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Summary (English)

The aim of the thesis is to formulate a model describing the dynamic role of
the Hypothalamic-Pituitary-Adrenal (HPA) axis in the immune system. The
two subsidiary goals of the thesis are the formulation of two models describing
the acute in�ammatory response and the dynamics of the hormones of the HPA
axis, respectively. All three models are compared to available data.

In the �rst part of the thesis, information of existent models in the literature,
describing the acute in�ammatory response is collected after which a minimal,
mathematical model is formulated. The model is a reduced and modi�ed version
of a model proposed by Roy et al. (2009). The model is compared to the
model proposed by Roy et al. (2009) and data measured in rats. Existence
and uniqueness of the solutions to the system together with the existence of an
attracting trapping region is proved. The model is simulated for rats exposed
to three di�erent doses of the endotoxin (lipopolysaccharides, LPS).

The second part of the thesis deals with the formulation of a mathematical
model describing the interactions of the hormones in the HPA axis. The model
is formulated on the basis of a model proposed by Ottesen (2011) and the work
accomplished by Rasmussen et al. (2015). Existence and uniqueness of the
solutions to the system together with the existence of an attracting trapping
region is proved. A good approximation of the model is �tted convincingly to
ACTH and cortisol concentration data from eight individuals.

In the last part of the thesis, biological reasoning and mathematical modelling
is used to formulate a model describing the dynamical role of the HPA axis in
the immune system, by coupling the two studied models. The parameters are
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estimated using concentration data of TNF-α, ACTH and cortisol after injection
of endotoxin. Finally, the model is compared to a model recently proposed by
Malek et al. (2015) and simulated for di�erent dosing and timing scenarios.



Summary (Danish)

Formålet med dette kandidatspeciale er at formulere en model, der beskriver den
dynamiske rolle af hypothalamus-hypofyse-binyre-aksen (HPA-aksen) i immun-
systemt. Delmålene for dette kandidatspeciale er at formulere to modeller, som
beskriver det akutte in�ammatoriske respons og dynamikken af hormonerne i
HPA aksen. Alle tre modeller er sammenlignet med tilgængeligt data.

I den første del af specialet indsamles information om eksisterende modeller i
litteraturen, der beskriver det akutte in�ammatoriske respons, hvorefter en mini-
mal, matematisk model er formuleret. Modellen er en reduceret og modi�ceret
udgave af en model foreslået af Roy et al. (2009). Modellen sammenholdes med
modellen foreslået af Roy et al. (2009) og data fra rotter. Eksistens og entydig-
hed af løsningen til systemet samt eksistensen af et tiltrækkende, fangende om-
råde er bevist. Modellen bruges til at simulere rotter udsat for tre forskellige
doser af endotoxin (lipopolysakkarider, LPS).

Den anden del af specialet omhandler formuleringen af en matematisk model,
der beskriver interaktionerne mellem hormonerne i HPA-aksen. Modellen er for-
muleret på baggrund af en model foreslået af Ottesen (2011) og arbejdet udført
af Rasmussen et al. (2015). Eksistens og entydig-hed af løsningen til systemet
samt eksistensen af et tiltrækkende, fangende område er bevist. En god approksi-
mation til modellen er �ttet overbevisende til data for koncentrationerne af
ACTH og kortisol fra otte individer.

I den sidste del af specialet er biologisk ræsonnement og matematisk modellering
udnyttet til at formulere en model, som beskriver HPA-aksens dynamiske rolle i
immunsystemet, ved at koble de to studerede modeller. Parametrene er bestemt
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ved at �tte modellen til TNF-α, ACTH og kortisol koncentrationer, målt efter
injektion af endotoxin. Endelig er modellen sammenlignet med en model fore-
slået fornylig af Malek et al. (2015) og simuleret for forskellige doserings og
tidsmæssige scenarier.
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Chapter 1

Introduction

The purpose of this thesis is to combine biological knowledge and mathemati-
cal modelling to develop a model describing the interactions between two sub-
systems. The two subsystems are the acute in�ammatory response and the
Hypothalamic-Pituitary-Adrenal axis (HPA axis). These systems are commonly
believed to interact with each other, to maintain homeostasis (the steady and
healthy state) in the body under the in�uence of stress. Both mental stress and
physically stress, such as exposure to endotoxin, can disturb the homeostasis of
the body.4,32 Insight into the immune system can be gained by formulating a
mathematical model of the dynamic in�uence of the HPA axis in the immune
system. Especially, it can lead to insight into the e�ect of the observed ultradian
and circadian rhythms of the hormones of the HPA axis (ACTH and cortisol).

The thesis is divided into three parts. The �rst part focuses on developing a
minimal, adequate model describing the acute in�ammatory response. The sec-
ond part concentrates on the formulation of a model describing the interaction
between the hormones of the HPA axis. The content of the last part is the
formulation of a new coupled model describing the interactions between the two
subsystems studied in the two �rst parts.

As a last part of the introduction, a motivation for using mathematical model-
ling is provided, followed by a project plan for the thesis.



2 Introduction

1.1 Mathematical Modelling

Recently, the interplay between the acute in�ammatory response and the HPA
axis has gained interest. Modelling the coupled system, can help understanding
the interactions in relation to illness and diseases. Understanding the connec-
tion between the systems can be very useful, when investigating how to avoid
diseases, and in drug development, for instance. It may help re�ning diagnoses
and improve treatment planing. The model can also be used for preparing or
suggesting targeted studies which may reduce animal testing as well.

Unlike purely statistical modelling, the mathematical modelling may provide
information of potential mechanisms rather than correlation between factors.
Combining mathematical and statistical modelling and data �tting makes it
possible to describe and simulate the interactions between the acute in�am-
matory system and the HPA axis. Additionally, data may make it possible to
validate the model and evaluate its predictability.

The balance between describing the biological system as simple as possible and
maintaining the complexity is essential. An overly simplistic model leaves out
potentially important interactions and mechanisms, while a too complex model
can lead to over-parametrisation. Over-parametrisation may lead to wrong con-
clusions and interpretations. Thus, keeping the model as simple as possible,
while maintaining su�cient details to capture the essential biological mecha-
nisms is used as a guiding principle in this thesis.
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1.2 Project Plan

The project plan outlines the objectives of the thesis. The focus in the thesis
is to use applied mathematics, in the form of systems of ordinary di�erential
equations (ODEs), on real-world systems and to use simulation tools, such as
MATLAB (R2015) and Maple (2015), to study them. The plan is divided into
three parts, covering the three phases of the project:

• Formulate a model describing the acute in�ammatory response

� Collect information of existing models in the literature

� Choose an adequate mathematical model

� Use model reduction to formulate a minimal, adequate mathematical
model

� Compare model predictions to data

• Formulate a model describing the hormones of the Hypothalamic-Pituitary-
Adrenal axis (HPA axis)

� Collect information of existing models in the literature

� Choose an adequate mathematical model

� Compare model predictions to data

� Estimate parameters for individual subjects

• Formulate a model describing the role of the HPA axis in the immune
system

� Collect information of existing models in the literature

� Propose various coupling mechanisms between the two models

� Compare model predictions to data

� Simulate the model for di�erent dosing and timing scenarios
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Chapter 2

Acute In�ammatory
Response

Local acute in�ammatory response is activated, when an attack or injury to the
body is recognised. The innate immune system may initiates the response in
an attempt to eliminate invading pathogens. In�ammation is most often iden-
ti�ed initially by the symptoms of redness, pain, heat and swelling32. When
the immune system detects a pathogenic threat (such as bacteria, parasites
or viruses), it activates macrophages to engulf or eliminate the di�culties19.
Actually, the engul�ng cells are called monocytes when they are in the blood
and evolves to macrophages in tissue. In this thesis, however, these types of
cells will be refereed to as phagocytic cells. Additionally, the phagocytic cells
stimulates an increase of the release of cytokines, which are messenger cells of
the immune system19,33. Generally cytokines can be classi�ed into two groups,
those which promote and stimulate the in�ammation (pro-in�ammatory cyto-
kines) and those which inhibit and dampen the in�ammation (anti-in�ammatory
cytokines). The pro-in�ammatory cytokines activate more phagocytic cells
and up-regulate other cytokines contemporary, while the anti-in�ammatory
cytokines inhibit the activation of the phagocytic cells and down-regulate pro-
in�ammatory cytokines33. The most generally acknowledged pro-in�ammatory
cytokines are tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6) and inter-
leukin 1 (IL-1), while interleukin 10 (IL-10) is considered as one very important
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group of anti-in�ammatory cytokines19,32,33.

After the clearance of the targeted pathogenic treat, it is crucial to inhibit the
in�ammation and return to homeostasis, which is considered as the healthy sta-
ble state of the body. Thus the magnitude of the in�ammatory response is of
highest importance. De�cient response leaves surviving pathogens, which can
lead to serious infections of the body such as sepsis, while excessive response can
lead to tissue damage and diseases like rheumatoid arthritis, Crohn's disease,
atherosclerosis, diabetes, and Alzheimer's disease.32,33

In this chapter, an initially eight dimensional model of the acute in�ammatory
response in rats is presented and reduced, leading to a �ve dimensional model.
The reduced model is partly validated by comparison to data and residual plots,
and the existence of a positive trapping region is shown. Finally a discussion of
using a rat model for studying the response in humans is carried out.

2.1 Modelling Approaches

In this section, several model approaches are reviewed while their advantages
and limitations are discussed. In literature, a number of di�erent approaches
to modelling the acute immune response can be found. Over time, both rather
complex models and quite simple models have been develop aiming to study and
understand the systemic as well as detailed mechanisms in immune defence.

One of the simplest models has been proposed by Baker et al. (2013), only
considering pro- and anti-in�ammatory cytokines in an attempt to mathemati-
cally investigate the system and the involvement of the cytokines in the disease
rheumatoid arthritis. Due to the simplicity of the model (only two variables),
it can be investigated analytically. Even though the conceptual model output
cannot be compared to real data, the behaviour of the system can be studied
by bifurcation theory, for instance3.

In 2006, Reynolds et al. published a four dimensional model describing the inter-
actions between pathogens, phagocytes (eating-cells), tissue damage and anti-
in�ammatory mediators (representing cortisol and interleukin-10). The aim of
this work was to investigate the importance of the dynamic anti-in�ammation
for restoring homeostasis and defeat infection. Once again, the model is concep-
tual and not compared to experimental data, however the authors claims that
the model is developed from subsystems with biologically plausible dynamics28.

In contrast to these oversimpli�ed models of the acute in�ammatory systems,
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is the model proposed by Chow et al. (2005). The system is described by a
model consisting of 15 variables and no less than 98 parameters. The overall
goal was to �nd a model, balancing biological realism and simplicity, which
could qualitatively describe many known scenarios of in�ammation for a �xed
set of parameters. The model output is matched to data for mice, receiving LPS
(endotoxin) at di�erent doses. Even though the model is very complex, it only
mimics some of the dynamics in the data, however the �t of the model to the
data is in many of the cases poor. In addition, the system is not identi�able
with respect to the data, since the model is overparametrised.6

A model which is not too complicated nor oversimpli�ed is proposed by Roy
et al. (2009). The model consists of eight di�erential equations which captures
the behaviour of the cytokines IL-6, IL-10 and TNF-α in rats. The model is
validated by comparison to data collected from an experiment, where rats re-
ceived LPS. Although the model �ts the data very well, the article was never
published. Even though the model is not too complicated compared to others,
it still features eight variables and 46 parameters29. The model features eight
variables representing LPS, phagocytic cells, tissue-damage, pro-in�ammatory
cytokines (TNF-α and IL6), fast acting anti-in�ammatory cytokine (IL10) and
slow acting anti-in�ammatory mediators, describing the acute in�ammatory re-
sponse in rats receiving di�erent doses of endotoxin.

In his Ph.D., Dennis O. Frank simpli�es the eight dimensional model proposed
by Roy et al. to a seven dimensional model12. Arguing that the variable re-
presenting the slow acting anti-in�ammatory mediators, such as cortisol, is not
measurable while it appears to have least interactions in the system, this vari-
able is removed from the system. The simpli�ed model, with only 6 less para-
meters, is calibrated to the same data as the eight dimensional model, resulting
in equally accuracy of predictions. However, since the connection between the
acute in�ammatory response and the slow acting anti-in�ammatory hormone
cortisol is of interest in the thesis, this simpli�cation will not be studied further.

Finding a balance between biological realism and simplicity, is crucial when
modelling a biological phenomena. Various modelling approaches of the acute
in�ammatory response have been proposed over the years, but still, there is
no commonly used model. The model proposed by Roy et al. (2009) captures
many of the components of the response (in rats) to some detail, however in a
simpli�ed way, which makes it a basis model for investigating the system.

In the following section, the eight dimensional model of the acute in�ammatory
response proposed by Roy et al. (2009) is presented.



8 Acute In�ammatory Response

2.2 Rat Model of Acute In�ammatory Response

The model proposed by Roy et al. (2009) seem to describe the dynamic between
the anti-in�ammatory cytokine IL-10 and the pro-in�ammatory cytokines IL-
6 and TNF-α convincingly. Thus, this model approach is an opportunity for
studying the acute in�ammatory system. However the model equations are com-
plicated and contains a great number of parameters to be determined.

The model consists of eight ordinary di�erential equations representing the
states of endotoxin concentration (P ), total number of activated phagocytic
cells (N), tissue-damage marker (D), concentrations of pro-in�ammatory cyto-
kines (IL6 and TNF ), concentration of anti-in�ammatory cytokine (IL10), a
(non speci�ed) tissue-damage driven IL-10 promoter (YIL10) and a state repre-
senting slow acting anti-in�ammatory mediators, such as TGF-β1 and cortisol
(CA). Three of the eight variables in the model are measured in a rat experi-
ment, where rats where exposed to three di�erent doses of endotoxin (3, 6 or
12 mg/kg). The measured variables are IL6, TNF and IL10 obtained from
blood samples taken at time 0, 1, 2, 4, 8, 12 and 24 hours after the injection of
endotoxin. Four rats were sacri�ced at each time point and the data is expressed
as mean and standard deviation.

The main objective of the model is to capture the dynamics and reproduce the
blood concentrations of IL-6, TNF-α, IL-10 and the slow acting anti-in�am-
matory mediators, but since the variable CA represents various substances, it is
not measured in the experiment and therefore not accessible. The parameters
are estimated using the data for two of the endotoxin doses (3 and 12 mg/kg),
while the data for endotoxin dose 6 mg/kg is used for evaluating the performance
and prediction of the model.

The model equations describe a number of interactions between the dependent
variables, which is summarised in the following bullets:

· The concentration of endotoxin (P ) initiates the response by up-regulating
and activating the total number of activated phagocytic cells (N).

· Activated phagocytic cells (N) up-regulate the pro-in�ammatory cyto-
kines (TNF and IL6), the anti-in�ammatory mediators (IL10 and CA)
and the marker for tissue-damage (D).

· The non-accessible tissue damage marker (D) up-regulates the activated
phagocytic cells (N) while contributing to an up-regulation of IL-10 through
the IL-10 promoter (YIL10).
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· The concentration of the pro-in�ammatory IL-6 up-regulates the activated
phagocytic cells (N) and IL-10. IL-6 also down-regulates TNF-α and auto
-up-regulates.

· The concentration of the pro-in�ammatory TNF-α adds an up-regulating
e�ect of the activated phagocytic cells (N), IL-6 and IL-10. TNF-α is
auto-up-regulating.

· The concentration of the anti-in�ammatory cytokine IL-10 down-regulates
the pro-in�ammatory activated phagocytic cells (N), IL-6 and TNF-α.
IL-10 inhibits its elimination for large concentrations.

· The tissue damage driven non-accessible IL-10 promoter (YIL10) contributes
to a delayed increase in IL-10.

· The state representing slow acting anti-in�ammatory mediators (CA) down-
regulates the activated phagocytic cells (N), and the pro-in�ammatory
cytokines IL-6 and TNF-α.

These are the major mechanisms involved in the acute in�ammatory response,
suggested by Roy et al. (2009), thus the dynamics can mathematically be de-
scribed by:

dP (t)

dt
= −dp · P (t) (2.1a)

dN(t)

dt
= kN ·

R(t)

xN + R(t)
− dN ·N(t) (2.1b)

dD(t)

dt
= kD ·

N(t)6

x6
D +N(t)6

− dD ·D(t) (2.1c)

dCA(t)

dt
= kCA ·N(t)− dCA · CA(t) + sCA (2.1d)

dIL6(t)

dt
= kIL6 ·

(
N(t)4

x4
IL6 +N(t)4

)
· [1 + kIL6TNF · fUPIL6TNF (t) + kIL6IL6 · fUPIL6IL6(t)]

· fDNIL6IL10(t) · fDNIL6CA(t)− dIL6 · IL6(t) (2.1e)

dTNF (t)

dt
= kTNF ·N(t)

1.5 · [1 + kTNFTNF · fUPTNFTNF (t)] · fDNTNFCA(t)

· fDNTNFIL10(t) · fDNTNFIL6(t) − dTNF · TNF (t) (2.1f)

dIL10(t)

dt
= kIL10 ·

(
N(t)3

x3
IL10 +N(t)3

)
· [1 + kIL10IL6 · fUPIL10IL6(t) + kIL10TNF

· fUPIL10TNF (t)]− dIL10 · fDNIL10d(t) · IL10(t) + YIL10(t) + sIL10 (2.1g)

dYIL10(t)

dt
= kIL102 ·

D(t)4

x4
IL102 +D(t)4

− dIL102 · YIL10(t) (2.1h)

where
R(t) = [kNP · P (t) + kND ·D(t)] · [(1 + kNTNF · fUPNTNF (t))

·(1 + kNIL6 · fUPNIL6(t))] · fDNNCA(t) · fDNNIL10(t)
(2.2)
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In general the parameters ki represent production/activation rates, the para-
meters di represent elimination/clearance rates and the parameters xi are the
half-saturation constants determining the level of the variables i, at which the
corresponding up-regulating or down-regulating function will reach half of its
saturation value, where i ∈ {P,N,D,CA, IL6, TNF, IL10, YIL10}. The up- and
down-regulating functions mentioned are fUPij(t) and fDNij(t) respectively,
which represent the up- and down-regulating e�ects of in�ammatory mediator
j on mediator i. The functions are Michaelis-Menten type equations or Hill
functions and are bound between values of 0 and 1. The functions are presented
in Appendix A.1.

Figure 2.1: Diagram of the dynamics in the model of acute in�ammatory response pro-
posed by Roy et al. (2009). The green solid lines represent up-regulating
interactions, while the red dashed lines illustrate down-regulating interactions
between the variables.

The interactions between the eight variables are visualised in Figure 2.1. From
left, by introducing endotoxin to the system, the response is initiated by up-
regulating the number of activated phagocytic cells. The phagocytic cells up-
regulates the cytokines TNF-α, IL-6, IL-10 and the slow acting in�ammatory
mediators (placed to the right). Furthermore it up-regulates the tissue damage
marker, which up-regulates IL-10 through YIL10. Up-regulation of the cyto-
kines initiates several interactions between these and feedback on the activated
phagocytic cells.

Some of the mathematical equations in the model are complex and there is
no clear biological reasoning for most of the speci�c modelling choices, which
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makes the justi�cation of the model development unclear. In the equation for
the total number of phagocytic cells (N), four Michaelis-Menten functions are
incorporated in yet another Michaelis-Menten function, to mention one example
of a complex model choice not justi�ed. No biological reasoning for including
the IL-10 promoter YIL10 in the model is presented. The variable is included
to capture the dynamics of the damage-marker e�ects on IL-10, however there
is not provided any evidence for the existence of such chemical substance. As
mentioned, the model contains 46 parameters, which makes the �t of the model
strongly overparametrised. This serves as a reason for investigating model re-
duction.

