which is
not in general a grid point) – we usetrilinear interpolation.
Finally, the interpolatedvalue k � ¤§
 is assignedto the grid
point

!
.

3.2. Mean CurvatureFlow

Meancurvature [10] constitutesa very useful,geometry
dependentspeedfunction��¨�©dª'« �'! 
�( =­¬w® (14)

where
¬ ®

denotesthemeancurvature. Thesignof thecur-
vature is definedto bepositive at a convex point andnega-
tiveata concave point. Theresultis thatall regionsof high
curvaturearemadesmoother, protrusionsshrink, andcavi-
tiesarefilled in. This processis known asmeancurvature
flow andit is a well known andexploredapplicationof the
Level–SetMethod [11].

The formula typically (seee.g. [27]) usedto compute
meancurvatureis

¬ ® ( �¯
°±±² � k
�v�³x�k
����
�k
´�x � k
�Y�­x�k
����
�k
´�x � k �Y� x�k �v� 
Bk
´�= ¯ � k � k � k �Y� xsk � k � k ��� x�k � k � k �v� 


µd¶¶·� k ´� x�k ´� x�k ´� 
 ��¸ ´
(15)

but, basedon theobservation that k is a distancefield, we
canusea muchsimplerformula[18]¬ ® (º¹�» 9O¼v½ �¿¾ 
¯ ( k
�Y�­x�k
�v�@xsk
���¯ (16)

where
¾

is the Hessian(i.e. the matrix of secondorder
derivatives.) of k . A common way of computing the sec-
ondorderpartialderivativesis usingthefollowing discrete
operator- ´§k- � ´ � k � �6x*���B�_�B�D
_x�k � � = �O�E�_�B�D
 = ¯ k � ���B�_�B�D

However, we storegradientsin thevolumeandit is simple
to computethesecondorderderivativesby applying central
differencesto the gradients. This methodis a bit unusual,
but it is fastandvery stable.

3.3. Rebuilding the Transiti on Region

TheLevel–SetMethodis a techniquefor computing the
evolution of surfacesthat mayexpand andcontract. If we
assumethat the speedfunction is alwayspositive, the so–
calledFastMarchingMethod[26] maybeusedinstead.Ap-
plied to avoxel grid, theFMM computesthearrival timeof
anevolving front. If thefront evolvesat unit speed,there-
sult is a distancefield. TheFMM requiresthatasetof vox-
els, whosedistancevaluesareknown, are frozeninitially.
By solving a quadratic polynomial, the distancesare then
computedat theneighboursof thefrozenvoxels.

After that,a loop ensues.For eachiterationof theloop,
thenon–frozen voxel having thesmallestdistancevalueis
frozen, anddistancesarecomputedat its neighbours. The
distancevalueof a frozenvoxel is never recomputed.Thus,
wecanseetheFMM asanexpandingfront. A bandof vox-
elsalongthefront arebeing recomputed,andvoxels behind
thefront areknown andtheir valuesfrozen.

Because,the FMM can be usedto compute distance
fields, it canbe usedto build or rebuild the transitionre-
gionof aDFV – providedthatweknow thedistancevalues
of a thin bandof voxels. A secondorder versionof the
algorithm is possible.This version is calledthe High Ac-
curacy FastMarchingMethod(FMMHA), andthis method
hasbeenusedin thework presentedhere.For moredetails
about how theFastMarchingMethodsareimplemented,the
readeris referredto [27, 26, 8].

3.4. Implementation

The volume is storedin a two level hierarchical grid.
More precisely, an À o À o À grid is represented by
an À ¥Áo À ¥Áo À ¥ super–grid whereeachcell containsanÂ o Â o Â sub–grid sothat ÀÃ( Â À ¥ . BecausetheV–
model is clampedto the � =@? � ? � rangeonly transitionvoxels
needto haveanexplicit voxel valuestored.Interior andex-
teriorvoxelsall havevaluesof

=@?
and

?
, respectively. Con-

sequently, asub–grid is storedonly if it containsat leastone
transitionvoxels.Otherwise,all its voxelsmustbeeitherin-
terioror exterior, andonly this informationis storedfor the
entiresub-grid.



