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Abstract—Many real-world networks exhibit hierarchical or-
ganization. Previous models of hierarchies within relational data
has focused on binary trees; however, for many networks it is
unknown whether there is hierarchical structure, and if there is, a
binary tree might not account well for it. We propose a generative
Bayesian model that is able to infer whether hierarchies are
present or not from a hypothesis space encompassing all types of
hierarchical tree structures. For efficient inference we propose a
collapsed Gibbs sampling procedure that jointly infers a partition
and its hierarchical structure. On synthetic and real data we
demonstrate that our model can detect hierarchical structure
leading to better link-prediction than competing models. Our
model can be used to detect if a network exhibits hierarchical
structure, thereby leading to a better comprehension and statis-
tical account the network.

I. INTRODUCTION

Graphs of relationships between entities are of interest in
practically all fields of science. For example, in sociology
graphs are used to represent interaction between people, in
economy to represent trade relations and business structures,
and in biology to describe interaction between proteins, or-
ganisms, and neurons.

Statistical network analysis seeks to discover an underlying
structure amongst the vertices in these network. A type of
structure of particular interest is that of a hierarchy, where
vertices are divided into groups and further subdivided into
subgroups and so forth. real-world networks exhibit hierar-
chical organization, where the groups correspond to known
functional units, such as ecological niches in food webs,
modules in biochemical networks or communities in social
networks[1], [2], [3], [4], [5] and within the cognitive sciences
hierarchies have long been proposed as a useful organization
of knowledge [6], [7]. Simply put, a hierarchy allows us to
easily get a coarse top-level understanding of the data which
can then be refined, thus making it easier to understand what
the lower levels of the hierarchy mean, contrasted to other
structured alternatives such as the mondrian process[8] where
the inferred structure is not easily interpretable.

While hierarchical structure in feature data has been a
longstanding focus of research (see [9], [10], [11] and ref-
erences therein), the importance of hierarchical structure in
networks have been acknowledged, both using more traditional
non-statistical agglomorative techniques (cf. [12]), and more
recently in [13], [14], [15]. These models all consider rep-
resenting the hierarchical structure by a binary tree, and can
be considered as models that impose hierarchically structured
homogeneities in the stochastic blockmodel [16] and its non-
parametric extension, the infinite relational model (IRM) [17],

[18].
While existing models of hierarchies in networks have been

based on binary trees it has been acknowledged in the literature
on hierarchies of feature data that a binary tree structure often
is too restricted, potentially producing spurious structure if the
binary tree is not well supported by the data [10]. We propose
a non-parametric Bayesian generative model that can infer any
hierarchical structure in networks while reducing to the IRM
model if the data does not support hierarchy.

A. Motivation

As a motivating example, consider a friendship network of
high school students. Let us say that there are three high
schools in a city (A, B, and C), each with four grades
(freshman, sophomore, junior, and senior), see fig.1. Assuming
that the structure in the friendship network can be well
characterized by intractions between the 3 schools × 4 grades
= 12 groups of students, how should these interactions best be
modeled?

In the the stochastic block model, the relations are modeled
by a parameter for each of the 12 + 12 × (12 − 1)/2 = 78
combinations of groups, i.e., there is a parameter that defines
how likely it is that a freshman in high school A is friends
with another freshman in high school A, how likely a junior in
B is friends with a sophomore in C etc. While certainly able
to fit the data, this model is unable to capture any hierarchical
structure, and the inferred parameters are less well-defined.

To alleviate this problem, several authors have proposed to
model hierarchical structure in relational data using a binary
tree. In these models, the probability that two students are
friends is governed by a parameter located at the lowest
common ancestral node in the tree. As any binary tree with 12
leaf nodes has 11 internal nodes, the high school friendship
graph would be governed by only 12 + 11 = 23 parameters.
We will argue that this leads to a too restricted model. For
example, if at the root of the tree we find a division between
high school A on one side and high schools B and C on the
other, the binary tree model asserts that students from A have
an equal probability of being friends with students from either
B or C.

We propose a model for learning the structure of relational
data, that can represent a hierarchy as a multifurcating tree,
and contains the stochastic blockmodel and models based
on binary trees as special cases. Each node in the tree is
allowed to have two or more child nodes, and each node
contains parameters for the probabilities of links between all
combinations of the child nodes. If the tree first splits into three



Fig. 1: Illustration of the proposed hierarchical modeling of graphs for the three high schools example. While the IRM model
(top middle panel) does not explicitly impose a hierarchical structure in the data the binary tree subdivides the graph into
homogeneous regions such that each split defines the interaction between all vertices of the right and left hand side in the
subsequent levels of the tree (bottom middle panel). The proposed model is not restricted to binary trees. Therefore, each node
in the tree can split the vertices into an arbitrary number of regions that interact homogeneously. This model naturally reduces
to the IRM model if the root of the tree splits into all the inferred clusters.

nodes corresponding to schools and next for each school splits
into four nodes corresponding to grades, the model would
describe the friendship structure using a total of 33 probability
parameters.