Besides the unexplained and remarkable model choices, the structure of the
equations seems to follow the form of a stimulating or inhibiting part constructed
mostly by one or more of Michaelis-Menten type equations or Hill-functions with
varying order. In addition, all the equations contain a clearance rate, described
by a linear term (except in the case for IL-10).

The parameters of the model were calibrated to data for rats receiving endotoxin
at three di�erent dose levels. The parameters were �rst estimated for the two
data sets for endotoxin doses 3 and 12 mg/kg and next validated by comparing
the model predictions to the data obtained for rats receiving an endotoxin dose
of 6 mg/kg29.

In Appendix A.2 the model is studied in details. First, the model was simulated
and then compared to data. The reduced six dimensional model presented in
the following section is derived from the extensive work presented in Appendix
A.2.1-A.2.6. The equations were analysed one at a time to examine the signi-
�cance of each term and the biological reasoning.

Summing up, the equation for P is changed to depend on the number of phago-
cytic cells, which seems reasonable from a biological perspective. The equation
for N is simpli�ed by changing the Michaelis-Menten function in R to a linear
dependence. The equation is further simpli�ed, by removing the dependence
of IL6 and D due to insigni�cant observed in�uence. The simpli�cation of the
equation of TNF is constituted by changing the power of N from one and a
half to one, changing the order of the Hill function in CA from six to four and
removing of the dependence of IL6 and IL10. The Michaelis-Menten functions
in N and IL6 is changed to a linear and a fourth order dependence respectively,
while the dependence of CA is removed in the equation for IL6. The equation
for IL10 is modi�ed by changing the main contributor to the second peak from
YIL10 to CA. In addition, the dependence of TNF in the equation is removed.
There are no simpli�cations introduced in the equation for CA. But since the
dependence of D and YIL10 is removed in all the other equations, they are eli-
minated from the system. All together, these changes results in a reduced six
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dimensional model containing 30 parameters.

The reduced model is presented and studied in the following section, leading to
a further simpli�ed �ve dimensional model.

2.3 Reduced Rat Models

A number of modi�cations and simpli�cations have been introduced to the eight
dimensional model proposed by Roy et al. (2009) (see Appendix A.2), resulting
in a reduced six dimensional model. In this section, the six dimensional model
is presented, compared to the eight dimensional model and afterwards a further
simpli�ed �ve dimensional model will be proposed.

2.3.1 Six Dimensional Model

The changes in the model induce a reduction of the described eight dimensional
system to a six dimensional system disregarding the variables D and YIL10 (the
tissue damage marker and the tissue driven IL-10 promoter respectively). In the
following, the six dimensional model is presented and compared both visually
and numerically to the eight dimensional model and the rat data. Finally it
is shown, that the six dimensional model can be reduced to a �ve dimensional
model, removing the variable IL6. Even though the cytokine IL-6 is removed
from the model, the dynamics of TNF-α and IL-10 are maintained.

The di�erence between the variables and their interactions in the original model
and the reduced model is visualised in Figure 2.2. The diagram illustrates the
removed and the two added interactions. As seen, nine interactions and two
variables are removed from the original model and only two new interactions
are introduced, namely a down-regulating e�ect of N on P and an up-regulating
e�ect of CA on IL10.

Besides reducing the dimension of the system, the simpli�cation of the equations
implied a major reduction in the total number of parameters. The number of
parameters are reduced from 46 to 30.
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Figure 2.2: Diagram showing the di�erence between the original model proposed by Roy
et al. (2009) and the reduced model (Model (2.3)). The blue color of the
arrows between P and N , and CA and IL10 illustrates the two new intro-
duced interactions, while the yellow dashed lines represent the nine interac-
tions which are removed in the reduced model. Furthermore the two variables
D and YIL10 only appear in the original model and not in the reduced model.

The reduced six dimensional system can now mathematically be written as:

dP

dt
= − dpP ·N

dN

dt
= kN

((
1 +

kNTNFTNF

xNTNF + TNF

)
xNCA

xNCA + CA

·
xNIL10

xNIL10 + IL10

)
· P − dNN

dCA

dt
= kCA ·N − dCACA + sCA

dIL6

dt
= N

4 ·
(
kIL6 +

kIL6TNFTNF

xIL6TNF + TNF
+ kIL6IL6 · IL6

)
·

xIL6IL10

xIL6IL10 + IL10
− dIL6IL6

dTNF

dt
= N ·

x4
TNFCA

x4
TNFCA + C4

A

(
kTNF +

kTNFTNFTNF

xTNFTNF + TNF

)
− dTNFTNF

dIL10

dt
=

N3

x3
IL10 +N3

(
kIL10 +

kIL10IL6IL6
4

x4
IL10IL6 + IL64

)

− dIL10
xIL10d

xIL10d + IL10
IL10 +

kIL10CAC
6
A

x6
IL10CA + C6

A

+ sIL10.

(2.3)



14 Acute In�ammatory Response

In Figure 2.3 a diagram of the interactions in the reduced model is shown. This
diagram shows the simpli�cation of the model, containing two variables and
nine interactions less, only introducing two new interactions.

Figure 2.3: Diagram of the dynamics in the reduced six dimensional Model (2.3). The
green solid lines represent the up-regulating interactions and the red dashed
lines represent the down-regulating interactions between the variables in the
model.

In the following, simulations of the reduced model are compared to both the
original model and the rat data in an attempt to partly validate the model.
The parameters used for simulating the six dimensional model can be found in
Appendix A.6. In Figure 2.4-2.6, simulations of the reduced six dimensional
model (Model (2.3)) are visually compared to both simulations of the original
model (Model (2.1)-(2.2)) and the rat data.

In Figure 2.4, the simulation of endotoxin dose 3 mg/kg is shown. The reduced
and the original model perform equally good for IL6, where none of them seem
to capture the second data point. For TNF , the original model captures the
second and fourth data point slightly better, due to the later peak of the con-
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centration for the reduced model, however, the response reaches the maximum
represented by the third data point. The response of IL10 is well modelled by
both the original and the reduced model for the �rst four data points, however
the original model captures the two last data point better, while the reduced
model tends to overestimate slightly. Both model �ts the data for endotoxin of
dose 3 mg/kg well.
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Figure 2.4: Comparison of the original eight dimensional model of acute in�ammatory
repsonse proposed by Roy et al. (2009) (Model (2.1)-(2.2), blue dashed line),
the reduced and simpli�ed six dimensional model (Model (2.3), red solid line)
and rat data (black circles) for endotoxin dose 3 mg/kg. For further discussion,
see Section 2.3. The data are a mean of measurements from four rats and the
standard deviation at each data point is shown.

The simulation of endotoxin dose 6 mg/kg is shown in Figure 2.5. Neither of the
model simulations captures the second data point of IL6, however the original
model agrees better with the the third data point. For the TNF response, the
original model is not close to �t the second data point and even though the
reduced model does not agree with the data point as well, it is somewhat closer.
The consistency between the second and �fth data point and the original model
for IL10 seems to be somewhat better, compared to the reduced model. How-
ever both models seem to overestimate the response of IL10 for the decreasing
period.
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Figure 2.5: Comparison of the original eight dimensional model of acute in�ammatory
repsonse proposed by Roy et al. (2009) (Model (2.1)-(2.2), blue dashed line),
the reduced and simpli�ed six dimensional model (Model (2.3), red solid line)
and rat data (black circles) for endotoxin dose 6 mg/kg. For further discussion,
see Section 2.3. The data are a mean of measurements from four rats and the
standard deviation at each data point is shown.

Finally, the simulations are compared for endotoxin dose 12 mg/kg, seen in
Figure 2.6. The reduced model is not �tting the second data point of IL6 well,
but mimics the dynamics of the remaining data points convincingly. There
is only a slight di�erence between the outcome of the two models for TNF ,
amounting of a slightly higher response and a slightly earlier peak time. The
simulations for IL10 reveals an overestimation by the reduced model of the sec-
ond data point, however the last four data points seems to be perfectly �tted
by the model.

Considering all simulations for the di�erent doses of endotoxin, the original
model appears to �t the data better than the reduced model. But the reduced
model contains two variables, 16 parameters and a lot of interactions less than
the model proposed by Roy et al. (2009). In addition, since the parameters in
the reduced model are estimated manually, the model �t could be improved by
�tting all parameters simultaneously. However, since the aim is to �nd a model
describing the acute in�ammatory response of humans, this is not done. Later
in this thesis, the model will be modi�ed further, when it is coupled to a model
describing the HPA axis. So even though the model �t is not perfect, the model
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Figure 2.6: Comparison of the original eight dimensional model of acute in�ammatory
repsonse proposed by Roy et al. (2009) (Model (2.1)-(2.2), blue dashed line),
the reduced and simpli�ed six dimensional model (Model (2.3), red solid line)
and rat data (black circles) of endotoxin dose 12 mg/kg. For further discus-
sion, see Section 2.3. The data are a mean of measurements from four rats
and the standard deviation at each data point is shown.

captures the dynamics of the three cytokines.

To compare the models quantitatively rather than visually, the Akaike Informa-
tion Criterion (AIC) is calculated. The AIC value of a model is a measure of
the goodness of �t, meaning that the amount of lost information when model-
ling a real system becomes comparable. The criterion can be used to compare
two di�erent models of the same data. The AIC value takes the number of
parameters into account, when measuring the goodness of �t, by including a
penalty-term for the number of parameters. The model achieving the lowest
AIC value is preferable. The AIC value can according to Cobelli and Carson
(2008) be calculated by:

AIC = J + 2p, (2.4)

where p is the total number of parameters in the model and J is the weighted
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residuals of the model given by:

J =

l∑
j=1

1

max
i

(yji)2

k∑
i=1

(yji − yj(ti, q))2, (2.5)

where yji is the i'th data point in the j'th data set. maxi(yji) is the maximum
value of the data over all times points in the j'th data set (noticing that the
chosen weight is making the term dimensionless), yj(ti, q) represents the model
prediction at time point ti given the parameters contained in the vector q and
the total number of data sets, are denoted by l. For the original model the total
number of parameters is p = 46 while it is p = 30 for the reduced model. There
is three dose levels for each of the three of the variables, thus l = 9, while k = 7
indicates that there is 7 data points for each dose level for each variable.

The calculated weighted residuals is J = 1.09 for the original model, while the
value is J = 2.50 for the reduced model. The residual values are smallest for
the original model, as expected, since the model visually �ts the data slightly
better than the reduced model. Calculating the AIC values for the model gives:

AIC[ROY ] = 93.09

and
AIC[6D] = 62.50.

Since the reduced model achieves the lowest AIC value, it is preferable to the
original model when modelling this data. Even though the original model seems
to �t the data better, the reduced model contains fewer parameters and from an
AIC perspective, the reduced model �ts the data best, with a minimum number
of parameters.

This shows that this data of the dynamics of three cytokine concentrations in
rats exposed to endotoxin, can be described by a six dimensional model rather
than an eight dimensional model.

In the following section, the model is reduced further to a �ve dimensional
model, removing the variable IL6 from the system.

2.3.2 Five Dimensional Model

The reduced six dimensional model presented in the previous section, describes
the acute in�ammatory response convincingly compared to the rat data. Model-
ling physical phenomena is indeed about simplifying systems up to a certain
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point, still describing the phenomena in an adequate way. Since the six dimen-
sional model is a simpli�cation of the eight dimensional model proposed by Roy
et al. (2009), it is of interest to see whether the model can be reduced further,
without loosing any information of the system.

In the reduced model, six variables appears: P , N , IL6, TNF , IL10 and CA.
P describes the concentration of endotoxin, which activates the speci�c immune
response investigated by the model. Since it is of interest to study the response
to di�erent doses of endotoxin amongst other things, this variable should be in
the model.

The presence of the activated phagocytic cells denoted by N is crucial for de-
scribing the elimination of the endotoxin challenge. N describes the engul�ng
cells of the body, which means that the endotoxin would not be engulfed with-
out the presence of these cells. Thus this variable should not be removed from
the model either.

The variable CA describes a state of slow anti-in�ammatory mediators. Even
though there is no measured data to compare with, the variable covers the hor-
mone cortisol and since the aim of this work is to couple a model of the acute
in�ammatory system with a model of the HPA axis, where the main component
is the secretion of cortisol, it seems reasonable to preserve the variable in the
model.

Finally, considering the three variables representing the cytokines in the model,
IL10 describes an anti-in�ammatory cytokine while both IL6 and TNF de-
scribes pro-in�ammatory cytokines. Data is provided for all three cytokines,
however, since IL-10 is the only purely anti-in�ammatory cytokine, it should be
kept in the model. Which leaves the two pro-in�ammatory cytokines IL-6 and
TNF-α which appear in the equation for IL10 and in the equations for N and
IL6, respectively. TNF-α is considered as a necessary and su�cient mediator
of acute in�ammation33. In addition, it turns out that the impact of IL6 on
the rest of the system is minor (see Figure 2.7). Thus it is chosen to remove
IL6 from the model in the aim of an even more simpli�ed model of the acute
in�ammatory system.

The removal of the variable IL6 from the model is fairly easy. It only appears in
the equation for IL10. By removing the fourth order term of IL6 from here, it
no longer e�ects the other variables in the system. Furthermore, the elimination
of the term and the equation for IL6 implies a reduction of eight parameters in
total. The reduced �ve dimensional model is now mathematically described by:
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dP

dt
= − dpP ·N

dN

dt
= kN

((
1 +

kNTNFTNF

xNTNF + TNF

)
xNCA

xNCA + CA

·
xNIL10

xNIL10 + IL10

)
· P − dNN

dCA

dt
= kCA ·N − dCACA + sCA

dTNF

dt
= N ·

x4
TNFCA

x4
TNFCA + C4

A

(
kTNF +

kTNFTNFTNF

xTNFTNF + TNF

)
− dTNFTNF

dIL10

dt
=

N3

x3
IL10 +N3

kIL10 − dIL10
xIL10d

xIL10d + IL10
IL10 +

kIL10CAC
6
A

x6
IL10CA + C6

A

+ sIL10.

(2.6)

The equations are the same as for the six dimensional model, except the elimina-
ted fourth order term of IL6 in the equation for IL10. Removing the term from
the six dimensional model, while keeping the equation for IL6 in the model,
induces signi�cant over-estimations of the IL6 levels for endotoxin doses 6 and
12 mg/kg, which might be improved by changing some parameter values.

The interactions between the dependent variables in the reduced �ve dimen-
sional model, is summarised in the following bullets:

· The concentration of endotoxin (P ) initiates the response by up-regulating
and activating the total number of activated phagocytic cells (N).

· Activated phagocytic cells (N) up-regulates the pro-in�ammatory cytokine
(TNF ) and the anti-in�ammatory mediators (IL10 and CA), while it in-
hibits the concentration of endotoxin.

· The concentration of the pro-in�ammatory TNF-α is auto-up-regulating
and adds an up-regulating e�ect of the activated phagocytic cells (N).

· The concentration of the anti-in�ammatory cytokine IL-10 down-regulates
the pro-in�ammatory activated phagocytic cells (N) and TNF . IL-10 also
has an inhibitory e�ect on its own elimination for large concentrations of
IL-10.

· The state representing slow acting anti-in�ammatory mediators (CA) down-
regulates the activated phagocytic cells (N), and the pro-in�ammatory cy-
tokine TNF-α, while it up-regulates the anti-in�ammatory cytokine IL-10.

The elimination of IL6 means a reduction of the number of parameters by eight.
The �ve and six dimensional model is only compared to the data of TNF-α and
IL-10. In Figure 2.7, the simulation of the �ve dimensional model is compared
to the simulation of the six dimensional model and the rat data for TNF-α and
IL-10 concentrations, respectively. There is almost no di�erence in the model
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outcome, when comparing simulations of endotoxin dose 3 mg/kg. However,
there is a slightly change in the IL-10 level of endotoxin dose 6 and 12 mg/kg,
but the �t is equally good compared to the �t of the six dimensional model. The
simulations of the �ve dimensional model presented in Figure 2.7 are obtained
by using the same parameter values as for the six dimensional model.
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Figure 2.7: Simulation of the six dimensional (dashed blue line) and �ve dimensional
model (red solid line) compared to the rat data (black circles). The di�erence
between the models is the elimination of the variable IL6, which only induces
a small change in the output for IL10 for endotoxin dose levels 6 and 12
mg/kg. The data are a mean of measurements from four rats and the standard
deviation at each data point is shown.

The residuals and AIC values can be calculated in a similar way as in Section
2.3, however, only comparing to the data sets of TNF-α and IL-10. There is
no greater change between the model outputs, which means that the residuals
for the models are similar. The weighted residuals are J = 2.04 and J = 2.26
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for the �ve and six dimensional model, respectively. This gives AIC values of
AIC[5D] = 46.04 and AIC[6D] = 62.26. The AIC value for the �ve dimensional
model is clearly preferable from an AIC perspective, which is the result of the
large parameter reduction. Thus the reduction of eight parameters (and one
variable) induces a small decrease in the weighted residuals, but a major decrease
in the AIC value.

Thus the �ve dimensional model describes the dynamics of TNF-α and IL-10
in the data better than the six dimensional. In the rest of the thesis, the �ve
dimensional reduced model will be considered as the prefered model of the acute
in�ammatory system.

In the following, it is shown that there exists an attracting trapping region for
the model and that it satis�es positivity. Finally the model is partly validated
by investigating some residuals plots.

2.3.3 Positivity and Trapping Region

In this section the existence of an attracting trapping region TR is shown to-
gether with the proving of positivity.

Positivity of a biological model is crucial. In a mathematical model of the
acute in�ammatory system, it means that, if the concentration at a certain
time is non-negative, it stays non-negative for all later times: Let X(t) =
[P (t), N(t), CA(t), TNF (t), IL10(t)]

′. By de�nition, the Model (2.6) is said to
ful�l positivity, if X(t0) ∈ (R+ ∪{0})5 implies X(t) ∈ (R+ ∪{0})5 for all t > t0.

When modelling a biological system, positivity is not the only important feature.
It is also important to ensure, that the solutions of the model are �nite. By
creating a trapping region, it is possible to show, that the solutions initialised
in the trapping region can not escape.

In the following, the model is only considered for positive parameter values and
non-negative initial conditions. The model features a trapping region TR, which
means that for any solution X(t0) ∈ TR then X(t) ∈ TR for all t > t0. Further-
more, it is shown that the trapping region is attracting, hence solutions starting
outside TR is attracted into the region. Before de�ning the trapping region, the
existence and uniqueness of the solutions are shown.
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Considering the Model (2.6) on the form

ẋ1(t) =f1(x1(t), ..., x5(t))

...

ẋ5(t) =f5(x1(t), ..., x5(t)),

(2.7)

with initial conditions X(t0) = X0. From the theorem of existence and unique-

ness 7 it follows, that for a given t0 ∈ R and X0 ∈ R5, the System (2.7) has
one unique solution X(t) satisfying X(t0) = X0 if the partial derivatives of the
functions f1, .., f5 are continuous. It follows from direct inspection, that the
partial derivatives of the functions f1, .., f5 are indeed continuous.

In the following, �rst the lower bound of the trapping region is found, which
also demonstrates the positivity of the model and secondly the upper bound of
the trapping region is found.

For P = 0, it is clear that dP
dt = 0, this means that for P (t0) ≥ 0 then P (t) ≥ 0

for all t > t0 due to the uniqueness of the solution.