In its simplestform, the Level–SetMethodconsistsof
visiting all transitionvoxelsandreplacing eachvoxel with
theresultof (10):k	� ! �_[Äk	� ! � = � �"!�ÅÆ`F`B^ 
 (17)

where � is the speedfunction evaluatedat the foot point!�ÅÆ`F`B^ ( !¢= k³z{k . Notethat(17) is really thesameas(10)
with a slight change of notation. The updating procedure
canquiteeasilybechangedto updatethevoxels usingthe
CIR approachsuggestedby Strain[29]k	� ! �_[Äk �"!U=VÇ � �"! ÅH`F`E^ 
B
 (18)

where k �Eu 
 denotesthevalueof thevolumeinterpolated at
agivenlocation.Exactlythesamefundamentalloopis used
in conjunctionwith both(17)and(18). Theonly difference
lies in how thevoxels areupdated.

The basicapproachis to updateall voxels in the tran-
sition region usingeither (17) or (18). However, it is not
enoughtosimplyupdatethevoxels. As thesurfacedeforms,
somevoxels shouldbe addedto the transitionregion, and
othervoxels shouldbe removed. Recall that voxels arein
thetransitionregionif theirdistancevaluesfall in therange� =V? � ? � where

?
is thewidth of thetransitionregion. If the

distancevalueafterupdatingfalls outsidethis range,it be-
comes an interior/exterior voxel asappropriate. This does
not posea problem, but it alsohappensthatvoxelsoutside
the transitionregion come closerto the surfacethan

?
. In

this casethe distanceneedsto be recomputed. This prob-
lem could be solved by freezingall transitionvoxels and
thenrunning thefastmarchingmethod. However, ourexpe-
rienceis thatevenwhenevaluatingthespeedfunction only
at foot points, the voxels in the outer layersof the transi-
tion regionhavea tendency to become lessprecise.Conse-
quently, abetterideaseemsto beto retainonly thevoxelsin
theimmediateneighbourhoodof thesurfaceandrebuild the
restusingtheFastMarching Method. To concretize“imme-
diateneighbourhood” only voxels at � W ¯ �Y� distanceor less
from thesurfaceareretainedandtherestarerebuilt. This is
illustratedin Figure2.

Thecomplete procedureis asfollows:

1. Compute new distancevaluefor all transitionvoxels
using(17)or (18).

2. Freezeall voxelsat � W ¯ ��� distancefrom thesurface.

3. Rebuild transitionregion usingthehigh accuracy Fast
Marching Method.

4. Sculpting Tools

Sculpting tools differ only by their associatedspeed
functions. The simplestpossiblespeedfunction is a con-
stantspeedfunction. A constantspeedfunction� ¨ `BÈYÉÊ^d�'! 
)(X� (19)

Exterior/interior voxel
Transition region voxel
Voxel exiting transition region
Voxel entering transition region
Voxels at 1/2 vu distance

Figure 2. Level–Set Method

pushestheboundaryuniformly outwardsandthusresultsin
a dilation. A speedfunction which may be usedto adda
smallprotrusion(or dent)to thesurfaceis the3D Gaußian��Ë ©dÌÁÍ �'! 
)(*½v;TÎ_Ï ��� Ð Ï Ð�Ñd��� ¸ ´BÒÔÓ (20)

The alreadymentioned meancurvature speedfunction is
usedto smoothen thesurface.� ¨�©YªÊ« �'! 
)( =­¬ ®

An important pieceis missing. We want the userto be
ableto make local changes. Locality meansthat theentire
Level–SetMethodis usedonly in a ROI around thecentre
of the tool, andthe valueof the speedfunction should be
0 on the boundaryof the ROI. To achieve this, a radially
symmetric windowing function is used. This function can
be seenasa speedfunction that is controlled by four pa-
rameters: A scalingfactor Õ , a window radius

?
, a window

transitionregionthickness � , acentrepoint
! � , andanother

speedfunction � . Thedefinitionis��Ö�×�Ø Ð ÑBÙ �"! 
)(�Õ�� �'! 
�Ú@×�Ø � P8P !U=1! � P8P 
 (21)

where

Ú@×�Ø �'i 
)(ÜÛÝ Þ � 26ß i£/�?� =1àw� � Ï ×Ø 
>´ = ¯ � � Ï ×Ø 
 � ? ß i ß ? xs�2 i # ? xs�
(22)

Noticethat Úá×�Ø is a âQ� function.Thisensuresthatthespeed
function decreasessmoothly to 0. The scalingfactor Õ is
usedto scaletheeffectof thetool.

Thefollowing concretesculptingtoolshavebeenimple-
mented:
1. Add blob: � Ë ©YÌÁÍ usedin conjunctionwith thescaling–
windowing speedfunction. This tool is local only. 2. Re-
move blob: Sameasabove,but with negativescaling.
3. Smooth: � ¨�©YªÊ« used either in conjunction with the
scaling–windowing speedfunction or without, depending



onwhetheraglobalor alocalsmoothing is desired.Scaling
is usedto determine thedegreeof smoothing.
4. Un–smooth:Sameasabove but with a negativescaling.
5. Dilate: ��¨ `�ÈdÉÊ^ usedwith scalingbut usuallynotwindow-
ing sincea dilationof apartof anobjectis rarelydesirable.
6. Erode: Sameasabovebut with negativescaling.