II. METHOD

The problem that we address in this paper is the following:
Given a graph, expressing relations between entities, we wish
to infer the hierarchical structure that best accounts for the
data. This includes the possibility of inferring that there is
no hierarchical structure, a binary tree structure, or a multi-
furcating tree structure. Our model simultaneously learns the
number of clusters as well as the type of hierarchical structure
governing their relations.

To avoid confusion, we will allways use either vertices or
entities to denote the objects in the network we try to model,
while nodes will be reserved for the nodes in the multifurcating
tree, eg. the leaf nodes correspond to communities.
In the high-school example. the vertices correspond to chil-
dren, leaf nodes to school classes, the root node to the entire
collection of children and the nodes at intermediate level to
schools.

The following outline of a generative process can be used
to characterize relational data with a hierarchical cluster struc-
ture.

1) Generate a tree and a partitioning of the vertices consis-
tent with the tree.

2) For each node in the tree, generate parameters that
describe the probabilities of links between each of its
children.

3) For each pair of vertices in the graph, generate a
link with the probability given at the lowest common
ancestral node in the tree.

Several existing generative network models can be seen as
implementing this framework with different choices of priors
over partitions, trees, and link probabilities. For example, in

[17] the prior over partitions is given by a Chinese restaurant
process, and there is no hierarchical structure corresponding
to a tree where the root immediately splits into N leaf
nodes corresponding to the clusters. In [14], [19], there is
no partitioning of the nodes, and the hierarchical structure is
a binary tree terminating at individual nodes in the graph.
In [13], a joint distribution over binary trees and partitions
consistent with the tree is formulated. In [15] the tree is a
fixed binary tree, and vertices of the graph are assigned to
nodes of the tree, inducing a partition.

A. Generative process

Based on the framework above, we formulate a generative
model of hierarchical network structure, that contains the mod-
els of Clauset et al. [14], [19] and Kemp et al. [17] as special
cases. As in IRM, we choose a Chinese restaurant process
prior over vertice partitions, and generate link probabilities
i.i.d from a Beta distribution. As a prior over trees, we choose
a uniform prior over rooted multifurcating trees. Our model
can be described by the following generative process:

1a. Generate a random partitioning of the I vertices into
K clusters using a Chinese restaurant process, z ∼
CRP(α).

1b. Generate a tree T with K leaf nodes from a uniform
distribution over all rooted multifurcating trees, and
assign each cluster to a leaf.

2. Generate a link-probability for each unordered (non-
distinct) pair of children (k, l) of each node n, θ(n)kl ∼
Beta(β, β).

3. For each pair of vertices (i, j) generate a link Aij ∼
Bernoulli

(
θ
n(i,j)
c(i,j),c(j,i)

)
, where n(i, j) is the nearest

common ancestral node of i and j and c(i, j) and c(j, i)
are the children of n(i, j) to which the two nodes are
connected.
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(a) Network supporting hierarchical structure,
solid/dashed, I = 256, 128
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(b) Network with no hierarchical structure
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(c) Network with binary cascading tree structure

Fig. 2: Performance of our model and the IRM on three types of graphs (see inserts).
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Our model

(d) Distance between inferred and true binary
cascading tree

B. Inference

According to the generative model, the joint distribution of
data and parameters can be expressed as

p(A, z,θ, T |α, β) =

p(A|z,θ, T )p(θ|β, T )p(T |z)p(z|α). (1)

Analytically integrating away the link probabilities, θ, we
arrive at

p(A, z, T |α, β) =∫
p(A|z,θ, T )p(θ|β, T )p(T |z)p(z|α)dθ

=
∏

n∈nodes
(k,l)∈children(n)

Beta(N+
n,k,l + β,N−n,k,l + β)

Beta(β, β)

×

(
1

CK

)(
αKΓ(α)

Γ(I + α)

K∏
k=1

Γ(Mk)

)
(2)

where I is the number of vertices, CK is the number of rooted
multifurcating trees with K leaf nodes which can be computed
by a simple recursive formula [20], and Mk is the number of
vertices in the kth cluster. N+

n,k,l and N−n,k,l denote the number
of links and nonlinks between vertices belonging to child k
and child l of node n.