Considering the equation for N , which is slightly more complicated, the term
consisting of three Michaelis-Menten functions is always positive. This means
that dN/dt ≥ 0 for N = 0 since P ≥ 0. Thus N(t) ≥ 0 for N(t0) ≥ 0 due to
the uniqueness of the solution.

The equation for CA satis�es strict positivity, since CA = 0 means that dCA

dt > 0
which is caused by the constant term sCA and the fact that N ≥ 0. Thus as a
result of the uniqueness of the solution, CA(t) > 0 for CA ≥ 0.

The variable TNF also respects positivity, since N ≥ 0 and the fourth order
hill function in CA is also positive, which means that for TNF = 0 the term
dTNF
dt ≥ 0. Hence, TNF (t) ≥ 0 for TNF (t0) ≥ 0 because of the uniqueness.

At last, IL10 ful�ls strict positivity, as a result of the constant term in the equa-
tion. Thus, once again, as a result of the uniqueness of the solution, IL10(t) > 0
for IL10(t0) ≥ 0.

This establishes the lower bounds of TR, the upper bounds of TR can be deter-
mined by the following calculations.

As mentioned, P = 0 means that dP (t)
dt = 0 for all t. However, if P (t0) > 0 then

dP (t)
dt ≤ 0 for all t > t0, such that MP ≡ P (t0) constitutes an upper limit for P .
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Considering the upper limit for N , then

dN

dt
= kN

(
1 +

kNTNFTNF

xNTNF + TNF

)
xNCA

xNCA + CA

xNIL10

xNIL10 + IL10
· P − dNN

≤ kN (1 + kNTNF )P − dNN
≤ kN (1 + kNTNF )MP − dNN.

De�ning MN ≡ kN (1+kNTNF )MP

dN
then N(t) ≤ max{N(t0),MN} for all t > t0.

In a similar way, it can be shown that:

dCA

dt
< 0 for CA > max{CA(t0),MCA},

where MCA
≡ kCAMN+sCA

dCA
and

dTNF

dt
< 0 for TNF > max{TNF (t0),MTNF },

where MTNF ≡ (kTNF+kTNFTNF )·MN

dTNF
while

dIL10

dt
< 0 for IL10 > max{IL10(t0),MIL10},

where MIL10 ≡ (kIL10+kIL10CA+sIL10)xIL10d

dIL10xIL10d−(kIL10+kIL10CA+sIL10)
for dIL10xIL10d > (kIL10 +

kIL10CA + sIL10).

This means that there exists a trapping region TR = [0,MP ] × [0,MN ] ×
[0,MCA

] × [0,MTNF ] × [0,MIL10]. Thus positivity and limitation of the so-
lutions are ensured. Furthermore, the trapping region is attracting for all so-
lutions X(t0) ∈ (R+ ∪ {0})5\TR starting outside TR, observed from the above
calculus.

2.3.4 Residual Plots

When developing a mathematical model to describe a biological phenomena
expressed by measurements, it is important to validate the model adequacy.
Graphically and numerically the model has been validated according to the
data in Section 2.3.2. However, also the assumption of structureless and nor-
mality of the error-terms must be investigated.

In Figure 2.3.4, the Q-Q plot (quantile-quantile plot) is shown in (a), (c) and
(e). Here the theoretical quantiles of the normal distribution are plotted against
the quantiles of the residuals. If the points lay on the strait line, the underlying
errors can be assumed to be normally distributed. When evaluating the visu-
alisation, the central values rather than the extreme values should be empha-
sised24, which means that the assumption is not rejected in this case. Another
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way to check the normality, is to plot a histogram of the errors. If the residuals
look like a normal distribution and are centred around zero, the assumption
holds, however, due to small sample sizes, this shape of the histogram can be
di�erent, even though the assumption is not violated. Thus plotting of the his-
tograms are omitted.

In Figure 2.3.4 (b), (d) and (f), the standardised residuals are plotted against
the predicted values of TNF and IL-10 respectively. The standardised residuals
are de�ned as

Ri =
ri

σ̃r

, (2.8)

where ri is the i'th residual and σ̃r is the estimated standard deviation of the
residuals24. As a rule of thump, approximately 95 percent of the standardised
residuals should fall within the interval from [−2, 2], while all of them should be
in the interval [−3, 3], not to be considered as a potential outlier. When plotting
the standardised residuals against the predicted values, no structure or pattern
should be visible, which is also the case in Figure 2.3.4. This suggests that the
model correct.

In all, the �ve dimensional model seem to be a adequate model describing the dy-
namics of TNF-α and IL-10 as biomarkers for the acute in�ammatory response
as a reaction of invading endotoxin. Keeping in mind, that the data is collected
from rats, the model is calibrated to describe the response in rats. However, the
response of TNF-α are similar in humans considering both concentration- and
time-dependence11,18,34. The response of IL-10 to LPS (endotoxin) in humans
is described by Kemna et al. (2005), where a peak within the �rst four hours
is observed similar to the simulated rat model. However, the response is only
shown for the �rst four hours, which leaves neither validation nor rejection of
two peaks of IL1018. Only one peak of the concentration of IL-10 as a response
to LPS is observed in humans according to the experiment in 1996 by van der
Poll et al., noticing that only 2 ng/kg was injected, thus the concentration is far
less than the concentrations considered in the rat model. The peak of IL-10 in
this experiment arose three hours after injection and the response ended within
six hours34.

Despite that the �ve dimensional model is developed to describe the response
in rats, it seems to give a suitable qualitative description of the dynamics of the
response in humans too. Therefore it will be used as a starting point for the
coupled model presented later.

In the following chapter, a model describing the interactions of the hormones
released by the Hypothalamic-Pituitary-Adrenal axis is studied.
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Figure 2.8: Residual plots of the �ve dimensional model presented in Section 2.3.2. To the
left: Q-Q plots, validating the normality of the residuals by forming a straight
line, when emphasising the center points. To the right: The standardised
residuals plotted against the predicted values of the model. No structural
pattern and all values between [−3, 3] suggest a good model, with no outliers.



Chapter 3

Hypothalamic-Pituitary-
Adrenal

Axis

The hypothalamic-pituitary-adrenal axis (HPA axis) regulates the level of glu-
cocorticoid hormones in the blood. The hormone called cortisol, is essential for
several processes of the body. Especially, the regulation of cortisol is linked to
the maintenance of body homeostasis as a response to both mental and phys-
ical stress (such as injected LPS). Besides this, the secretion and clearance of
cortisol plays a role in the acute in�ammatory response, where it acts as an
anti-in�ammatory mediator in the system.32,33

The secretion of cortisol is regulated by a feedback system. In the brain, Hip-
pocampus stimulates hypothalamus to secrete corticotropin releasing hormone
(CRH), which is transported to the pituitary resulting in a release of adreno-
corticotropic hormone (ACTH). Then ACTH is moved through the blood circu-
lation to the adrenal cortex, where it stimulates the production and release of
cortisol. Cortisol feeds back on hypothalamus and inhibits the release of CRH
and thereby ACTH, leading to a decrease of cortisol.13,22,26

The secretion of cortisol has been studied in many cases revealing both cir-
cadian and ultradian oscillations in the concentration26. Also the release of
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ACTH follows similar patterns. The circadian rhythm of cortisol is observed
in humans, by low concentrations of cortisol in the very early hours of the day,
which increases during early morning hours to a maximum peak around noon,
whereupon the concentrations roughly decreases to a low level during the night.
The circadian clock causing the circadian rhythm is superiorly synchronised by
the suprachiasmatic nuclei (SCN), located in the hypothalamus in the brain1.

In this chapter, di�erent modelling approaches of the HPA axis are presented,
after which a three dimensional model describing the dynamics of CRH, ACTH
and cortisol of the HPA axis is studied in details. This lead to an adequate
model, describing the dynamics in humans.

3.1 Modelling Approaches

Up till today, no commonly used model of the interactions in the HPA axis has
been published. There exist di�erent opinions on the origin of the circadian and
ultradian rhythms observed in data for ACTH and cortisol in humans.

In the work accomplished by Jeli¢ et al. (2005), it is assumed that changes
in the dynamics of CRH are negligible thus the overall dynamics of the HPA
axis activity can be described by a two dimensional model featuring ACTH and
cortisol as variables. The model produces ultradian rhythms in the model sim-
ulation of cortisol, which is generated by large time delays. In this paper, the
circadian rhythm of cortisol is modelled as an external periodic function, while
the model is not calibrated to data and the concentration of CRH is assumed
constant as mentioned.16

A two dimensional model describing the dynamics of ACTH and cortisol was
proposed by Conrad et al. (2009). The model contains 7 parameters, an ex-
ternal input and the two compartments in the model covers a pooled in�uence
of CRH and ACTH (interpreted as plasma ACTH) and cortisol. While the
CRH-ACTH variable stimulates cortisol, the cortisol variable has both a posi-
tive and negative feedback on the CRH-ACTH variable. Besides analysing the
model mathematically, the parameters are �tted to data. The data consists of
the mean of ACTH and cortisol concentrations of 20 humans receiving 1 µg/kg
CRH at time t = 0. Even though the model �ts the data very well, only the
circadian rhythm of ACTH and cortisol is seen in the data and explained by the
model, thus the ultradian rhythms are not considered.10

A four dimensional model including the variables CRH, ACTH, cortisol and glu-
cocorticoid receptors (GR) in the pituitary is presented by Gupta et al. (2007).
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The authors postulates that the inclusion of the dynamics of the GR synthesis in
the pituitary demonstrates bistability of the HPA axis. However, the validation
of the model seems very weak. The model is validated by simulating the cortisol
level by feeding experimental human ACTH data into the equation for cortisol.
Therefore it is not surprising, that the model predictions come very close to
the measured cortisol data, predicting both the observed circadian and ultra-
dian rhythms, since the dynamics of cortisol closely follows that of ACTH. The
ACTH prediction of the model is not validated, arguing that the hypothalamic
derived CRH cannot be measured and therefore there is no CRH data to feed
into the ACTH equation. However, when not feeding the data into the cortisol
equation, simulations of the closed model did not produce any oscillations.13

A model developed for distinguishing between normal humans and humans diag-
nosed with either depression or Post-traumatic Stress Disordered (PTSD) is
proposed by Sriram et al. (2012). The authors seek to use the dynamics of
cortisol as a biomarker for psychiatric disorders. It is claimed, that the model
can produce ultradian rhythms of cortisol, however, this is not observed in sim-
ulations of the model. Furthermore the simulations of subjects su�ering from
depression and PTSD �ts the given data set much better than the simulation
of cortisol concentrations for normal subjects.31

Andersen et al. (2013) present a three dimensional model describing the dyna-
mics of the CRH, ACTH and cortisol concentrations. After a comprehensive
mathematical analysis of the model, it is shown that no periodic solutions ex-
ists for physiological reasonable parameter values. However, it is found that
the system has either one stable equilibrium (representing normal cortisolemic)
or two stable (representing hypercortisolemic and hypocortisolemic depression)
and one unstable equilibrium (representing normal cortisolemic) depending on
perturbation of the parameters. Thus this result could be used as a possible
biomarker for depressed humans.2

In recent work by Hosseinichimeh et al. (2015), several di�erent model ap-
proaches of the dynamics of the HPA axis are reviewed in the aim of �nding
the model which �ts a chosen data set best (assuming, that the data used for
testing has not been used as calibrating data for any of the models). Five mo-
dels, published before 2015, representing the human HPA axis and capturing the
interactions and their evolution over time, are compared. It is noticeable, that
the validation of the models are performed by using the data of either cortisol
or ACTH, respectively, to predict the simulations of the other (called partial
prediction method in the article). Based on statistically calculations of these
results, the authors conclude that the model proposed by Andersen et al. (2013)
provides the best overall �t. In the aim of improving the �t of this model, the
authors recalibrates the model to data by the partial prediction method, also
including a circadian rhythm in the equation for cortisol described by an indi-
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vidualised third order function of time. However, it is found that without the
inclusion of individualised circadian rhythm, the re-calibrated, closed model was
not capable of producing ultradian oscillations.15

A three dimensional model capable of producing both circadian and ultradian
rhythms in the concentrations of CRH, ACTH and cortisol was proposed by
Ottesen (2011) (presented at the IFAC Congress). The model generates the cir-
cadian rhythm by an endogenous function in time incorporated in the equation
for CRH. Furthermore, the production of CRH is modelled to up-regulate its
own production, in accordance with experimental evidence in the literature, un-
like the previous considered models. The model has not yet been �tted to data,
thus the author is investigating di�erent methods for estimating the parameters
in the model.25. The reason why the model is not included in the meta-analysis
by Hosseinichimeh et al. (2015), is that the model is not published yet.

The three dimensional model presented by Ottesen (2011) seems to be the
only model among the considered, which produces both circadian and ultra-
dian rhythms. Based on this, the model seems to be the most adequate model,
describing the dynamics of the HPA axis in humans. The model will be investi-
gated and studied in details in the following. First the model is presented and
simulated, then the existence and uniqueness of the solutions is shown. In ad-
dition, the existence of a trapping region and positivity of the model is proved.
Furthermore, some approximations are done and the dynamics of the system
is studied, keeping the time varying circadian input function constant, making
the system autonomous. Hereafter, the time varying system is simulated and
compared to data of humans characterised as normal (contrary to depressed)
and �nally, parameter estimation and residual analysis of the model are carried
out.

3.2 Human Model of the HPA Axis

In this chapter, a model describing the dynamics of the hormones CRH, ACTH
and cortisol in the HPA axis in humans is presented and analysed.

Inspired by the model proposed by Ottesen (2011) and the work accomplished
by Rasmussen et al. (2015), a simple model of the interactions of the HPA axis
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can be presented by

dCRH(t)

dt
= a0 + C(t)

a1

1 + a2Cortisol(t)2
CRH(t)

µ+ CRH(t)
− ω1CRH(t)

dACTH(t)

dt
=

a3CRH(t)

1 + a4Cortisol(t)
− ω2ACTH(t)

dCortisol(t)

dt
= a5ACTH(t)

2 − ω3Cortisol(t),

(3.1)

where
C(t) = Nc

(
tkm

tkm + αk
·

(T − tm)l

(T − tm)l + βl
+ ε

)
, (3.2)

which simulates one single period of the circadian rhythm. The time unit is
minutes and tm can be calculated as tm = (t− δ) modulo 1440. tm denotes the
time modulo 24 hours shifted by δ. T = 1440 min and Nc is a normalisation
constant.

The model can visually be described as seen in Figure 3.1. The secretion of
CRH is a�ected by the circadian rhythm and is auto-up-regulating. When
CRH is released, it stimulates the release of ACTH. An up-regulation of ACTH
further stimulates the production and release of cortisol which at last inhibits
the secretion of CRH and ACTH by feedback mechanisms.

Figure 3.1: Diagram of the dynamics in Model (3.1)-(3.2). The model contains three
variables CRH, ACTH and Cortisol. From hypothalamus CRH is se-
creted, causig an auto-up-regulation and an up-regulation of ACTH. The
up-regulation of ACTH in the pituitary initiates an up-regulation of cortisol
released from the adrenal. Then feedback mechanisms inhibit both CRH and
ACTH. A circadian rhythm a�ects the system from SCN and enters through
regulation of the auto-up-regulation of CRH.

In Figure 3.2 a simulation of Model (3.1)-(3.2) over three days is shown. Both the
circadian and ultradian oscillations are seen for all three variables. The time
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t = 0 indicates midnight. The circadian function C(t) results in an increase
of the concentration of CRH. C(t) increases until approximately 8 a.m. and
declines after noon. This pattern repeats every 24 hour. Notice that the model
has a transient period covering the �rst day, before it tends to the steady state
solution. The parameters used for the simulation can be found in Appendix
B.1.
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Figure 3.2: Simulation of HPA axis model ((3.1)-(3.2)) over three days. For all three
variables both circadian and ultradian oscillations are observed.

There are some di�erences between the model proposed by Ottesen (2011), the
reduced version studied in Rasmussen et al. (2015) and the model presented in
this thesis. The model proposed by Ottesen (2011) multiplies the parameter a0
by the circadian rhythm in the equation for CRH, while the inhibition term of
CRH consists of both a �rst and second order term in Cortsiol. Furthermore,
there is also included a �rst order term of ACTH in the equation for Cortsiol
contributing to the up-regulation. The work by Rasmussen et al. (2015) shows
that these three terms in the model does not contribute to a change in the
model outcome within the physiological range of the parameters, and therefore
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the model can be reduced by removing these terms.

The model presented in this thesis resembles the reduced model, however there
are some modi�cations. The parameter a0 is included in the equation for CRH
to model a basic level of secretion of CRH, which might seem reasonable from a
biological perspective, since it also ensures positivity of the model. Furthermore,
the auto-up-regulation of CRH is described by a Michaelis-Menten function
compared to the linear description in the reduced model. This means that the
increase of CRH is limited since the Michealis-Menten function has a saturation
for large concentrations of CRH and hence it guarantees boundedness of the
solutions. At last, an inspection of the function describing circadian rhythm used
in the reduced model revealed a discontinuity of the function when repeating the
rhythm. From a biological point of view, such a discontinuous 'circadian clock'
seems very unrealistic. Therefore, a continuous and normed function described
by Hill-functions is used instead of the discontinuous and unnormed function
described by a product of time to the power of three and an exponential term.

3.2.1 Variables and Parameters

The variables and parameters are presented and discussed in this section, since
the biological interpretation of the parameters in the model gives more insight
to the system.

CRH and ACTH denotes the concentrations of CRH and ACTH in pg/mL,
respectively, while Cortisol represents the concentration of cortisol in µg/dL.

C(t) models the observed circadian rhythm of the system caused by the 'circa-
dian clock' synchronised by the SCN. This function models a single period of the
circadian rhythm, repeating itself after 24 hours. It is described by the product
of two Hill functions. α and β represent the times at which the corresponding
increasing or decreasing Hill-function reaches half the saturation. k changes
the steepness of the increasing Hill-function at the half saturation point t = α,
while l changes the steepness of the decreasing Hill-function at t = β. Hence,
raising the k and l values clari�es the s-shape of the Hill-functions and changes
the steepness of the increase or decrease. ε represents the basic contribution
from the 'circadian clock', which occurs during the night. δ describes the time
shifting of the circadian rhythm observed in di�erent subjects.

a0 describes the basic secretion of CRH which only makes a greater contribution
to the system, if the concentration of CRH is low, therefore it should be set to
a small number. a1 represents the strength of the auto-up-regulation of CRH,
in this way it symbolises the synthesis of CRH under in�uence of the 'circadian
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clock' modelled by C(t) as mentioned. a2 is multiplied by Cortisol and controls
the inhibition of the synthesis of CRH through cortisol. The inhibition of CRH
is modelled by a second order term in Cortisol. Considering the mechanism as
a chemical reaction, this can be interpreted as a cooperative e�ect. This model
choice means that small concentrations of cortisol (Cortisol � 1) has a minor
in�uence, while the e�ect of large concentrations (Cortisol� 1) is more exten-
sive. µ, in the Michaelis-Menten function involving CRH, is the half-saturation
constant. Thus µ determines the level of CRH at which the Michaelis-Menten
function will reach half of its saturation value.

The strength of the stimulation of ACTH by CRH in the absence of cortisol is
denoted a3, while a4 represents the magnitude of the inhibition of the synthesis
of ACTH by Cortisol.

a5 describes the stimulation of cortisol by ACTH. ACTH is included in the
equation in squared form, which can be interpreted as a cooperative e�ect.
From a chemical reaction perspective, this is similar to the inhibition of CRH
by cortisol.