5. Visualization

A fastmethod for visualizingvolumedatais veryimpor-
tant in volume sculpting.Themethods typically employed
areeitherray casting[31, 3, 5] or a variationof the well–
known Marching Cubesalgorithm [14, 13, 23] by Lorensen
etal. [12].

Two methods have beenimplemented: Marching Cubes
anda point rendering method inspiredby [28]. Both meth-
odswere implemented usingOpenGL,and in the follow-
ing, we briefly discussthe point rendering method. For
eachtransitionvoxel within a given distanceof thebound-
ary, the boundarymapping(11) is usedto producea foot
point. Togetherwith thenormal, this point canberendered
using the OpenGLpoint primitive. To facilitate perspec-
tive projection, pointsarescaledaccording to the distance
to thesurface. Not all surfacepointsarerecomputedeach
time thevolumeis changed. A point–bin is associatedwith
eachsub–grid of thehierarchical grid. Whenthevolumeis
changed,thepointsof a sub–grid arerecomputedonly if at
leastonevoxel hasbeenchanged.

Thestrengthof thepoint renderingmethodliesin its sim-
plicity, andourtestsindicatethatpointrenderingis between
two andfour timesfasterthanMC both whenit comesto
primitive (point or polygon) generation andvisualization.
Theweaknessis thatat low resolutionsor whenzooming in
close,pointsbecomevisible andthequality of MC visual-
ization is betterin thesecases.Figure5 (right) (seecolour
section)illustratesbothmethods.

6. The Interacti ve System

The Level–Set tools describedin Section4 have been
incorporatedin an interactive system.The systemwill be
describedbriefly in thefollowing.

Onstart-up,theuseris presentedwith agraphicswindow
anda control panel. All sculptingoperations take placein
thegraphicswindow, andthecontrol panelis usedto select
various visualization parameters, the tool, andtool param-
eters.For instance,theusercanselectthesmoothing tool,
theamount of smoothing andthe sizeof the smoothed re-
gion in thecontrol panelandthenapplythesmoothingtool
in the graphics window. Apart from sculptingoperations,
thegraphics window alsoallows theuserto zoomin on the
model, panor rotatetheview.

The systemdoesnot only support the Level–Setbased
tools discussedin this paperbut alsotools basedon volu-
metricCSG[6]. Thesystemhasbeenwritten in C++ using
FLTK as the GUI toolkit and it runs on Linux and Win-
dows. For the timings below, an 800 MHz Athlon based
system(runningLinux) equippedwith 256MB RAM anda
GeForce2 GTSgraphics cardwasemployed.

7. Results

Theinteractive systemhasbeenusedto createa number
of sculptures. The effects of someof the sculptingtools
areshown isolatedin Figure3. The addandremove blob
toolswereusedto bore a holethrough andcreatea handle
on thecube,respectively. Thesmoothing tool wasusedto
smoothenonecornerof thecube.

Figure 3. Effect of add/remo ve blob and
smoothing (left), a “marzipan pig” (centre),
and marzipan pig after open with a sphere or
radius 3 (right)

Figure 4. Volume Sculpture of a “marzipan
pig” under mean cur vature flo w.



ROI Tool Applications Ave.time/s
10x10x10 Add blob 612 0.044

Smoothing 1674 0.047
20x20x20 Add blob 654 0.134

Smoothing 738 0.153
30x30x30 Add blob 192 0.307

Smoothing 250 0.352
40x40x40 Add blob 128 0.703

Smoothing 132 0.878
50x50x50 Add blob 110 0.973

Smoothing 138 1.109
60x60x60 Add blob 65 1.246

Smoothing 140 1.293
70x70x70 Add blob 43 1.744

Smoothing 64 1.453

Table 1. Timings for the add blob and smooth-
ing tools.

More elaborate sculpturesare shown in Figure 5 (see
colour section).Thebearmodelis a

¯�ã�ä o ¯Oã<ä o ¯�ã�ä volume
whereastheheadis storedin �Y2 ¯Ôå o �Y2 ¯Ôå o ��2 ¯Ôå volume
(which would take up far too muchstorageexcept for the
hierarchical grid). The LSM basedtools discussedin this
paper are the primary tools that have beenusedto create
themodels.However, two othertechniqueshave alsobeen
used: For the eyesof the head(Figure5 left), volumetric
CSG was usedto createthe eyeballs. Secondly, the res-
olution waschangedduring sculpting. In the caseof both
models,verycruderesolutions(e.g.