We use Gibbs sampling to jointly sample from the posterior
distribution over partitions and trees. In each Gibbs move, we
sample a new placement for a vertex, either in an existing
cluster or as a new cluster placed in any possible position
in the tree. A vertex can either be a child of any of the |T |
nodes in the graph (including leaf-nodes) or split one of the
|T |−1 edges in the tree. Thus, the Gibbs sampler requires the
evaluation of 2|T | − 1 posterior distributions. Although this
Gibbs sampler is sufficient to sample from the joint posterior
distribution over partitions and trees, we also consider a less
incremental move, that conditions on the current partition z
and modifies only the tree. We choose a node in the tree
uniformly at random, and compute the probability of inserting
the node and its subtree at all possible edges in the remaining
tree, and sample a modified tree from this distribution.

C. Performance measures

As measure of performance we will use the normalized
mutual information (NMI) between a planted and estimated
community structure defined as

NMI(z, z̃) =
2I(z, z̃)

H(z) +H(z̃)
, where

I(z, z̃) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

where H(z) = I(z, z) is the entropy. Notice It is trivial to see
that if the two variables are independent p(x, y) = p(x)p(y),
the normalized mutual information is zero and if they are
identical p(x, y) = δ(x − y)p(x) then the normalized mutual
information becomes 1. NMI is a commonly used metric for
partitions of data sets [21], [22], and has been shown to
be an efficient measure of partitions in the type of problem
considered here [23]. It has become a standard in assessing the
quality of communities in artificial relational data [24], [25],
[26]. The joint distribution p(x, y) is simply the probability
a random observation which is in community x in the actual
community structure is in community y in the detected, p(x, y)
will therefore in general form a rectangular matrix since the
number of communities need not be the same. The measure
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Fig. 3: The karate-club network. Below is both our discovered clustering, and the one reported in [14], indicating that our
model gives a simpler representation. The right panel illustrates the link-density of our clustering. The non-numbered circles
represent nodes in the tree and the colors indicate the link-density within (circles) or between (edges) clusters.

can be interpreted as “What fraction of the total amount of
information in the communities can be learned from knowing
one community” [23]. An important aspect in the analysis
of tree structured data is to determine if the algorithm can
properly detect the underlying tree. To evaluate this we use a
distance measure for rooted trees based on the travel-distance
between vertices [27]: For any two communities µ, ν, define
D(µ, ν) as the shortest path between the two nodes in the tree,
and for any tree T define the I×I matrix MT

ij = D(zi, zj). For
two trees a metric D(T1, T2) is defined as the average distance
between vertices in the tree given by the sum of the upper-
triangular part of the absolute distance between the matrices
MT1 and MT2 divided by 1

2I(I − 1). D(T1, T2) is zero
provided the two trees are equal. It is important to emphasize
that this measure has defects. For instance, a singleton cluster
inserted “in the middle” of a tree will have a disproportional
large effect, as will a local IRM-like structure in the tree. These
defects are however inherent to travel-distance type metrics
[28], [29], [30].

III. RESULTS

A. Synthetic relational data

We investigate whether our model is able to infer the pres-
ence of hierarchical structure on synthetic data by comparing
our model to the performance of the IRM model that does not
assume hierarchical structure. In the generated graphs we will
consider a block-lige structure of the link-probabilities defined
either by the density ρ0 = 0.1 or the density ρ1 = 0.8. We
will vary the noise-level by introducing the order parameter
λ ∈ [0, 1] setting ρ′1 = ρ0(1−λ)+ρ1λ. When λ = 0 detection
of the planted structure is impossible while for λ = 1 detection
is easiest.

Initially we consider the diagonal community model in
the top left panel of figure 2. We let the order parameter
λ defined above vary equidistantly between 0 and 1 in 20
steps, and for each such value of λ we generate 10 random

graphs with the corresponding ρ0 and ρ′1 values and for each
graph restart the simulation 10 times. For all 10 × 10 × 20
instances, the simulation is run with a burnin time of 50
iterations and simulation time of T = 50 iterations, and for
each configuration the NMI is extracted. Since an arbitrary
hierarchical structure will use fewer parameters than the IRM
we expect if our model can identify hierarchical structure at
all it should outperform the IRM model. For the top-left panel
we choose, in line with what is common in the litterature [26]
to let K = 4 and vary I between 128, 256 vertices, re-starting
the simulation at each instance. The other plots are for K = 10
and I = 200 to allow for a non-trivial hierarchical structure.