The parameters ω1, ω2 and ω3 are interpreted as the elimination rates of CRH,
ACTH and cortisol respectively.

In the following sections, the model is investigated analytically to prove existence
and uniqueness of the solution and the existence of an attracting, trapping re-
gion.

3.2.2 Existence and Uniqueness

In this section, existence and uniqueness of the solution to the System (3.1)-(3.2)
is proved. This result is used when �nding the trapping region of the model in
the next section.

Consider the System (3.1)-(3.2) on the form

du(t)

dt
= f(u, t)

u(t0) = u0,

(3.3)

where u(t) = [CRH(t), ACTH(t), Cortsiol(t)]′, u0 denotes the initial condition
and f(u, t) is a vector containing the right-hand-side of the System (3.1).
It follows that f(u, t) is Lipschitz continuous in u over any domain

D = {(u, t)| ‖ u− u0 ‖≤ a, t0 ≤ t ≤ t1}
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with a > 0 and t1 > t0, i.e. there exists a constant L ≥ 0 such that

‖ f(u, t)− f(u∗, t) ‖≤ L ‖ u− u∗ ‖

for all (u, t), (u∗, t) ∈ D, see Appendix B.2 for details.
Thus it follows from the Existence and Uniqueness Theorem that there exists a
unique solution to (3.3) for all �nite time intervals [t0, t2]20.

3.2.3 Trapping Region

In the previous section, existence and uniqueness of the solution to (3.1)-(3.2)
were shown. This result is now used to prove the existence of an attracting,
trapping region TR for the system.

De�ne u(t) = [CRH(t), ACTH(t), Cortisol(t)]′ as a solution to the System
(3.1)-(3.2) and assume that all parameter values are positive and the initial con-
ditions are non-negative. It follows that for any u(t0) ∈ (R+ ∪ {0})3\TR then
u(t) ∈ TR for t > t1, for some t1 > t0 where TR = [0,MCRH ] × [0,MACTH ] ×
[0,MCortisol].

To prove the existence of TR, �rst the lower bounds are found. This also ensures
positivity of system.

Consider the CRH-equation for CRH = 0, which gives dCRH(t)
dt = a0 > 0.

This means that the solution cannot cross the plane {u ∈ R3|u1 = CRH = 0}
in negative direction due to the uniqueness of the solution. So for a given
CRH(t0) ≥ 0 then CRH(t) > 0 for all t > t0.

Then considering the Cortisol-equation for Cortsiol = 0 which yields dCortisol(t)dt
= a5ACTH(t)2 ≥ 0. Hence Cortisol(t0) ≥ 0 implies that Cortisol(t) ≥ 0 for
all t > t0 due to the uniqueness of the solution.

For ACTH = 0 it is observed that dACTH(t)
dt = a3CRH(t)

1+a4Cortisol(t)
≥ 0 since

CRH(t) ≥ 0 and Cortisol(t) ≥ 0 for all t > t0. Then it follows from the
uniqueness of the solution, that ACTH(t) ≥ 0 for ACTH(t0) ≥ 0 and t > t0.

This constitute the lower bounds of TR, the upper bounds are found by:

dCRH

dt
= a0 + C(t)

a1

1 + a2Cortisol2
CRH

µ+ CRH
− ω1CRH

≤ a0 +
a1

1 + a2Cortisol2
− ω1CRH

≤ a0 + a1 − ω1CRH.
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Thus dCRH
dt < 0 for CRH > a0+a1

ω1
≡ MCRH , which means that CRH(t) ≤

max{CRH(t0),MCRH} for all t > t0.

Similarly, it can be shown that for all t > t0 the following holds:

dACTH

dt
< 0 for ACTH >

a3MCRH

ω2

≡MACTH

and
dCortisol

dt
< 0 for Cortisol >

a5M
2
ACTH

ω3

≡MCortisol.

This proves that there exists an attracting trapping region TR, where solutions
starting outside TR = [0,MCRH ]× [0,MACTH ]× [0,MCortisol] are attracted into
the region and solutions inside cannot leave the region.

3.2.4 Reduction and Dynamics of the System

In this section, the model is reduced by one parameter. Furthermore, the dyna-
mics of the system is investigated for �xed values of the function C(t) describing
the circadian rhythm.

To get a better understanding of the in�uence of the parameters in the model,
the parameters were varied one at a time, by decreasing and increasing the value
by 50% respectively. The �gures are shown in Appendix B.3. This is used to
investigate the sensitivity of the parameters and later to manually �t the para-
meters to mimic the data as convincingly as possible, to give good and reliable
initial guesses of the parameters used for the parameter estimation process.
When studying the plots, it is seen that both a3 and a4 have minimal in�uence
after the transient period on the model output of ACTH and Cortisol, which
is the two variables with available data. Furthermore, the change in the model
outcome for all three variables when varying µ is insigni�cant. This suggests
that the Michaelis-Menten function in CRH can be well approximated by a
linear term, since the half-saturation constant µ � CRH in the physiological
range of CRH. This approximation is also implemented in both the model pro-
posed by Ottesen (2011) and the reduced model by Rasmussen et al. (2015).
This reduces the model by one parameter:

dCRH(t)

dt
= a0 + C(t)

a1CRH(t)

1 + a2Cortisol(t)2
− ω1CRH(t)

dACTH(t)

dt
=

a3CRH(t)

1 + a4Cortisol(t)
− ω2ACTH(t)

dCortisol(t)

dt
= a5ACTH(t)

2 − ω3Cortisol(t)

, (3.4)
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where
C(t) = N

(
tkm

tkm + αk
·

(T − tm)l

(T − tm)l + βl
+ ε

)
. (3.5)

The model is of three dimensions, which allows explicit investigation of the dy-
namics of the system. However, the system is non-autonomous and non-linear,
which makes the analytical and theoretical investigation limited.

The system is examined for constant values of the function describing the circa-
dian rhythm, which might re�ect the dynamic of the system at that particular
time point.

C(t) is a bounded function, with a slow variation over time compared to the
ultradian time-scale of the three variables as seen in Figure 3.3. This slow time
variation suggests an investigation of the system for di�erent �xed values of
C(t) in the interval I = [min0≤t{C(t)}, max0≤t{C(t)}] = [0.0192, 1], for the
default parameter values reported in Appendix B.4. In the following, the system
is investigated for �xed values of C(t) = C0 ∈ I.

The equilibrium points of the system for constant C(t) = C0 are found by
solving

dCRH

dt
= 0,

dACTH

dt
= 0 and

dCortisol

dt
= 0 (3.6)

for all 0 ≤ t. In this case, only one real, positive solution, x∗ = [CRH∗, ACTH∗,
Cortisol∗]′, to (3.6) is found. The solution depends explicit on time and can be
found as a solution of a polynomial of degree seven.

By linearising the system, it is possible to investigate the dynamics close to
equilibrium by a linear approximation. The linearisation of the system dx/dt =
f(x) at equilibrium x∗ is given by dy/dt = J(x∗)y where y = x− x∗ and J(x∗)
is the Jacobian matrix de�ned by

J(x∗) =


df1(x)
dx1
· · · df1(x)dxn

...
. . .

...
dfn(x)
dx1

· · · dfn(x)dxn

 ∣∣∣∣
x=x∗

By determining the eigenvalues of J(x∗), it is possible to investigate the stability
of the given equilibrium. For the System (3.4)-(3.5) with �xed C(t) = C0, the
Jacobian matrix is given by

J =


a1C0

1+a2Cortisol∗2
− ω1 0 −2C0

a1CRH
∗a2Cortisol

∗

(1+a2Cortisol∗2)2

a3
1+a4Cortisol∗

−ω2 − a3a4CRH
∗

(1+a4Cortisol∗)2

0 2a5ACTH
∗ −ω3

 .
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Figure 3.3: The time variation of the circadian rhythm C(t) compared to the ultradian
time variation of a normed simulation of the concentrations of CRH, ACTH
and cortisol. C(t) has a slower time variation than the ultradian variation of
the three hormones of the HPA axis.

The eigenvalues of the Jacobian matrix for the equilibrium CRH = CRH∗,
ACTH = ACTH∗ and Cortisol = Cortisol∗ are studied numerically for di�e-
rent �xed values of C0 ∈ I. The eigenvalues of the Jacobian matrix of the given
equilibrium are all of the form

λ1 = −a+ ib, λ2 = −a− ib, and λ3 = −c (3.7)

for �xed C0 ∈ I, where a, b and c > 0. There is one negative eigenvalue and two
complex conjugated eigenvalues with negative real part. This means that the
equilibria are a hyperbolic sink-focus, and the points are stable for the default
parameter values. The numeric value of the eigenvalues only changes slightly,
contrary to the changes of the numeric values of the equilibria for di�erent values
of C0 (see table 3.1).

Table 3.1: Numeric values of the eigenvalues λ1, λ2 and λ3 associated with the equilibria
[CRH∗, ACTH∗, Cortsiol∗] for various �xed values of C(t) = C0 ∈ I for the
default parameter values presented in Appendix B.4. The eigenvalues are given
with four decimals after the leading decimal.

C0 [CRH∗, ACTH∗, Cortisol∗] λ1, λ2 λ3

0.019 [0.9, 8.6, 1.5] −9.237 · 10−4 ± i · 3.407 · 10−2 −4.921 · 10−2

0.250 [6.4, 16.3, 5.2] −4.183 · 10−4 ± i · 3.415 · 10−2 −4.932 · 10−2

0.500 [10.7, 19.3, 7.4] −3.826 · 10−4 ± i · 3.415 · 10−2 −4.933 · 10−2

0.750 [14.5, 21.4, 9.0] −3.689 · 10−4 ± i · 3.416 · 10−2 −4.933 · 10−2

1.000 [17.9, 23.0, 10.4] −3.614 · 10−4 ± i · 3.416 · 10−2 −4.933 · 10−2

In Figure 3.4 the equilibria for di�erent �xed values of C(t) = C0 ∈ I are
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Figure 3.4: The phase space of the HPA system. The equilibria for �xed values of C(t) =
C0 ∈ I is marked by black dots. The green circle indicates the equilibrium
corresponding to the system for �xed C(0) ≈ 0.0192. The orbit represents a
solution curve, where the dashed part illustrates the transient period.

shown. It is seen, how the equilibria occurs at di�erent positions in the phase
space for di�erent choices of C0. The equilibrium represented by the green
circle illustrates the equilibrium for the system with �xed C(t) = 0.0192 for
time t = 0 and t = 1440. A solution curve is also shown in the �gure. It is seen
how the solution twists around the temporarily equilibrium points for �xed C0.
The solution curve is shown for two days, where the dashed orbit represents the
transient period.

3.2.5 Simulation of the Human Model

In the following, Model (3.4)-(3.5) is simulated and compared to data. Addi-
tionally, the �t of the model is improved and the model is validated through
residual plots.

The model is simulated and compared to data for ACTH and cortisol concen-
trations obtained from humans. Before presenting the simulations, the data is
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smoothened and the in�uence of the parameters in the model is investigated.

The data come from a study described by Carroll et al. (2007), where 17 'nor-
mal' and 12 depressive humans were included. Since it is not of interest to
investigate the ACTH and cortisol concentrations in relation to depression in
this thesis, only the data for the 'normal' humans will be considered. Concentra-
tions were measured within ten minute intervals over 24 hours, which highlights
the ultradian pulses in both ACTH and cortisol. The measured concentrations
of cortisol and ACTH are within the ranges 0.1− 24 µg/dL and 1− 94 pg/mL,
respectively.

However, the high sampling frequency imposes ampli�ed noise. The main pur-
pose of this model is to describe the circadian and ultradian rhythms seen in
data and not the small �uctuations, which can be considered as noise due to
measuring errors, etc. Therefore, the data is smoothened using a moving av-
erage method. By calculating the average of each data point and its neigh-
bours, the data is smoothened. In this case, a span of �ve is used resulting in
yn = (yn−2 + yn−1 + yn + yn+1 + yn+2)/5 for n = 3, ..., nd − 2, where nd is the
number of data points. The two end points are not smoothed and the two points
n = 2 and n = nd − 1 is calculated as an average of the two nearest neighbours
and the point itself. The result of smoothen data for one of the subjects can be
seen in Figure 3.5.
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Figure 3.5: The red solid line represents the smoothened data, using a moving average
�lter with a span of �ve. The noise from the original data (black, circled line)
is reduced.

Eight normal subjects are used for the calibration of parameters. The data is
�tted separately, to avoid an elimination by averaging the ultradian rhythm ob-
served in the individual measurements. In Figure 3.6, simulations of the ACTH
and cortisol concentrations for eight subjects are shown. The results are ob-
tained by manually changing the parameters in accordance to the knowledge of
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the in�uence achieved by the plots in Appendix B.3.

When manually �tting the subjects, it is clear, that at least two parameters are
very important when trying to �t all eight data sets. The parameter a5 changes
the ACTH level, which base level varies signi�cantly for some of the subjects,
without changing the level of cortisol to a greater extend. By only varying two
parameters, namely a5 and δ manually, the plots in Figure 3.6 can be obtained
by using the parameter values from Appendix B.4 for the other parameters.

The model outcome mimics the data to some extend, which can be seen in Figure
3.6. However, especially the simulation of the ACTH concentration is very poor
for some of the individuals, when comparing to the data as observed for subject
(c) and (g). The predictions of the cortisol levels are more convincing and the
model simulations captures many of the ultradian rhythms, but a di�erence in
the frequency and magnitude of the oscillations is apparent. The cortisol level
for the individual (g) has an early peak, which the model cannot reproduce.
The simulations of the individuals (a), (d) and (h) provide reasonable good �ts
of the data, when only varying the two parameters a5 and δ.

As mentioned, these results are obtained by only varying two parameters ma-
nually. The results are not adequate to postulate that the model describes the
dynamics of the HPA axis in humans with these sets of parameter values. Using
parameter estimation, permitting variation of more than the two parameters
gives much more reliable �ts as shown in the following. This leads to the con-
clusion, that the model is an adequate model describing the interactions in the
human HPA axis.
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Figure 3.6: Simulation of the HPA axis model ((3.4)-(3.5)) using the parameter values
presented in Appendix B.4 for varying a5 and δ. The simulations are compared
to data of ACTH and cortisol concentrations for eight subjects.
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3.2.6 Parameter Estimation

In the following, parameter estimation is used to improve the �ts of the eight
subjects introduced in the previous section. The improvement in the �ts are
presented visually and numerically, by comparing the sum of squares. Finally,
the residual plots are used to validate the model.

The model simulations seen in the previous section seem to �t the data to
some extend for some of the subjects. Using parameter estimation of several
of the parameters, it is possible to improve the agreement between the model
prediction and data.

The parameters are estimated by minimising the dimensionless, weighted sum
of squares

Rw =
1

145

144∑
i=0

((
ACTHi − yi
ACTH

)2

+

(
Cortisoli − zi
Cortisol

)2)
, (3.8)

where ACTHi and Cortisoli represents the i'th data point of the relevant
subject, while yi and zi are the model predictions of ACTH and cortisol re-
spectively, at time point i. ACTH and Cortisol denote the mean of the data
set for the relevant subject over 24 hours and are used as weights in the func-
tion, which is important, since the two data sets are of di�erent scales, but �tted
simultaneously.

There are several ways to minimiseRw. One way is to use MATLAB's build-in func-
tion lsqnonlin which uses the user-speci�ed Trust-region-re�ective algorithm
to search for the minimum of the function. The results, using this algorithm to
minimise the sum of squares, are shown in Figure 3.7. The estimation of para-
meters seems to improve the model prediction. The only simulation which does
not agree with data to a satisfactory degree, is subject (g). The simulation does
not �t neither the ACTH nor the cortisol data very well, however, this data set
also appears to be di�erent, with a lonely and very early peak of cortisol, which
is not observed for the other subjects. Thus it may be considered as an outlier.
Besides this, the model simulations are adequately, with the greatest problem
appearing to be to model the oscillations of the right end tails of both ACTH
and cortisol, which is a consequence of periodic model solutions in contrast to
data.

To evaluate the improvement using the manually �tted parameters and the esti-
mated parameters, the residuals are compared. In table 3.2 the squared 2-norm
Rw from (3.8) is calculated for each of the subjects for both the simulations
using the manually �tted parameter values and using the estimated parame-
ter values. Together with this, the relative change in the squared norm of the
residuals is calculated. It is no surprise, that the residuals are smaller for the
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Table 3.2: The squared 2-norm of the residuals for each subject, calculated for the simula-
tions using the manually �tted parameter values (Manually) and the estimated
parameter values (Estimated). The relative change in the residuals reveals
that the estimated parameters improve the correspondence between the model
simulation and the data to a great extend.

Subject (a) (b) (c) (d) (e) (f) (g) (h)

Manually 0.11 0.28 0.78 0.25 0.35 0.28 0.72 0.25
Estimated 0.08 0.16 0.21 0.13 0.17 0.12 0.28 0.13

Relative Change (%) 27 43 73 48 51 57 61 48

estimated parameters, since these parameters are estimated to minimise this
quantity. However, the interesting thing is the magnitude of the relative change
for all of the subjects and the agreement between the simulations and the data,
were many of the ultradian rhythms are mimicked. The solutions for subject
(e) and (g) found by parameter estimation are almost without ultrdian oscil-
lations, which may cause the relatively large Rw values. The poor manually
�tted values used as initial guess for the parameter estimation may be one of
the explanations for this.

The considered weighted residuals, Rw, covers both the residuals of ACTH and
cortisol, since the parameters are estimated to �t both simultaneously. The
residuals are weighted, such that the magnitude of the residuals becomes equal.
The subject with the lowest Rw is subject (a), which also is observed from Figure
3.7, where especially the cortisol level �ts the data very well. Also subject (d)
and (f) provides very consistent �ts of the data. The improvement of the simu-
lation of subject (c) is noticeable, the improvement of the residuals is 73 % and
the visualised change is very clear. The results are achieved by varying six of
the parameters.
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Figure 3.7: Simulation of the HPA axis model using the estimated parameters. The sim-
ulations (red solid lines) are compared to data for ACTH and cortisol (black
dashed lines). The parameters are estimated individually for each subject.
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3.2.7 Residual Plots

In the aim of validating the model adequacy, a visual residual analysis is carried
out similar to the analysis of the �ve dimensional model of the acute in�am-
matory system in Section 2.3.4.

In Figure 3.8, the model simulation, the standardised residuals against the pre-
dicted values, a frequency histogram of the residuals and a Q-Q plot are shown
for subject (f). The histogram and Q-Q plot suggest that the residuals are in-
deed normally distributed, while the standardised residuals do not reveal any
structure or outliers to cause any major concern. Similar analysis for the other
subjects are made, showing satisfying behaviour of the residuals, however, they
are omitted from the report.

0 5 10 15 20 25
0

20

40

60

A
C

T
H

 (
pg

/m
L)

data
simulation

0 5 10 15 20 25

Time (hours)

0

5

10

15

20

C
or

tis
ol

 (
µ

g/
dL

)

(a)

10 15 20 25 30

predicted values of ACTH

-4

-2

0

2

4

st
an

da
rd

iz
ed

 r
es

id
ua

ls

2 4 6 8 10 12

predicted values of Cortisol

-4

-2

0

2

4

st
an

da
rd

iz
ed

 r
es

id
ua

ls

(b)

-20 -15 -10 -5 0 5 10 15 20

residuals

0

10

20

30

F
re

qu
en

cy

-5 0 5

residuals

0

10

20

30

F
re

qu
en

cy

(c)

-3 -2 -1 0 1 2 3

Standard Normal Quantiles

-20

-10

0

10

20

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e QQ Plot of Sample Data versus Standard Normal

-3 -2 -1 0 1 2 3

Standard Normal Quantiles

-5

0

5

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e QQ Plot of Sample Data versus Standard Normal

(d)

Figure 3.8: Residual plots for subject (f). The frequency histogram of the residuals and
the Q-Q plot suggest normally distributed residuals and the standardised
residuals plotted against the predicted values are structureless and fall in
the interval [−4, 4].