à ¯ o à ¯ o à ¯ ) wereused
during the initial work. Theresolutionwasthenincreased
by a factorof two while finerdetailswereadded. Doubling
the resolution entailsan interpolation of thevaluesof new
voxelswhich turnedout to introduceslightartefacts.These
wereeasilyremovedusingglobal smoothing.

Theaddblobandsmoothing toolshavebeenseenin pre-
vious sculptingsystems. However, using the LSM, new
possibilitiesemerge. Theun–smoothtool which wasused
to createthe hair imitation on the bearis oneexample. A
more practicallyusefulexample is shown in Figure3: The
marzipan pig model on the left hasbeeneroded andthen
dilatedwith a ball of radiusthree �Y� producing a morpho-
logicalopening.

The figuresdiscussedabove give an idea of the scope
andeffectivenessof thesculptingtools. Another important
concernis speed.Thespeedhasbeentestedbyauserexper-
iment.Theaddblobandlocalsmoothingtoolswereapplied
by asculptorusingROIs ranging from ��2 o ��2 o �Y2 voxels
to æ<2 o æÔ2 o æÔ2 voxels.For eachtool andeachsizeof ROI
thetool wasappliedanumberof timesin arandomfashion.
Theresultsareshown in Table1. As thetableindicates,the
method is easilyinteractive for small tools. Large toolsare
clearlymuchslower, but thedefault tool sizeis

¯ 2 o ¯ 2 o ¯ 2
which is reasonably fastat about 0.15secondsperapplica-

tion.
It hasbeenmentionedseveraltimesthatourmethod pre-

servesthedistancefield representation. This is ensuredby
theway thespeedfunctionis extendedandby thefact that
distancesarerecomputedfor all voxels at morethan ç ã Z�è
distancefrom the boundary. However, it is hardto prove
that the volumeremainsa distancefield. Also, somenu-
mericalerror mustbe allowed for. The besttestseemsto
beto verify that thelengthof thegradient is unit, sincethe
gradient of a distancefield must be unit–length exceptat
critical pointsof thedistancefield [15].

An experiment was carriedout. The experimentcon-
sistedof 400applicationsof theaddblob tool interspersed
with 400applicationsof thesmoothing tool. Thetoolswere
appliedto random points on the side of the cube. After-
wards,gradientswerecomputedfor voxelsincident oncells
intersectedby theboundary. As onewouldexpecttheerror
is quite low – nowherehigher than 2Jç 2�æT�Y� . Moreover, the
greatesterroris neartheedgeswherecurvatureis animpor-
tantsourceof error.

Notealsothatthepoint rendering reliesontheboundary
mapping whichworksonly for distancefields. Inaccuracies
would translateinto errorsin thevisualization.

8. Discussion

We have shown that it is feasibleto usethe Level–Set
Methodastheunderlying technology of avolumesculpting
system.

The method is generic. Any deformationwhich canbe
expressedthrough a speedfunction can be implemented
usingthe Level–SetMethod. By introducing the scaling–
window in the context of the LSM, we have provided a
way of usingthe Level–SetMethodalso for local manip-
ulations. This hasled to very effective tools for smooth-
ing andfor adding or subtracting blobsof materialfrom the
model. Moreover, tools that werenot previously possible
have beenimplemented. For instance,the un–smoothtool
usedin the bearvolume. Morphological operations have
alsobeenshown.

Anotheradvantageof ourmethod lies in thefactthatthe
LSM maintains a cleanervolume representation thanpre-
vious methods. The fact that a signeddistancevolume is
maintainedhasbeenexploited to simplify thecomputation
of curvatureandthevisualization.

For somesculptures,theLSM basedtoolssuffice. How-
ever, in general, CSG tools [6] are also important, and it
turned out to be very valuable to be able to begin sculpt-
ing at low resolutions andthengradually increasethe res-
olution. Thus,theLSM basedtoolsshouldbeseenasjust
onecomponentof a complete sculptingsystem,albeit an
importantcomponent. Moreover, the toolswe have imple-
mentedareprobably only thebeginning,andothers areen-



visioned. For instance,it wouldbepossibleto createshear-
ing or warpingspeedfunctions.

Finally, the systemis not heavily optimized, and al-
though it is sufficiently fastfor interactivesculpting,webe-
lieve that thereis a potential for greaterspeedon existing
hardware.
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