In the previous chapter, an adequate model of the acute in�ammatory response
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was formulated and now an adequate model describing the interactions of the
HPA axis is found. In the following chapter, the two models will be coupled to
investigate the coupling between the two subsystems of the human in�ammatory
system.
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Chapter 4

The Coupled Model

In the previous chapters, a model of the acute in�ammatory system in rats and
a model of the HPA axis in humans has been studied in details and partly vali-
dated. Over the years, it has become clear, that there exists a coupling between
these two systems. In this chapter, a model describing the interaction is pro-
posed, calibrated to human data and studied for di�erent scenarios.

As mentioned brie�y, the interaction between the two subsystems is very im-
portant to maintain homeostasis. LPS activates the release of cytokines, which
up-regulates the release of cortisol by activating the HPA axis. The released cor-
tisol inhibits further synthesis of the cytokines32,33. In this way, the HPA axis
is an essential component for returning to homeostasis after a response caused
by endotoxin. Furthermore, the level of cortisol in humans has been closely con-
nected with stress5. Describing the interaction between these two subsystems
can potentially help understanding, prevent and cure diseases associated with
the immune system.

So far, the investigation of the interaction between the two systems through
mathematical modelling is very limited. There exists no commonly used model,
which describes the interaction of the HPA axis and the acute in�ammatory
system. A very recent work published in December 2015 by Malek et al. tends
to describe the dynamics of the HPA axis and some in�ammatory cytokines.
The authors proposes a model of �ve delayed di�erential equations contain-
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ing 32 parameters and an external periodic function describing the circadian
rhythm of the HPA axis23. The aim of the work, was to develop a mathe-
matical model describing the interactions between the two subsystems to study
the bi-directional communication. The included variables in the model are two
of the in�ammatory cytokines: TNF-α and IL-6, two of the hormones of the
HPA axis: ACTH and cortisol together with endotoxin (LPS). The model is
developed in two steps, �rst a two dimensional delayed model of the HPA axis
(assuming a constant CRH level) is proposed. Then the model is extended by
including the in�ammatory cytokines and LPS as variables. Both delay para-
meters in the equations for ACTH and cortisol, are set to τ1 = τ2 = 10 min,
which appears as relatively high delays. However, lowering the delay parameters
reduces the amplitude of the ultradian rhythms in the simulations. Even though
the model consists of �ve delay di�erential equations, the model is in fact in�-
nite dimensional. After a combination of �nding parameter values in literature
and parameter estimation, the model is simulated and compared to data. The
data contains measures of TNF-α, IL-6, ACTH and cortisol after an injection
of LPS. The model seems to qualitatively capture the structure of the response,
however, the actual �t to the data seems very poor. The injection of LPS is
simulated as an infusion of 2 IU/kg over 10 min, which is contrary to the study.
The subjects in the study, received an injection of 20 IU/kg, which might take
far less time to inject, as described in the next section8. Malek et al. postulates
that no mathematical model of the bi-directional interaction between the acute
in�ammatory system and the HPA axis has been proposed, even though various
studies have been carried out23.

4.1 Interactions of the Systems

In this section, a connection of the two systems is build as an attempt to describe
the main interactions between the two subsystems. The proposed mechanisms
are developed partly by biological reasoning and mathematically considerations
related to data.

First, the models were non-dimensionalised, to explore the structure of the two
subsystems and the e�ect of di�erent modelling approaches of the mechanisms,
see Appendix C.1. Based on this analysis, a speci�c model has been chosen.

In the following, a few modi�cations of the two models are presented in details
in order to couple the models.

One major change is, that the variable CA is divided into two parts, describing
the e�ect of TGF-β1 and cortisol, respectively. This means, that the coupled
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model contains the following eight variables:

· LPS (P )

· Number of phagocytic cells (N)

· Tumor necrosis factor-α (TNF )

· Interleukin 10 (IL10)

· Transforming growth factor-β1 (TGF )

· Corticotropin releasing hormone (CRH)

· Adrenocorticotropic hormone (ACTH)

· Cortisol (Cortisol).

The speci�c changes in the a�ected equations and the biological reasoning are
described the following subsections.

4.1.1 The Equation for TNF-α

The acute in�ammatory response model is developed and �tted using data from
rats, while the HPA model is calibrated to data from humans. It seems rea-
sonable to assume, that there is a di�erence between these systems in rats and
humans. Furthermore, there is a great di�erence in the concentrations of LPS
given to the rats (3, 6 and 12 mg/kg) compared to humans (2 ng/kg). Such a
variation in dose, may cause quantitative di�erences in the responses. Based on
this, it seems reasonable to change some of the parameter values in the coupled
model.

In addition, the elimination rate of TNF-α is changed from a linear to second
order term in order to reproduce data from humans. From a biological perspec-
tive, the elimination may be a second order Hill function in TNF , with a large
saturation. However, this is not supported by data. Thus the simpler second
order term is kept as a possible approximation. The changed elimination term
reduces the degeneration of TNF-α for small concentrations. Furthermore, the
linear dependence of N in the equation for TNF is changed to a Michealis-
Menten function, lowering the sensitivity of the TNF-α response, especially for
large N .
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4.1.2 The Equation for TGF-β1

It is commonly known that cortisol acts in an anti-in�ammatory way32,33. The
anti-in�ammatory e�ects of cortisol are modelled through a stimulation of TGF .
The regulation of the cytokines by cortisol is thereby modelled through the
e�ects of TGF-β1. TGF-β1, amongst other factors, has been shown to modulate
the response of the HPA axis by a�ecting pro-in�ammatory cytokines17. It has
been shown, that elevated cortisol levels results in suppression of TNF-α and
stimulation of IL-104. This is consistent, with the modelling choice, since TGF-
β1 modulates these e�ects. The stimulation of TGF-β1 by cortisol is modelled
by introducing a Michealis-Menten function in Cortisol in the equation for
TGF-β.

4.1.3 The Equation for CRH and ACTH

The in�uence of the in�ammatory system on the HPA axis is modelled by an
up-regulation of CRH and ACTH by TNF-α. TNF-α is regarded as an activator
of the HPA system4. Cytokines are activating the HPA axis at all three levels,
however, the hypothalamic level (secreting CRH) is considered as the primary
mechanism4,30.

The e�ect of TNF-α on CRH is incorporated in the model and for data �tting
purposes, the e�ect on ACTH is also included. The up-regulation of CRH
and ACTH are introduced as a linear term (approximating a Michaelis-Menten
function) and a second order Hill function, respectively, since it gives a good �t
of the data.

4.1.4 The Equation for Cortisol

TGF-β1 has an inhibitory e�ect on cortisol21, which is modelled by dividing
the up-regulating term in ACTH by a linear term in TGF .

Summing up, the elimination rate of TNF-α is changed from linear to a second
order dependence and the up-regulating term in N is changed to a Michealis-
Menten function. An inhibiting e�ect of TGF-β1 is introduced in the equation
for cortisol, while an up-regulating term of cortisol is included in the equation
for TGF-β1. Furthermore, an up-regulation caused by TNF-α is incorporated
in the equations for CRH and ACTH and in addition, some parameter values
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of the in�ammatory subsystem are changed.

The resulting coupled model is presented in (4.1)-(4.2), where the red color
indicates the newly introduced changes.

dP

dt
= − dpP ·N

dN

dt
= kN

((
1 +

kNTNFTNF

xNTNF + TNF

)
xNTGF

xNTGF + TGF
·

xNIL10

xNIL10 + IL10

)
· P − dNN

dTGF

dt
= kTGF ·N + q1

Cortisol

q2 + Cortisol
− dTGFTGF

dTNF

dt
=

N

xTNFN +N
·

x4
TNFTGF

x4
TNFTGF + TGF 4

(
kTNF +

kTNFTNFTNF

xTNFTNF + TNF

)
− dTNFTNF

2

dIL10

dt
= kIL10N

N3

x3
IL10N +N3

+
kIL10TGFTGF

6

x6
IL10TGF + TGF 6

+ sIL10

− dIL10
xIL10d

xIL10d + IL10
IL10

dCRH

dt
= a0 + C(t)

a1CRH

1 + a2Cortisol2
+ q3TNF − ω1CRH

dACTH

dt
=

a3CRH

1 + a4Cortisol
+ q4

TNF 2

q25 + TNF 2
− ω2ACTH

dCortisol

dt
= a5

ACTH2

1 + q6TGF
− ω3Cortisol,

(4.1)

where

C(t) = Nc

(
tkm

tkm + αk
·

(T − tm)l

(T − tm)l + βl
+ ε

)
. (4.2)

The model describes the most considerable interactions of the main cytokines
of the acute in�ammatory system and hormones of the HPA axis. The model
contains eight variables, four new interactions between the subsystems and seven
new parameters resulting in a total of 43 parameters.

The main interactions between the variables can be seen in Figure 4.1. Notice,
that the extended model (with a Michaelis-Menten function in CRH instead of
a linear term in the equation for CRH) satis�es positivity and there exists an
attracting trapping region ensuring boundedness of the solutions. The results
are presented in Appendix C.2.

4.2 Calibration of the Model to Human Data

In previous section, a model proposed for the coupled system is presented. In
this section, the model is calibrated to human data and compared to the model
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Figure 4.1: Diagram of the main dynamics in the coupled model (Model (4.1)-(4.2)). The
green solid lines represent the up-regulating interactions and the red dashed
lines represent the down-regulating interactions between the variables in the
model.

proposed by Malek et al. (2015).

The data, originates from a study conducted by Clodi et al., designed for in-
vestigating the impact of oxytocin on the innate immune system in humans8.
Data describes the response of TNF-α, ATCH and cortisol to a LPS injection
of 20 IU/kg (corresponding to 2 ng/kg) in contrast to the response a�ected by
an additional injection of oxytocin8. In this thesis, only the data describing the
response in the concentrations in the absence of oxytocin is considered. Each
data point is a mean and standard deviation of measurements on 10 healthy
men.

The parameters introduced in the coupled model, are manually calibrated to
mimic the data. The manually �tted parameters result in an adequate corre-
spondence between the simulation of the model and data. By using parameter
estimation on a few selected parameters, the �t of the model is improved. The
selected parameters are chosen as parameters, which varies considerably be-
tween individuals. The parameters are the elimination rate of TNF-α (dTNF ),
the strength of the stimulation of cortisol by ACTH (a5), the time-shifting of
the phase in the circadian function (δ) and the elimination rate of cortisol (ω3).
The response of TNF-α varies for individuals, and dTNF is a possible parameter
which might change between individuals causing this di�erence. In Section 3.2.5
the variation of a5 and δ between individuals were clari�ed. The signi�cance
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of ω3 on the simulations has a distinct e�ect on the ultradian oscillations for
all three hormones of the HPA axis (see Appendix B.3), indicating that the
system is sensitive to this parameter. The same goes for the elimination rate
of CRH (ω1), however, changing ω3 provides a better �t to data, while keeping
the concentration level of cortisol within the ranges observed from the data in
Section 3.2.5. Thus, these parameters might vary considerable between individ-
uals compared to the other parameters and therefore these are chosen as special
parameters.

The selected parameters are estimated, using nlinfit in MATLAB. The result of
the simulation for TNF , ACTH and Cortisol with the estimated parameters
and a 95%-con�dence band is compared to data in Figure 4.2. The con�dence
band is constructed by using the function nlpredci in MATLAB. The con�dence
band gives an estimate of the uncertainty of the mean of the �tted curve. The
con�dence band is calculated pointwise rather than simultaneously. The sim-
ulation with the estimated parameters mimics the data of TNF-α, ACTH and
cortisol (see Figure 4.2). The model �ts data, except for a few points.
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Figure 4.2: Simulation of the coupled model ((4.1)-(4.2)) with the estimated parameters.
The red, solid line represents the simulation of TNF , ACTH and Cortisol,
respectively, and the black, dashed line represents the 95%-con�dence band.
The data (black circles) are represented as a mean and standard deviation of
mesurements from ten subjects at each point. The time indicates hours after
LPS injection.
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The delayed di�erential model proposed by Malek et al. (2015) is calibrated
to the same data, which gives a good opportunity for comparison of the two
models. As mentioned, the model proposed by Malek et al. (2015) simulates
the injection of LPS in a di�erent way. The model proposed by Malek et al.
(2015) simulates the injection of LPS by an infusion of 2 IU/kg over 10 min,
while the injection in the coupled model is simulated by one bolus of 2 ng/kg
( ≈ 20 IU/kg) over 1 min. Both infusions are started at t = 13.5 hour (the
coupled model was simulated for one day before the injection day, to get past
the transient period). The results of the simulations can be seen in Figure 4.3.
Visually, the coupled model provides better �ts of TNF and Cortisol, while the
�ts of ACTH are somewhat equally good. Calculating the residuals for both
models (similar to equation (3.8) in Section 3.2.6), shows that the coupled model
provides at better �t (Rw = 0.22) compared to the model proposed by Malek
et al. (2015) (Rw = 0.64). The parameter values and biological interpretation
for the coupled model, used to produce the �gures in this section, can be found
in Appendix C.3.

0 5 10 15 20
0

50

100

150

T
N

F
 (

pg
/m

L)

Maleks model
Data
Coupled model

0 5 10 15 20
0

50

100

A
C

T
H

 (
pg

/m
L)

0 5 10 15 20

Time (hours)

0

10

20

30

C
or

tis
ol

 (
µ

 g
/d

L)

Figure 4.3: Comparison of the coupled model ((4.1)-(4.2)) and the model proposed by
Malek et al. (2015) to data. The solid, red curve represents the simulation
of the coupled model and the dashed, black curve represents the simulation
of the model proposed by Malek et al. (2015). The data (black circles) is
represented as a mean and standard deviation of mesurements on 10 subjects
at each point. The LPS is injected at t = 13.5.

The coupled model provides a better �t to data, than the model proposed by
Malek et al. (2015) (both visually and numerically). In the next sections, the
coupled model is studied on its own terms. Thus the model is simulated and
studied for di�erent scenarios.



58 The Coupled Model

4.3 Simulation for Di�erent LPS Doses

In Figure 4.4 and 4.5, model simulations for three di�erent doses are compared
to a simulation of the model with no injection of LPS. In Figure 4.4, the LPS
is injected at t = 7.5 (at the top of the �rst ultradian rhythm, on the peak the
circadian rhythm for cortisol) while the LPS bolus are given at t = 9 in Figure
4.5 (just after the �rst ultradian rhythm, on the peak the circadian rhythm for
cortisol). The doses of injected LPS are chosen as 0.4, 2 and 10 ng/kg. The
model is studied for these doses, to investigate the response to a dose chosen
accordingly to the calibration data and doses higher and lower than this.

The simulations clarify the importance of the ultradian rhythms for small doses
of LPS. The peak in cortisol is largest for the smallest LPS dose, when injecting
on the top of the ultradian peak. The increase in cortisol for small doses of
LPS has a delayed peak, compared to the response for the other doses for both
injection times. The magnitude of the response in N is mainly controlled by
the concentration of LPS (P ). A large dose of P results in a large response
of N , which stimulates TGF . The large stimulation of TGF inhibits Cortisol,
which might be a reason, for the limited response in Cortisol for large doses of
LPS. The oscillations of ACTH and cortisol for the day after the injection at
time t = 9 are also noticeable. For LPS dose 10 pg/kg, the ultradian rhythms
are similar to the rhythms for no injected LPS, contrary to the simulations for
the small LPS doses, where the ultradian rhythms have smaller amplitude. The
circadian rhythm for cortisol is almost unchanged, while the level of ACTH is
lifted.
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Figure 4.4: Simulation of the coupled model ((4.1)-(4.2)) for di�erent doses of LPS (black
dottet: 0 ng/kg, red: 0.4 ng/kg, blue: 2 ng/kg, cyan: 10 ng/kg) injected at
t = 7.5.
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Figure 4.5: Simulation of the coupled model ((4.1)-(4.2)) for di�erent doses of LPS (black
dottet: 0 ng/kg, red: 0.4 ng/kg, blue: 2 ng/kg, cyan: 10 ng/kg) injected at
t = 9.
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4.4 Simulation for Di�erent Times of LPS Injec-

tion

The model is simulated for LPS injection at di�erent times, to investigate the
e�ect of a LPS injection in relation to the observed ultradian and circadian
rhythms in cortisol. In Figure 4.6 simulations of the coupled model ((4.1)-(4.2))
are shown for two days for di�erent injection times.

The injections are given at t = 6, when level of cortisol is increasing, t = 7.8, just
after the �rst ultradian peak on top of the circadian peak of cortisol, t = 8.9,
just before the second ultradian peak on top of the circadian peak of cortisol,
t = 9.5, at the peak of the second ultradian oscillation on top of the circadian
peak of cortisol, t = 16, where the level of cortisol is decreasing and at last at
t = 24.8 at the nadir of the cortisol level.
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Figure 4.6: Simulation of the coupled model ((4.1)-(4.2)) for di�erent times of injection
of LPS (2 ng/kg) compared to the simulation for no injection of LPS (dotted,
black line). The model is simualted over two days. The injection times for the
simulations is t = 6 (green curve), t = 7.8 (blue curve), t = 8.9 (red curve),
t = 9.5 (magenta curve), t = 16 (cyan curve) and t = 24.8 (black curve).
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The injected LPS dose is 2 ng/kg for all simulations, except for the dotted
curve, which represents the simulation for no injected LPS. The dose is chosen
according to the LPS dose of the calibration data. The largest responses in
ACTH and cortisol are observed in the early hours of the day, while the lowest
responses are observed in the afternoon, where there is a decreasing trend in the
circadian rhythms of the concentrations. At the nadir of the circadian rhythm,
the response of both ACTH and cortisol are remarkably high compared to the
baseline at this time.

4.5 Repeated LPS Injections

In this section, the model is studied for repeated LPS injections. In Figure
4.7, model simulations for no LPS injection, one LPS injection and two LPS
injections (with an interval of 24 hours), respectively, are shown. The interval
between the injections were chosen, such that the largest e�ect on the system
were observed. In the �rst simulation, no LPS injection was given. In the
second simulation, a LPS bolus of 2 ng/kg was given at t = 13.5 (the dose and
time of injection was chosen according to the dose and time of injection for
the calibration data). The third simulation represents the scenario, where a 2
ng/kg LPS bolus was given at t = 13.5 and an additional bolus was given at
t = 37.5. It is seen, that the endotoxin is eliminated slower after the second
LPS bolus. The injection is given before the system is returned to homeostasis,
which causes a di�erent response of the system. The response of phagocytic
cells (N) is approximately less than half the magnitude for the second injection.
The response of TNF-α is also very small, compared to the �rst response. The
response of ACTH and cortisol is non-detectable for the second injection. This
illustrates the importance of the system being in homeostasis, when exposed to
LSP, such that intolerance is avoided.

The model was also simulated (but not shown) for 10 repeated LPS injections
with injection intervals of both one half and one hour, respectively. This resulted
in a prolonged low concentration of N and TNF , and a high concentration of
TGF and IL10 with small oscillations. The LPS was eliminated every time
after each injection, which seems reasonable, since the LPS has no ability of
reproducing itself.
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Figure 4.7: Simulation of the system ((4.1)-(4.2)) for repeated LPS injections. The dotted
curve represents the simulation for no injection of LPS, the red curve repre-
sents the simulation for one bolus of LPS (2 ng/kg) at t = 13.5 and the blue
dashed curve represents the simulation for two LPS injections of 2 ng/kg with
an interval of 24 hours (t = 13.5 and t = 27.5).

4.6 E�ects of LPS Injection During Baseline Level

of LPS

The e�ect of constant infusion of LPS on the systems response to a bolus of LPS
is simulated and the result is shown in Figure 4.8. This might be interpreted as a
daily pressure from the environment, which all humans are exposed to every day,
when breathing in the bus, at the work or in the gym. The constant infusion of
LPS is simulated by including a baseline level of 0.1 ng/(kg·hr) of LPS. The dose
and time of injection is chosen according to the calibration data as LPS dose
of 2 ng/kg injected at time t = 13.5 for both the simulation with and without
the baseline level of LPS, respectively. The constant infusion of LPS results in
elevated levels of phagocytic cells, TGF-β1, TNF-α and IL-10 compared to the
simulation of the concentrations for no LPS injections. In addition, the baseline
level of LPS lowers the amplitude of the ultradian oscillations in CRH, ACTH
and cortisol. The response to an injection of LPS, on the top of a baseline level
of LPS results in an absent response of TNF-α, which is also observed for ACTH
and cortisol, compared to the responses to the LPS injection with no baseline
level of LPS.
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Figure 4.8: Simulation of the coupled model ((4.1)-(4.2)). The three simulations show
the reponse of the system to no LPS injection, a LPS injection of 2 ng/kg
and a LPS injection of 2 ng/kg on the top of a constant infusion of LPS
(0.1 ng/(kg·hr)). The endotoxin is eliminated similarly, but the response of
TNF-α, ACTH and cortisol is neglectable for constant LPS infusion.

This highlights the importance of reaming the immune system in homeostasis,
since the response to invading (possibly reproducing) bacteria is inhibited when
the system is stimulated over longer time.

To sum up, these simulations clarify the importance of dose, time and pre-
activation of the immune system in relation to LPS injections.
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Chapter 5

Discussion and Conclusion

The aim of this thesis was to formulate an adequate model describing the coup-
ling between the acute in�ammatory system and the HPA axis. To formulate a
model describing the acute in�ammatory response and a model describing the
interactions between the hormones in the HPA axis, was included as subsidiary
goals.

In the �rst part of the thesis, an eight dimensional model (proposed by Roy
et al. (2009)) describing the interactions between endotoxin (LPS), the phago-
cytic cells (the eating cells of the immune system), damaged tissue, pro- and
anti-in�ammatory cytokines (TNF-α, IL-6, IL-10 and CA) and an unknown
YIL10-promoter was studied in details. The model was developed to document
the behaviour of IL-6, TNF−α and IL-10 in rats exposed to di�erent doses of
LSP. Simulations of the model �tted data well, however, the model formulation
was very complex and without biological reasoning. Therefore, the model was
modi�ed and reduced with a special view to simpli�cation and biological ratio-
nale. From this, a �ve dimensional model of the acute in�ammatory system was
formulated, including the variables P (LPS), N (phagocytic cells), TNF , IL10
and CA (slow acting anti-in�ammatory mediators such as TGF-β1 and corti-
sol). The minimal model mimicked the data of TNF-α and IL-10 and the eight
dimensional model only �tted data slightly better. The reduction of the model
by three variables, 24 parameters (from 46 to 22) and included biological per-
spectives, however, make the �ve dimensional model preferable. Furthermore,
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it was proven, that there exists an attracting trapping region for the model and
that it satis�es positivity. Thus the solutions to the system are bounded, in
accordance with biological expectation. A visual residual analysis was carried
out, suggesting no concerns. The model was only calibrated to data from rats,
since the attempt to access human data failed. The system in rats and humans
are assumed to be somewhat similar. However, rats are nocturnal animals and
the rats in the experiments are exposed to much higher doses of LPS compared
to humans. This means that the systems are not identical despite their simi-
larities. In the future, it could be interesting to calibrate and validate the �ve
dimension for human data.

In the second part, a model describing the interactions between the hormones
(CRH, ACTH and cortisol) of the HPA axis was formulated on a basis of a
model proposed by Ottesen (2011) and the work accomplished by Rasmussen
et al. (2015). The model describes both the observed circadian and ultradian
rhythms in ACTH and cortisol for humans. Existence and uniqueness of the
solutions, the existence of an attracting trapping region and positivity were
proven. The system was investigated for di�erent constant values of the func-
tion C(t) (describing the circadian rhythm), revealing a stable equilibrium of
the systems for constant C(t). The model was simulated for eight subject and
the parameters of the model was estimated to �t data of ACTH and cortisol.
The model was well approximated by a model, where the Michaelis-Menten
function in CRH was approximated by a linear term which led to satisfying �ts
for six of the eight subjects. A visual residual analysis was carried out. The be-
haviour of the residuals were satisfying. The model was calibrated to data from
humans with normal cortisolemic level. In the future, it could be interesting
to investigate whether model features a possible biomarker, distinguishing be-
tween normal and hyper- or hypocortisolemic levels (associated with depressed
humans).

In the last part of the thesis, a model describing the coupling between the
two studied subsystems of the immune system was formulated. The proposed
mechanisms describing the interactions between the variables in the models were
formulated partly by biological reasoning and partly by �tting the model to a
mean of human data measured on ten individuals exposed to LPS. The measured
data contains information for the concentrations of TNF-α, ACTH and cortisol
after exposure of LPS dose 2 ng/kg. The simulations of the calibrated model
was compared to a recently proposed model by Malek et al. (2015), which was
calibrated to the same data. The coupled model formulated in the thesis �ts
the data set better than the model proposed by Malek et al. (2015). The model
was simulated for di�erent scenarios: injections of di�erent LPS doses, di�erent
times of LPS injection, repeated LPS injections and the e�ect of a LPS injec-
tion under the in�uence of constant LPS infusion. Eventually, di�erent data
might help to validate the model and the simulated response to LPS. To �t the
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model to the circadian and ultradian rhythms in ACTH and cortisol before a
LPS injection, measurements over a longer period priori to the injection could
be handy. Data for di�erent doses of LPS injection, could be used to �t the
model, to describe the response to di�erent injection doses.

The three models formulated in this thesis are all adequate models of the di�e-
rent systems studied. The models represents simpli�cations of complex systems.
The most important thing, is to capture the main e�ects and interactions in the
systems of interest. The models are formulated by combining biological know-
ledge, mathematical and statistical modelling, in order to �nd a suitable level
of details, i.e. neither being to simple nor too detailed.
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Appendix A

Rat Model of Acute
In�ammatory Response

In this appendix, supplements associated with the three models of the acute
in�ammatory response handled in Chapter 2 are presented.

A.1 Up- and Down-regulating Functions

Up-regulating and down-regulating functions associated with the eight dimen-
sional rat model of the acute in�ammatory response proposed by Roy et al.
(2009) presented in Section 2.2. Functions of the form fUPij(t) represent up-
regulating e�ects of mediator j on mediator i while fDNij(t) represent the
down-regulating e�ects of mediator j on mediator i.

In the equation for N :

fUPNTNF (t) =
TNF (t)

xNTNF + TNF (t)

fUPNIL6(t) =
IL6(t)

xNIL6 + IL6(t)

fDNNCA(t) =
xNCA

xNCA + CA(t)

fDNNIL10(t) =
xNIL10

xNIL10 + IL10(t)
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In the equation for IL6:

fUPIL6TNF (t) =
TNF (t)

xIL6TNF + TNF (t)

fUPIL6IL6(t) =
IL6(t)

xIL6IL6 + IL6(t)

fDNIL6CA(t) =
xIL6CA

xIL6CA + CA(t)

fDNIL6IL10(t) =
xIL6IL10

xIL6IL10 + IL10(t)

In the equation for TNF :

fUPTNFTNF (t) =
TNF (t)

xTNFTNF + TNF (t)

fDNTNFIL6(t) =
xTNFIL6

xTNFIL6 + IL6(t)

fDNTNFCA(t) =
x6
TNFCA

x6
TNFCA + CA(t)6

fDNTNFIL10(t) =
xTNFL10

xTNFIL10 + IL10(t)

In the equation for IL10:

fUPIL10TNF (t) =
TNF (t)

xIL10TNF + TNF (t)

fUPIL10IL6(t) =
IL6(t)4

x4
IL10IL6 + IL6(t)4

fDNIL10d(t) =
xIL10d

xIL10d + IL10(t)

A.2 Analysis of Rat Model

In the following, the simulation of the eight dimensional model (System (2.1)-
(2.2) presented in Section 2.2) is simulated, compared to data and analysed
by reconsidering each equation, leading to the reduced six dimensional model
(System (2.3) presented in Section 2.3).

Using the initial conditions from Appendix A.3 and parameter values from Ap-
pendix A.4, both obtained from the paper by Roy et al., simulations of the
model are carried out.

To get a better understanding of the time evolution of the reactions in the
system, the model is simulated and plotted in one plot. In Figure A.1 the
simulations for P(0) = 3 mg/kg and P(0) = 12 mg/kg are shown respectively.
The curves are normed, since the time evolution and not the magnitude of the
responses is of interest. The acute in�ammation response is initiated by the
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introduction of endotoxin, which activates the phagocytic cells. The concentra-
tion of the phagocytic cells is the �rst to increase in the system. The increase
up-regulates TNF-α, IL-10, IL-6, tissue damage marker and CA, respectively.
The phagocytic cells and TNF-α are the �rst concentrations to peak followed
by the �rst peak of IL-10 and the tissue damage marker. While the phagocytic
cells, TNF-α, IL-6 and the tissue damage marker decreases, the concentration
of IL-10 increases to reach a second peak at the same time as the peak of YIL10
and at last the peak of CA occurs. At the end of the simulation (t = 25) the
concentrations of P , TNF , IL6, D and N are low, almost negligible, while the
concentrations of CA, IL10 and YIL10 are high but decreasing. TNF-α seems to
be the fastest component of the system, in the way of the very fast activation
and elimination, while the slow acting anti-in�ammatory mediators (CA) have
the slowest increase and decrease over time.

The major di�erence between the two responses seen in Figure A.1, looks like
the delay of the peaks and the greater deviation of IL-10 for endotoxin dose
12 mg/kg. An impact on TNF-α is also seen, the peak almost occurs before
the peak of the phagocytic cells for P (0) = 12 mg/kg and the clearance is even
faster. Thus the introduced endotoxin triggers the activation of the phagocytic
cells, which up-regulates the in�ammatory mediators. The pro-in�ammatory
cytokines operates �rst, after which the anti-in�ammatory mediators takes over
to inhibit the in�ammation. The in�ammation is inhibited after the threat is
eliminated to prevent tissue damage amongst other in�ammation driven issues.
The immediate e�ect of the pro-in�ammatory cytokines is a remarkable con-
trast to the implication of the anti-in�ammatory mediators, which clearance is
slower. This illuminates the issues concerning new pathogenic threats.

The model proposed by Roy et al. (2009) �ts the experimental data convinc-
ingly. They use the data for endotoxin doses 3 and 12 mg/kg for calibrating the
model and obtaining estimates for the parameter values. Afterwards they use
data for endotoxin dose 6 mg/kg to validate the model. However, the validation
would be stronger, if an endotoxin dose outside the interval [3, 12] or a larger
sample size and frequency were used.

The resimulations of the model for the three di�erent doses of endotoxin are
shown in Figure A.2-A.4. As seen, the simulations for the three endotoxin dose
levels all seem to capture the dynamic of IL-6, TNF-α and IL-10. However
there are some limitations of the predictions. As seen in Figure A.2, the best
agreement between data and simulation is for dose 3 mg/kg. Only the second
data point of IL-6 is not predicted well. The predictions for dose level 6 and 12
mg/kg are poorly compared to the �rst prediction. In both cases, the peak of
IL-6 and TNF-α occurs to early compared to the experimental data, resulting
in a de�cient description of the �rst data points for these variables. Further-
more, the behaviour of the decreasing period of IL-10 for dose 6 mg/kg is not
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Figure A.1: In (a) and (b) an overview of the normed simulations of the variables in the
eight dimensional rat model is shown for endotoxin dose 3 and 12 mg/kg
respectively. The �gures describe the reaction times of the substances over
time. At time t = 0, endotoxin is introduced to the system. For both
doses, the elimination of endotoxin (P ) happens within the �rst few hours.
The presence of P (red solid line) initiates the immune response by activat-
ing the phagocytic cells (N , blue solid line) which further up-regulates both
the pro-in�ammatory cytokines (IL6, orange dashed line and TNF , yellow
dashed line), tissue damage marker (D, magenta solid line) and the anti-
in�ammatory mediators (IL10, cyan dotted line and CA, black dotted line).
At last the IL-10 promoter is up-regulated (YIL10, green solid line) causing
a second peak of IL-10, before the anti-in�ammatory mediators inhibit the
system. At time t = 25, the concentrations of P , N , D(t), IL6 and TNF are
vanishing while the concentrations of CA, IL10 and YIL10 are rather high,
but descreasing.

completely satisfying. The model �t this data very well, all things considered.
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Figure A.2: Comparison of the resimulation of the eight dimensional acute in�ammatory
respose-model (Model (2.1)-(2.2), solid line) and experimental rat data for
injection of an endotoxin dose of 3 mg/kg at time t = 0 (circles). The
data for endotoxin dose level 3 and 12 mg/kg were used for calibration of
the parameter values, while the data for endotoxin dose level 6 mg/kg were
used for validation. The simulation of the model agrees very well with the
data. The data are a mean of measurements from four rats and the standard
deviation at each data point is shown.

The overall performance of the acute in�ammatory response-model proposed
by Roy et al. (2009) is indeed capturing the dynamics of three of the major
in�ammatory cytokines IL-6, TNF-α and IL-10. However the model consists of
eight di�erential equations, some more or less complex mathematical terms and
46 parameters. Thus it is of interest to see, whether the model can be simpli�ed
to obtain a reduced model system which still captures the dynamics of IL-6,
TNF-α and IL-10.

It is desirable to reduce the model, since it is aimed to be a part of a more com-
plicated coupling-model describing the interactions between the acute in�am-
matory system and the HPA axis. The importance of the variables in the system
is evaluated and the number of parameters is reduced. Furthermore, the missing
biological aspect is reconsidered for some mechanisms.

The analysis and reductions are described in details in the following, were each
of the equations in model are revisited one by one.
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Figure A.3: Comparison of the resimulation of the eight dimensional acute in�ammatory
respose-model (Model (2.1)-(2.2), solid line) and experimental rat data for
injection of an endotoxin dose of 6 mg/kg at time t = 0 (circles). The data
for endotoxin dose 3 and 12 mg/kg were used for calibration of the parameter
values, while the data set for endotoxin dose 6 mg/kg were used for validation.
The prediction of the model seems to capture the overall dynamics of the
three cytokines, however the agreement between the experimental data and
the prediction is unsatisfactory for the decresing period of IL-10 and poor for
the increasing period of TNF-α. The data are a mean of measurements from
four rats and the standard deviation at each data point is shown.

A.2.1 The Equation for Endotoxin

The �rst equation in the model system describes the dynamics of the elimination
of the induced endotoxin. The endotoxin P decays exponentially with dp =
3 hr−1, which is consistent with values from literature29. A noticeable thing
is the non-explicit dependence of the number of phagocytic cells, as it must
be reasonable to assume that the concentration of endotoxin is proportional
to the number of activated engul�ng phagocytic cells. It this way, it makes
it impossible for the endotoxin to be eliminated when there is no presence of
phagocytic cells.

This feature can be included in the model by modifying the equation for the
concentration of endotoxin by:

dP (t)

dt
= −dpP (t)N(t). (A.1)
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Figure A.4: Comparison of the resimulation of the eight dimensional acute in�ammatory
respose-model (Model (2.1)-(2.2), solid line) and experimental rat data for
injection of an endotoxin dose of 12 mg/kg at time t = 0 (circles). The data
for endotoxin dose 3 and 12 mg/kg were used for calibration of the parameter
values, while the data for endotoxin dose 6 mg/kg were used for validation.
The model �ts the data very well. The data are a mean of measurements
from four rats and the standard deviation at each data point is shown.

This modi�cation ensures that, when no activated phagocytic cells exists, the
endotoxin cannot be eliminated. Even though this is not a simpli�cation of the
model, the biological rationale supports the induction. Introducing this change,
the parameter dp must be changed to obtain the same results as Roy et al.
(2009). The parameter is divided by a characteristic value for N .

The e�ects of introducing N in the equation for the concentration of endotoxin,
can be seen in Appendix A.5. For all dose levels of endotoxin, the curve for P
becomes more steep. Additionally, for endotoxin dose level 3 mg/kg , there is a
tendency for overestimation. Especially IL10 and YIL10 have higher levels than
in the original model. For the 6 mg/kg endotoxin dose, the model containing
the modi�cation seems to agree with the original model, however it underesti-
mates both IL10 and YIl10. Underestimation of the modi�ed model seems also
to be the problem for endotoxin dose 12 mg/kg. At this dose level, the under-
estimation is clearer and especially the underestimation of IL10 and YIL10 are
distinctive. The model containing the modi�cation captures the dynamics of the
original model well, however it has problems with under- and overestimation of
IL10 and YIL10 in particular.
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A.2.2 The Equation for Phagocytic Cells

As mentioned, the equation for the number of activated phagocytic cells (N) is
rather complex. The �rst term of the equation consists of four Michealis-Menten
functions incorporated in yet another Michaelis-Menten function, without any
biological rationale. Therefore, it seems reasonable to investigate whether this
expression can be simpli�ed, still capturing the dynamics of the system.

A way to accomplish that, is to remove the outer Michaelis-Menten function.
Further studies of the system reveal that IL6 contributes with a very small
up-regulation of N , thus it can be removed from the equations, resulting in an
underestimation of IL10 and YIL10 which will be taken into account later. At
last the in�uence of the tissue damage marker (D) is insigni�cant, thus it is
removed from the equation.

The simpli�ed N -equation can now be written as:
dN(t)

dt
= kNR(t)P (t)− dNN(t), (A.2)

where

R(t) =

(
1 + kTNF

TNF (t)

xNTNF + TNF (t)

)
·

xNCA

xNCA + CA(t)
·

xNIL10

xNIL10 + IL10(t)
. (A.3)

In Figure A.5, the changes in the model compared to the original model ((2.1)-
(2.2)) are shown for the three di�erent endotoxin dose levels. As seen, the
dynamic of the phagocytic cells is maintained, however the peak occurs earlier
in time. In addition, the number of phagocytic cells reaches a higher maximum
for the endotoxin doses 6 and 12 mg/kg. To obtain these �gures, the parameters
kN an dN were changed to make up for the simpli�cation of the equation for
N . The change in the equation also a�ects the other variables. For endotoxin
dose 3 mg/kg, a small decrease in D and CA is observed together with larger
decreases in IL6, IL10 and YIL10. For endotoxin dose 6 mg/kg, the change
induces a slightly decrease in D and CA while a decrease in IL6, IL10 and
YIL10 is observed, leaving TNF unchanged. At last the modi�cation causes an
increase in IL6 and CA and a greater increase in TNF , IL10 and YIL10 for
endotoxin dose 12 mg/kg.

A.2.3 The Equation for TNF-α

The �rst simpli�cation to consider, is the power of one and a half, assigned to
N . By increasing the parameter kTNF su�ciently, the power can be reduced
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Figure A.5: Simulation of the number of activated phagocytic cells for the model proposed
by Roy et al. (2009) (blue solid) and for the model with modi�ed equation
of P (Eq. (A.1)) and simpli�ed equation for N (Eq. (A.2)). The modi�ed
model captures the overall dynamic, but for endotoxin dose level 6 and 12
mg/kg (in (b) and (c) respectively) the peak occurs remarkably earlier and
reaches a higher maximum value.

to one, without reversing the dynamics of the system. By removing one of the
terms in the equation at a time, the impact of the separate variable can be
investigated. By �rst removing the auto-up-regulating term it is clear, that it
does not contribute to the behaviour of the system. The same goes for the term
including IL10, while the term including IL6 only contributes with a very small
up-regulation of TNF . Hence these terms are removed from the model. Left is
the sixth order Hill function in CA. By studying the behaviour of the system, it
is found that a power of four is adequate to maintain the dynamics of TNF-α,
when some of the constants are adjusted.

However, introducing these changes in the equation lead to a too early peak
of TNF-α compared to the experimental data. Thus the auto-up-regulation of
TNF-α is reintroduced in the equation, but with di�erent parameter values.
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This induces the needed delay of the concentration peak. These changes result
in the following simpli�ed equation for TNF-α:

dTNF (t)

dt
=N(t) ·

x4
TNFCA

x4
TNFCA + CA(t)4

·
(
kTNF + kTNFTNF ·

TNF (t)

xTNFTNF + TNF (t)

)
− dTNF · TNF (t).

(A.4)

In Figure A.6, a comparison of the original model proposed by Roy et al. (2009)
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Figure A.6: Comparison of the new implemented equation of TNF-α (Eq. (A.4), dashed
red line) and the original model proposed by29 (Model (2.1)-(2.2), solid blue
line). The comparison of the concentraion of TNF-α, shows that the big
di�erence between the models results in a smaller and later response for
endotoxin dose 3 mg/kg, a higher response for endotoxin dose 12 mg/kg and
somewhat the same response, slightly delayed for endotoxin dose 6 mg/kg
when compared to the original model. To obtain this result, some parameters
were changed and the modi�cations introduced in Appendix A.2.1, A.2.2 and
A.2.3 were implemented.

and the modi�ed model with the changes in the equations of P , N and TNF is
shown.
The modi�ed model mimics the original model, however the peak of TNF oc-
curs later and gives a smaller response for endotoxin dose 3 mg/kg and a higher
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response for endotoxin dose 12 mg/kg. For endotoxin dose 6 mg/kg the re-
sponses are very alike, only with a slightly delay in the peak of the modi�ed
model. The changes in the equation also induce changes in the response for the
other variables, however, this will be addressed later.

A.2.4 The Equation for Interleukin-6

Removing the inhibiting term in CA in the equation of IL6, induces a very small
change in magnitude of the response of IL6, but none of the other variables.
Hence it is removed from the equation.
Looking at the auto-up-regulating term of IL6, it can be linearised by IL6

xIL6IL6+IL6

≈ IL6
xIL6IL6

for IL6 � xIL6IL6 which is the case here. The parameter xIL6IL6 is
chosen to be 1.987·105 pg/mL by Roy et al., while the concentration of IL6 does
not exceed approximately 1.5 · 104 pg/mL. From a biological perspective almost
all reactions have a saturation point, but in this model, the concentration of IL6
is not close to this value.

Furthermore, no change in the model outcome is observed, by changing the
fourth order Hill function in N to a fourth order dependence, when adjusting
some parameters. These changes can be summarised in the modi�ed equation:

dIL6(t)

dt
=N(t)

4 ·
(
kIL6 + kIL6TNF

TNF (t)

xIL6TNF + TNF (t)
+ kIL6IL6IL6(t)

)
·

xIL6IL10

xIL6IL10 + IL10(t)
− dIL6IL6(t).

(A.5)

To obtain su�ciently good results, the equation for IL10 is multiplied by a fac-
tor. Even though the change actually improves the model prediction of IL-6, the
dynamics of IL-10 is lost compared to the original model, since the second peak
of IL-10 is negligible for endotoxin dose 12 mg/kg and vanishes for endotoxin
dose 3 and 6 mg/kg. In Figure A.7, the induced changes in the concentrations of
IL6 and IL10 are shown. In (a)-(c), the improved result of IL6 is seen. The red
dashed line represents the new model, with the modi�cation of the IL6-equation
and the green dotted line represents the old modi�ed model (with modi�cations
of the equations of P , N and TNF ). It is clear, that the change makes the
modi�ed model mimics the original model (blue solid line) better. Still the new
model seems to underestimate for endotoxin dose 3 mg/kg and overestimate the
concentration of IL6 for endotoxin dose 12 mg/kg slightly. However, the change
also induces some change in the dynamics of IL10, causing the second peak of
IL10 vanishing for endotoxin dose level 3 and 6 mg/kg (see (d)-(e)).
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Figure A.7: Results of inducing the change in the equation for Interleukin-6 (Eq. (A.5)).
The modi�cation to the IL6-equation (dashed red line) is compared to the
original model proposed by Roy et al. (2009) (Model (2.1)-(2.2), solid blue
line) and the model including the modi�cations introduced in Appendix
A.2.1, A.2.2 and A.2.3 (green dotted line). As seen in (a), (c) and (e), the
modi�cation improves the result for IL6 to mimic the original model, however
the dynamic of IL10 is changed from two peaks to only one for endotoxin
doses 3 and 6 mg/kg (see (b), (d) and (f)).
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A.2.5 The Equation for Interleukin-10

There is no perceptible contribution from TNF in the equation for IL10, there-
fore it is removed from the equation. Furthermore, the main contribution to
the second peak in the IL10-response is from YIL10, but is barely seen in the
modi�ed equation. In an attempt to recreate the second peak and to eliminate
the dependence of YIL10, the term including YIL10 is replaced by a sixth order
Hill function in CA. From a biological perspective, this seems like a reasonable
introduction, since glycocorticoids (cortisol, which is represented by CA) pro-
mote the production of IL104,32. Furthermore the variable YIL10 only appears
as a link between D and IL10, but since the dependence of D is removed from
the system by removing it from the equation of N (see Section A.2.2), the pres-
ences of YIL10 is redundant. Replacing the linear term in YIL10 by a sixth order
Hill-function in CA containing two parameters is a complication of the IL10-
equation, however, it implies that the equation for YIL10 can be removed from
the system, resulting in a simpli�cation of the system of equations. For data
�tting purposes, the order of six is chosen for the Hill function in CA, which is
a relatively high order, but ensures that the model prediction �ts the data.

The changes constitute an elimination of two parameters, but introduces two
new parameters (kIL10CA and xIL10CA):

dIL10

dt
=

N3

x3
IL10 +N3

(
kIL10 + kIL10IL6

IL64

x4
IL10IL6 + IL64

)

+ kIL10CA
C6

A

x6
IL10CA + CA6

− dIL10
xIL10d

xIL10d + IL10
IL10 + sIL10.

(A.6)

Further simpli�cation of the equation has been examined, however the best
result comparing to the data was found with this expression.

The results for the dynamics of IL10 by introducing this change in the equation
can be seen in Figure A.8. For the endotoxin dose 3 mg/kg, the new proposed
model mimics the original model better for the �rst peak and includes perhaps an
overestimation at the second peak. The modi�ed model reproduces the response
of IL10 very well compared to the model proposed by Roy et al. (2009) for the
endotoxin dose 6 mg/kg, while it overestimates especially the �rst peak for
endotoxin of dose 12 mg/kg. The extensive di�erence between the new model
and the model proposed by Roy et al. (2009) seems to be the shape of the second
peak, which now is created by di�erent sources.



82 Rat Model of Acute In�ammatory Response

Time (hours)
0 5 10 15 20 25

IL
10

 (
pg

/m
L)

0

50

100

150

200

250
Endotoxin dose 3 mg/kg

Roys model
New model
Modified P, N, TNF and IL6

Time (hours)
0 5 10 15 20 25

IL
10

 (
pg

/m
L)

0

50

100

150

200

250

300

350

400

450
Endotoxin dose 6 mg/kg

Roys model
New model
Modified P, N, TNF and IL6

Time (hours)
0 5 10 15 20 25

IL
10

 (
pg

/m
L)

0

100

200

300

400

500

600

700
Endotoxin dose 12 mg/kg

Roys model
New model
Modified P, N, TNF and IL6

Figure A.8: IL10 simulation for the three endotoxin doses 3, 6 and 12 mg/kg. The blue
solid line represents the original model proposed by Roy et al. (2009), the
green dotted line represents the model with modi�cation of the equations for
P , N , TNF and IL6 while the red dashed line represents the modi�ed model
with also a modi�cation of the IL10-equation presented in Appendix A.2.5.
The modi�cation recreates the second peak of IL10 as observed in data.

A.2.6 The Equations for CA, D and YIL10

The equation for the slow acting anti-in�ammatory mediators (CA) is not sim-
pli�ed, since it appears fairly simple.

From the simpli�cation and modi�cations of the model, it is now seen, that the
tissue damage marker (D) and the tissue driven IL-10 promoter (YIL10) is not
to be found in any of the other equations. Thereby the two variables can be
eliminated from the model. Possibly, the tissue damage marker can be incor-
porated in the model if needed. From a biological perspective, it is reasonable
to assume, that the acute in�ammatory response perceives damaged tissue in
a similar way as endotoxin, meaning that these are regarded as something in
the body, which should be eliminated. In this way, the tissue damage can be
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included in the model, if needed.

By revisiting the equations one by one, the eight dimensional model model pro-
posed by Roy et al. (2009) is reduced to a six dimensional model. The model
is reduced by two variables and 16 parameters. The model is presented and
compared to the eight dimensional model in section 2.3. In the same section,
the model is further simpli�ed to a �ve dimensional model.

A.3 Initial Conditions

Initial conditions (t = 0) used for the simulations of Model (2.1)-(2.2) presented
in Appendix A.2, obtained from Roy et al. (2009).

P (0) = 3, 6 or 12,

N(0) = 0,

D(0) = 0,

CA(0) =
sCA
dCA

,

IL6(0) = 0,

TNF (0) = 0,

IL10(0) =
sIL10 · xIL10d

dIL10 · xIL10d − sIL10
,

YIL10 = 0,

The initial condition for P depends on the assumed dose level of endotoxin
given to the rat. Unlike the other variables, the anti-in�ammatory mediators
CA and IL10 starts at di�erent levels than zero. The di�erence is an attempt,
to model the hypothesis, that the system is slightly anti-in�ammatory under
basal conditions29. The initial condition for YIL10 was not described in Roy
et al. (2009) and therefore it was chosen accordingly to Frank (2010).

A.4 Parameter Values

Reproduction of the parameter values used for the simulations of the eight di-
mensional rat model of the acute in�ammatory response proposed by Roy et al.
(2009) (Model (2.1)-(2.2)) is shown in the following table. The simulations can
be found in Appendix A.2.
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Table A.1: Table of parameter values for Model (2.1)-(2.2), the eight dimensional model
proposed by Roy et al. (2009).

No. Parameter Value Unit No. Parameter Value Unit

1 dp 3 hr−1 24 xIL6IL10 1.1818 pg
mL

2 kN 5.5786·107 hr−1 25 kIL6IL6 122.92 −
3 xN 14.177 N − unit 26 xIL6IL6 1.987·105 pg

mL

4 dN 0.1599 hr−1 27 xIL6CA 4.2352 pg
mL

5 kNP 41.267 N−unit·kg
mg

28 kTNF 3.9·10−8 pg
mL·N−unit1.5

6 kND 0.013259 N−unit
D−unit 29 dTNF 2.035 hr−1

7 xNTNF 1693.9509 pg
mL

30 xTNFIL10 2.2198·107 pg
mL

8 xNIL6 58080.742 pg
mL

31 xTNFCA 0.19342 pg
mL

9 xNCA 0.07212 pg
mL

32 kTNFTNF 1.0·10−10 −
10 xNIL10 147.68 pg

mL
33 xTNFTNF 9.2969·106 pg

mL

11 kNTNF 12.94907 − 34 xTNFIL6 55610 pg
mL

12 kNIL6 2.71246 − 35 kIL10TNF 2.9951·10−5 −
13 kD 2.5247 D−unit

hr
36 xIL10TNF 1.1964·106 pg

mL

14 dD 0.37871 hr−1 37 kIL10IL6 4.1829 −
15 xD 1.8996·107 N − unit 38 xIL10IL6 26851 pg

mL

16 kCA .154625·10−8 pg
mL·hr·N−unit 39 kIL10 1.3374·105 pg

mL·hr
17 dCA .31777·10−1 hr−1 40 dIL10 98.932 hr−1

18 sCA 0.004 pg
mL·hr 41 xIL10 8.0506·107 N − unit

19 kIL6TNF 4.4651 − 42 sIL10 1187.2 pg
mL·hr

20 xIL6TNF 1211.3 pg
mL

43 xIL10d 791.27 pg
mL

21 kIL6 9.0425·107 pg
mL·hr 44 kIL102 1.3964·107 Y IL10−unit

hr

22 dIL6 0.43605 hr−1 45 dIL102 0.0224 hr−1

23 xIL6 1.7856·108 N − unit 46 xIL102 37.454 D − unit

A.5 E�ects of Modifying The Equation for P

In Appendix A.2.1 the equation for P is modi�ed such that the decrease in the
concentration of the endotoxin is proportional to the number of activated phago-
cytic cells (see Equation A.1). To obtain somewhat the same results as Roy et al.
(2009), the parameter dp is divided by a characteristic value of N changing the
parameter from dp = 3 hr−1 to dp = 1.35 · 10−7 (hr ·N -units)−1. The e�ects of
changing the equation can be seen in Figure A.9-A.11, see Appendix A.2.1 for
further discussion.
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Figure A.9: The e�ects of introducing N (the activated phagocytic cells) in the equation
for P (The concentration of endotoxin). Solid lines represent the model pro-
posed by Roy et al. (2009) (Model 2.1-(2.2)), while the dashed lines represent
the model containing the modi�cation from Equation A.1. The model over-
stimates several of the concentrations, especially IL10, for endotoxin dose
level 3 mg/kg.
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Figure A.10: The e�ects of introducing N (the activated phagocytic cells) in the equation
for P (The concentration of endotoxin). Solid lines represent the model
proposed by Roy et al. (2009) (Model 2.1-(2.2)), while the dashed lines
represent the model containing the modi�cation from Equation A.1. The
model seems to capture the dynamics very well, however it understimates
IL10 and YIL10, for endotoxin dose level 6 mg/kg.
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Figure A.11: The e�ects of introducing N (the activated phagocytic cells) in the equa-
tion for P (The concentration of endotoxin). Solid lines represent the model
proposed by Roy et al. (2009) (Model 2.1), while the dashed lines represent
the model containing the modi�cation from Equation A.1. The model un-
derestimates several of concentrations re�ected in the decreases. Especially
IL10 is underestimated, for endotoxin dose level 12 mg/kg.
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A.6 Parameter Values for the 5- and 6-Dimensional

Model

The parameter values used for the simulations of the six dimensional rat model
of the acute in�ammatory response presented in Section 2.3 is shown in the
following table.

Table A.2: Table of parameter values for Model (2.3), the six dimensional model presented
in Section 2.3.

No. Parameter Value Unit No. Parameter Value Unit

1 dp 1.35·10−7 (hr ·N-unit)−1 16 kIL6IL6 122.92 hr−1 ·N-unit−4

2 kN 4.9956·107 N-unit·kg
hr·mg 17 kTNF 4.2962·10−7 pg

hr·mL·N-unit

3 dN 0.1439 hr−1 18 dTNF 2.442 hr−1

4 xNTNF 1693.9509 pg
mL

19 xTNFCA 0.1382 pg
mL

5 xNCA 0.07212 pg
mL

20 kTNFTNF 1.2·10−3 pg
hr·mL·N-unit

6 xNIL10 147.68 pg
mL

21 xTNFTNF 929.69 pg
mL

7 kNTNF 12.94907 − 22 kIL10IL6 1.1188·106 pg
hr·mL

8 kCA .154625·10−8 pg
hr·mL·N−unit 23 xIL10IL6 26851 pg

mL

9 dCA .31777·10−1 hr−1 24 kIL10 2.67480·105 pg
mL·hr

10 sCA 0.004 pg
mL·hr 25 kIL10CA 4.3875·104 pg

hr·mL
11 kIL6TNF 1.7850·10−23 pg

hr·mL·N-unit4
26 xIL10CA 0.38 pg

mL

12 xIL6TNF 4.8452·104 pg
mL

27 dIL10 98.932 hr−1

13 kIL6 3.9976·10−25 pg
hr·mL·N-unit4

28 xIL10 8.0506·107 N-unit
14 dIL6 0.5102 hr−1 29 xIL10d 791.27 pg

mL

15 xIL6IL10 1.1818 pg
mL

30 sIL10 1187.2 pg
hr·mL
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Appendix B

Model of HPA Axis

In this appendix, supplements associated with the model of the HPA axis
handled in Chapter 3 are presented.

B.1 Parameter Values for The HPA Model

The parameter values used for the simulations of the HPA axis model presented
in Section 3.2 are shown in the following table.

Table B.1: Table of parameter values for Model (3.1)-(3.2), the HPA axis model presented
in Section 3.2.

No. Parameter Value Unit

1 a0 0.001 pg/mL
min

2 a1 4.1040 · 1012 pg/mL
min

3 a2 1.7558 · 109
(
dL
µg

)2

4 µ 600 pg
mL

5 a3 2.3688 · 104 min−1

6 a4 1.7778 · 105 dL
µg

7 a5 7.8779 · 10−4 µg/dL

min·(pg/mL)2

8 ω1 0.039 min−1

9 ω2 0.01 min−1

10 ω3 0.04 min−1
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Table B.2: Table of parameter values for Model (3.1)-(3.2), used for the function creating
the circadian rhythm in the HPA axis model presented in Section 3.2.

No. Parameter Value Unit

1 δ 0 min
2 α 300 min
3 k 5 −
4 β 950 min
5 l 6 −
6 ε 0.01 −

B.2 Existence and Uniqueness of the Solution to

the HPA Model

To prove existence and uniqueness in Section 3.2.2 of the solution to the System
(3.3), the right-hand-side must be Lipschitz continuous20.

In the following, it is shown that f(u, t) is Lipschitz continuous in u over any
domain

D = {(u, t)| ‖ u− u0 ‖≤ η, t0 ≤ t ≤ t1},

with η > 0 and t1 > t0, i.e. there exists a constant L ≥ 0 such that

‖ f(u, t)− f(u∗, t) ‖≤ L ‖ u− u∗ ‖

for all (u, t), (u∗, t) ∈ D.

The Lipschitz continuity is shown using the L1-norm, since the equivalence of
�nite-dimensional norms ensures that if f(u, t) is Lipschitz continuous in one
norm, it holds for any other norm (only the Lipschitz constant L may depend
on the chosen norm)20.

Considering the L1-norm, it is seen that

‖ u−u∗ ‖1= |CRH(t)−CRH∗(t)|+|ACTH(t)−ACTH∗(t)|+|Cortisol(t)−Cortisol∗(t)|

and

‖ f(u, t)−f(u∗, t) ‖1= |f1(u, t)−f1(u∗, t)|+|f2(u, t)−f2(u∗, t)|+|f3(u, t)−f3(u∗, t)|.

Looking at the terms one by one, it can be shown, that ‖ f(u, t)− f(u∗, t) ‖1 is
bounded by L = L1 +L2 +L3 = a1 +(2a2 + a3a4 +2a5)(η+ ‖ u0 ‖)+ a3 +ω1 +
ω2 + ω3. The following calculations show how to �nd L1, L2 and L3 (assuming
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that all parameter values are positive) :

|f1(u, t)− f1(u∗
, t)| =

∣∣∣∣a0 + C(t)
a1

1 + a2Cortisol2
CRH

µ+ CRH
− ω1CRH . . .

−
(
a0 + C(t)

a1

1 + a2(Cortisol∗)2
CRH∗

µ+ CRH∗ − ω1CRH
∗
)∣∣∣∣

≤
∣∣∣∣a1 ( 1

1 + a2Cortisol2
CRH

µ+ CRH
−

1

1 + a2(Cortisol∗)2
CRH∗

µ+ CRH∗

)
− ω1(CRH − CRH∗

)

∣∣∣∣
≤
∣∣∣∣a1 1

1 + a2Cortisol2

(
CRH

µ+ CRH
−

CRH∗

µ+ CRH∗

)∣∣∣∣ . . .

+

∣∣∣∣ CRH∗

µ+ CRH∗

(
1

1 + a2Cortisol2
−

1

1 + a2(Cortisol∗)2

)∣∣∣∣ . . .

+
∣∣ω1(CRH − CRH∗

)
∣∣

≤ a1
∣∣CRH − CRH∗∣∣+ ∣∣∣∣∣ a2(Cortisol

2 − (Cortisol∗)2)

(1 + a2(Cortisol∗)2)(1 + a2Cortisol2)

∣∣∣∣∣+ ω1

∣∣CRH − CRH∗∣∣
≤ (a1 + 2 · (η+ ‖ u0 ‖) · a2 + ω1) ‖ u− u∗ ‖

≡ L1 ‖ u− u∗ ‖ .

The last inequality holds since∣∣∣∣∣ a2(Cortisol
2 − (Cortisol∗)2)

(1 + a2(Cortisol∗)2)(1 + a2Cortisol2)

∣∣∣∣∣ ≤ |a2(Cortisol2 − (Cortisol
∗
)
2
)|

≤ a2|Cortisol∗ − Cortisol||Cortisol∗ + Cortisol|

≤ a2· ‖ u− u∗ ‖ ·(‖ u ‖ + ‖ u∗ ‖)

≤ 2 · a2(η+ ‖ u0 ‖) ‖ u− u∗ ‖ .

Considering the second term

|f2(u, t)− f2(u∗
, t)| =

∣∣∣∣ a3CRH

1 + a4Cortsiol
− ω2ACTH −

(
a3CRH

∗

1 + a4Cortisol∗
− ω2ACTH

∗
)∣∣∣∣

=

∣∣∣∣a3CRH ( 1

1 + a4Cortisol
−

1

1 + a4Cortisol∗

)
+
a3(CRH − CRH∗)

1 + a4Cortisol∗
− ω2(ACTH − ACTH∗

)

∣∣∣∣
≤ a3a4

∣∣CRH(Cortisol− Cortisol∗)
∣∣+ a3

∣∣CRH − CRH∗∣∣+ ω2

∣∣ACTH − ACTH∗∣∣
≤ (a3(a4(η+ ‖ u0 ‖) + 1) + ω2) ‖ u− u∗ ‖

≡ L2 ‖ u− u∗ ‖

and �nally, the third term is bounded by

|f3(u, t)− f3(u∗
, t)| =

∣∣∣a5ACTH2 − ω3Cortisol−
(
a5(ACTH

∗
)
2 − ω3Cortisol

∗
)∣∣∣

≤ a5|ACTH − ACTH∗||ACTH + ACTH
∗|+ ω3|Cortisol− Cortisol∗|

≤ (2a5(η+ ‖ u0 ‖) + ω3) ‖ u− u∗ ‖

≡ L3 ‖ u− u∗ ‖ .

Hence, ‖ f(u, t)− f(u∗, t) ‖ is bounded by L = L1 +L2 +L3 which means that
f(u, t) is Lipschitz continuous in u over D.

The Lipschitz continuity of f(u, t) over D implies that there exists an unique
solution to the System (3.3) at least up to a time t2 = min(t1, t0 + η/S) where
S = max

(u,t)∈D
‖ f(u, t) ‖, following from the existence and uniqueness theorem 20.
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B.3 In�uence of Parameters in The HPA Model

The in�uence of the parameters in the HPA Model ((3.1)-(3.2)) considered in
Section 3.2, is shown in following �gures. The parameters are changed one at a
time to examine the change in the output of the model.

The parameters are �rst increased by 50% and then decreased by 50% and the
model simulations are then compared to the simulation for the original value of
the parameter. The green dashed line represents the simulation with the pa-
rameter decreased by 50 %, the red dashed line represents the simulation with
the parameter increased by 50 % while the solid blue line represents the simu-
lation with the original parameter value. By manually changing the parameters
in this way, it is easier to get an interpretation of the in�uence on the system.
This can also be used to obtain good and reliable initial guesses for parameter
estimation.



B.3 In�uence of Parameters in The HPA Model 93

Figure B.1: In�uence of the parameters in the HPA axis model ((3.1)-(3.2)).
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Figure B.2: In�uence of the parameters in the HPA axis model ((3.1)-(3.2)).
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Figure B.3: In�uence of the parameters in the HPA axis model ((3.1)-(3.2)).
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Figure B.4: In�uence of the parameters in the HPA axis model ((3.1)-(3.2)).
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Figure B.5: In�uence of the parameters in the HPA axis model ((3.1)-(3.2)).
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B.4 Parameter Values for The HPA Model

The parameter values used for the simulations of the reduced HPA axis model
((3.4)-(3.5)) presented in Section 3.2.4 are shown in the following table.

Table B.3: Table of parameter values for the reduced HPA axis model ((3.4)-(3.5)), pre-
sented in Section 3.2.4.

No. Parameter Value Unit

1 a0 0.001 pg/mL
min

2 a1 6.8400 · 109 pg/mL
min

3 a2 1.7558 · 109
(
dL
µg

)2

4 a3 2.3688 · 104 min−1

5 a4 1.7778 · 105 dL
µg

6 a5 7.8779 · 10−4 µg/dL

min·(pg/mL)2

7 ω1 0.036 min−1

8 ω2 0.01 min−1

9 ω3 0.04 min−1

Table B.4: Table of parameter values for Model (3.4)-(3.5), used for function creating the
circadian rhythm in the HPA axis model presented in Section 3.2.4.

No. Parameter Value Unit

1 δ 0 min
2 α 300 min
3 k 5 −
4 β 950 min
5 l 6 −
6 ε 0.01 −



Appendix C

The Coupled Model

In this appendix, supplements associated with the coupled model considered in
Chapter 4 are presented.

C.1 Non-dimensionalisation

The sub-systems of the acute in�ammatory system and the HPA-axis are par-
tially non-dimensionalised in the meaning of removing all units of the systems
except the time unit. Furthermore, the time unit of the HPA-model is changed
from minutes to hours. This is accomplished, to explore the structure of the
models and the e�ects of di�erent model approaches of coupling mechanisms.
Non-dimensionalisation of a system means, that a suitable substitution of the
variables of the system, gives rise to a possible simpli�cation of the system,
while the units of the system changes from SI-units.

The variables of the acute in�ammatory response model presented in Section
2.3.2, are scaled by the characteristic values

P = p · P̃ , N = n · Ñ, TNF = tnf · T̃NF , CA = ca · C̃A and IL10 = il10 · ĨL10, (C.1)
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which gives the system

dP̃

dt
= − d̃pP̃ · Ñ

dÑ

dt
= k̃N

((
1 +

kNTNF T̃NF

x̃NTNF + T̃NF

)
x̃NCA

x̃NCA + C̃A

·
x̃NIL10

x̃NIL10 + ĨL10

)
· P̃ − dN Ñ

dC̃A

dt
= k̃CA · Ñ − dCAC̃A + s̃CA

dT̃NF

dt
= Ñ ·

x̃4
TNFCA

x̃4
TNFCA + C̃4

A

(
k̃TNF +

k̃TNFTNF T̃NF

x̃TNFTNF + T̃NF

)
− dTNF T̃NF

dĨL10

dt
= k̃IL10

Ñ3

x̃3
IL10 + Ñ3

− dIL10
x̃IL10d

x̃IL10d + ĨL10
ĨL10 +

k̃IL10CAC̃
6
A

x̃6
IL10CA + C̃6

A

+ s̃IL10,

(C.2)

where
d̃p = dp · n,

k̃N =
kN · p
n

, x̃NTNF =
xTNF

tnf
, x̃NCA =

xNCA

ca
, x̃NIL10 =

xNIL10

il10
,

k̃CA =
kCA · n
ca

, s̃CA =
sCA

ca
,

x̃TNFCA =
xTNFCA

ca
, k̃TNF =

kTNF · n
tnf

, k̃TNFTNF =
kTNFTNF · n

tnf
,

x̃TNFTNF =
xTNFTNF

tnf
,

k̃IL10 =
kIL10

il10
, x̃IL10 =

xIL10

n
, x̃IL10d =

xIL10d

il10
, k̃IL10CA =

kIL10CA

il10
,

x̃IL10CA =
xIL10CA

ca
, s̃IL10 =

sIL10

il10

noticing that the four elimination rates dN , dCA, dTNF and dIL10 together with
kNTNF are the only parameters not a�ected by the scaling.

Choosing

n =
1

dp
, p =

n

kn
=

1

kn · dp
, ca = sCA, tnf = xTNFTNF and il10 = sIL10, (C.3)

�ve parameters of the system are eliminated.

Similar, the HPA system can be non-dimensionalised by scaling the variables by

CRH = crh · C̃RH, ACTH = acth · ÃCTH, Cortisol = cort · ˜Cortisol. (C.4)

Furthermore, the time scale can be changed from minutes to hours by de�ning
t̃ = τt, such that the time scales in the two models are equal. This results in
the following equations

dC̃RH

dt̃
= C( t̃ )

ã1C̃RH

1 + ã2 ˜Cortisol
2
− ω̃1C̃RH

dÃCTH

dt̃
=

ã3C̃RH

1 + ã4 ˜Cortisol
− ω̃2ÃCTH

d ˜Cortisol
dt̃

= ã5ÃCTH
2
− ω̃3

˜Cortisol,

(C.5)
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where

ã1 = a1 · τ, ã2 = a2 · cort2, ã3 = a3 · τ · crh/acth, ã4 = a4 · cort, ã5 = a5 · τ · acth2
/cort

ω̃1 = τ · ω1, ω̃2 = τ · ω2, ω̃3 = τ · ω3.

By choosing τ = 60, the time scales is changed from minutes to hours, further-
more choosing

cort = a
−1
4 , acth =

√
cort/(a5 · τ) and crh = acth/(a3 · τ) (C.6)

eliminates three parameters of the system and it is possible to eliminate one
more by choosing τ as the inverse of one of the elimination rates or a1, however,
since it is of interest to keep the time unit in hours, this is not done.

The two non-dimensionalised models were used to investigate the e�ects of in-
cluding di�erent interaction mechanisms between the systems and forms the
basis of the mathematical descriptions of the interplay.
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C.2 Attracting Trapping Region for the Coupled

Model

In this section, existence and uniqueness of the solution to the extended coupled
system ((4.1)-(4.2)) presented in Section 4.1 is proved. This result is used when
�nding the trapping region of the extended model in the next section.

The model is extended by including a Michaelis-Menten function in CRH in-
stead of the linear approximation the equation for CRH (similar to Chapter 3).

Consider the System (4.1)-(4.2) on the form

du(t)

dt
= f(u, t)

u(t0) = u0,

(C.7)

where u(t) = [P (t), N(t), TGF (t), TNF (t), IL10(t)CRH(t), ACTH(t), Cortsiol(t)]′,
u0 denotes the initial condition and f(u, t) is a vector containing the right-hand-
side of the system. It follows that f(u, t) is Lipschitz continuous in u over any
domain

D = {(u, t)| ‖ u− u0 ‖≤ a, t0 ≤ t ≤ t1},

with a > 0 and t1 > t0, i.e. there exists a constant L ≥ 0 such that

‖ f(u, t)− f(u∗, t) ‖≤ L ‖ u− u∗ ‖

for all (u, t), (u∗, t) ∈ D, if the �rst derivatives of f(u, t) are bounded over the
domain D 14.

Since the �rst derivatives of f(u, t) are bounded over D, it follows from the
Existence and Uniqueness Theorem that there exists a unique solution to Equa-
tion (C.7) for all �nite time intervals [t0, t2]. t2 can be calculated as t2 =
min(t1, t0 + η/S) where S = max

(u,t)∈D
‖ f(u, t) ‖.20

C.2.1 Trapping Region

Existence and uniqueness of the solutions to the coupled model ((4.1)-(4.2)) is
now used to prove the existence of an attracting trapping region TR for the
system.

Assume that all parameter values are positive and the initial conditions are
non-negative. It follows that for any u(t0) ∈ (R+ ∪{0})8\TR then u(t) ∈ TR for
t > t1, for some t1 > t0 where TR = [0,MP ]× [0,MN ]× [0,MTGF ]× [0,MTNF ]×
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[0,MIL10]× [0,MCRH ]× [0,MACTH ]× [0,MCortisol].

In a similar way, as in the sections 2.3.3 and 3.2.3, the positivity of the system
can be realised. This constitute the lower bounds of TR. The upper bounds are
found to be:

MP ≡ P (t0)

MN ≡
kN (1 + kNTNF )MP

dN

MTGF ≡
kTGFMN + q1

dTGF

MIL10 ≡
(kIL10N + kIL10TGF + sIL10)xIL10d

xIL10ddIL10 − (kIL10N + kIL10TGF + sIL10)

MCRH ≡
a0 + a1 + q3MTNF

ω1

MACTH ≡
a3MCRH + q4

ω2

MCortisol ≡
a5M

2
ACTH

ω3

for xIL10ddIL10 > (kIL10N + kIL10TGF + sIL10).

Thus there exists an attracting trapping region TR, where solutions starting
outside TR is attracted into the region and solutions inside can not leave the
region.

C.3 Parameter Values for the Coupled Model

The parameter values used for the simulations of the coupled model ((4.1)-
(4.2)) presented in Section 4.1 and the biological interpretation are shown in
the following table.

No. Parameter Value Unit
Biological

Interpretation

1 dp 1.35 · 10−7 (hr ·N-unit)−1
The elimination
rate of P in the
presences of N

2 kN 4.9956 · 107 N-unit·kg
hr·pg

The strength of the
stimulation of N in
the presents of P
and the absence of
TNF , TGF and
IL10
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3 kNTNF 12.94907 −

Accounts for part of
the activation rate
of N by TNF (to-
gether with kN ) in
the presence of P
and the absence of
TGF and IL10

4 xNTNF 1693.9509 pg
mL

The half-saturation
constant of TNF in
the up-regulating
function in the
equation for N

5 xNTGF 0.07212 pg
mL

The half-saturation
constant of TGF
in the down-
regulating function
in the equation for
N

6 xNIL10 147.68 pg
mL

The half-saturation
constant of IL10
in the down-
regulating function
in the equation for
N

7 dN 0.1439 hr−1
The elimination
rate of N

8 kTGF .154625 · 10−8 mL
pg·N-unit·hr

The strength of the
stimulation of TGF
by N

9 dTGF .031777 hr−1
The elimination
rate of TGF

10 q1 0.5 mL
pg·hr

The saturation
level for the stim-
ulation of TGF by
Cortisol

11 q2 500 µg
dL

The half-saturation
constant of
Cortisol in the
up-regulating func-
tion in the equation
for TGF
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12 kTNFN 550 · 104 N-unit

The half-saturation
constant ofN in the
up-regulating func-
tion in the equation
for TNF

13 xTNFTGF 0.1589 pg
mL

The half-saturation
constant of TGF
in the down-
regulating function
in the equation for
TNF

14 kTNF 25.5194 pg
mL·hr

The minimum sat-
uration level (for
TNF = 0) for
the stimulation of
TNF in the pres-
ence of N and the
absence of TGF

15 kTNFTNF 3.5514 · 104 pg
mL·hr

Additional satura-
tion level (for large
TNF ) for the stim-
ulation of TNF in
the presence of N
and the absence of
TGF

16 xTNFTNF 1.5495 · 103 pg
mL

The half-saturation
constant of TNF
in the auto-up-
regulating function
in the equation for
TNF

17 dTNF 0.0307 mL
pg·hr

The elimination
rate of TNF per
TNF

18 kIL10N 267480 pg
mL·hr

Saturation level for
N -dependent IL10
stimulation

19 xIL10N 8.0506 · 107 N-unit

The half-saturation
constant ofN in the
up-regulating func-
tion in the equation
for IL10
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20 dIL10 98.932 hr−1

The elimination
rate of IL10 for
small concentra-
tions

21 xIL10d 791.27 pg
mL

The half-saturation
constant of IL10
in the auto-down-
regulating function

22 kIL10TGF 43875 pg
mL·hr

The strength of the
stimulation of IL10
by TGF

23 xIL10TGF 0.38 pg
mL

The half-saturation
constant of TGF in
the up-regulating
function in the
equation for IL10

24 sIL10 1187.2 pg
mL·hr

The basis level of
IL10 in the absence
of N and TGF

25 a0 0.001 pg/mL
min

The basis level of
CRH stimulation

26 a1 6.8400 · 109 pg/mL
min

The strength of the
auto-up-regulation
of CRH in the
absence of Cortisol
under in�uence
of the 'circadian
clock'

27 a2 1.7558 · 109
(
dL
µg

)2 The strength of the
inhibition of CRH
by Cortisol

28 ω1 0.032 min−1
The elimination
rate of CRH

29 q3 0.0667 min−1
The strength of
the stimulation of
CRH by TNF

30 a3 2.3688 · 104 min−1

The strength of
the stimulation of
ACTH by CRH
in the absence of
Cortisol
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31 a4 1.7778 · 105 dL
µg

The strength of
the inhibition of
ACTH by Cortisol

32 ω2 0.016 min−1
The elimination
rate of ACTH

33 q4 112 pg
mL·min

The saturation
level for TNF -
dependent stimula-
tion of ACTH

34 q5 80 pg
mL

The half-saturation
constant of TNF in
the up-regulating
function in the
equation for
ACTH

35 a5 5.0746 · 10−4 µg/dL
min·(pg/mL)2

The strength of
the stimulation of
Cortisol by ACTH
per ACTH in the
absence of TGF

36 q6 12 pg
mL

The strength of
the inhibition of
Cortisol by TGF

37 ω3 0.0266 min−1
The elimination
rate of Cortisol

38 α 300 min

The half-saturation
constant of the in-
creasing Hill func-
tion in C(t)

39 k 5 −

The steepness of
the increasing Hill
function in C(t) at
time t = α

40 β 950 min

The half-saturation
constant of the de-
creasing Hill func-
tion in C(t)

41 l 6 −

The steepness of
the decreasing Hill
function in C(t) at
time t = β
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42 ε 0.01 −
The basis contribu-
tion of the circadian
clock function C(t)

43 δ 76, 37 min
The time shifting of
the circadian clock

Table C.1: Table of the biological interpretation and the values of the parameters in the
coupled model ((4.1)-(4.2)) presented in Section 4.1.
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