The parameters for the beta-prior was choosen in line with
[17] as (5, 1) within communities and (1, 5) between. The total
computation time was about 12 hours, the graph tree model
being about a factor 8 slower than the IRM model. Indeed
we see that our model outperform the IRM model and as the
system-size becomes larger and the noise level decrease, the
cluster-structure both become easier to detect and the transition
from no detection to detection of structure becomes steeper,
approaching the idealized phase-transition described in [26].

In the bottom left panel of figure 2 we tested the behavior of
our model on a graph with a hierarchical structure correspond-
ing to a binary cascading tree. We set n = 200 and K = 10
and ran the simulations with the same parameters as before.
Again we see that our model is better at detecting the planted
structure than the IRM model and as the SNR of the graph
improves we find that our model is close to recovering the
true binary tree. The distance metric converges to one rather
than decrease all the way to zero since the small clusters of
the binary tree can be arbitrarily defined in our model.

We finally compared the performance of our model and IRM
model on a graph that is non-hierarchical (right panel of figure
2). We see that our model performs as well as the IRM model,
thus is able to reduce to the IRM model when no hierarchical
structure is present in the data.

The synthetic data analysis indeed supports that our model
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(b) Terrorist network

Fig. 4: Comparison of link prediction methods. Averaged AUC statistics as a function of fraction of observed connections
known to the algorithm.

is able to detect hierarchical structure when a hierarchy is
present and is on par with IRM in detecting the underlying
cluster structure when no hierarchical structure exists.

B. Zachary’s Karate Club network

The first real network we consider is a well-studied friend-
ship network [31] gathered between 1970 and 1972 by Wayne
Zachary of friendship between members of a karate club.
The friendship network is constructed by noting which of the
members of the club interacted regularly at activities outside
the club. This included such things as associating at academic
classes at the local university, at a local bar, open karate
tournaments, at the universities rathskeller etc. 34 members
of the karate club which regularly participated in some of
the above events were selected (corresponding to vertices in
the network) and an edge was added between them if they
interacted in at least one of these contexts. This resulted in
a binary network with 34 vertices. In the network Mr. Hi
corresponds to vertex 1 and Mr. John1 to vertex 34. Near the
beginning of the study, the clubs principal instructor, Mr. Hi,
wanted to raise fees, while the clubs administrator, Mr. John,
wanted to maintain them at the current level. As time passed
the club became more and more divided over the issue, and
while never named or explicitly recognized by their members,
two factions began to form. The conflict culminated with Mr.
Hi being laid off. The supporters of Mr. Hi responded by
resigning and forming a new club headed by Mr. Hi.

In figure 3 is given an analysis by our model as well as
the binary tree model of [14], [19] of the karate club network.
As can be seen from the figure our model has identified a
tree with depth 2 whereas the binary network of [19] has
extracted a tree which exhibit cascading behavior forming a
hallucinated structure due to the models restriction to binary
trees that terminate at the single vertice.

Inspecting the results of our model in the right panel of the
figure, the bubble at the 11 O’clock position contains only

1The names are made up and adopted from the original study

Mr. Hi (1). We see that he is strongly connected to his faction
formed by the two other bubbles at the 10 and 2 O’clock
position which in turn has almost nothing to do with each
other. Moving on to the group who broke out at the 7 O’clock
position, Mr. John (34) and the trainer who worked closely
with him (33) is identified as a cluster which interacts strongly
with the majority of the people in the group at the bottom-most
cluster indicating they play a key role.

C. Networks of Terrorists and Grassland Species

We compared our proposed framework to the binary tree of
[14] on the grassland species and terrorist network data where
the method of [14] was the best performing model for link
prediction. We consider the same link-prediction setup as in
[14] where a given fraction of the links are removed from
the network and treated as non-links during model estimation.
Notice that this setup is different from the traditional link
prediction approach in networks where links and non-links
are treated as missing, forming a test set [32]. The area under
curve (AUC) of the receiver operator characteristic is used to
evaluate how well the model discriminate between ”true” links
treated as non-links relative to all the ”true” non-links in the
network which makes the setup comparable to the link scoring
approaches in [33].

In figure 4 the AUC score of our proposed model and the
binary tree model of [14] are given. From the graphs it can
be seen that our model is on par with Clauset et al.’s model
for the terrorist data, while our model outperforms Clauset et
al.’s model for the grassland network.

In figure 5 is given the estimated MAP hierarchical struc-
tures identified by our model. In the terrorist network, six out
of seven nodes in the tree defines a binary split supporting
the similar link prediction results of our model to that of
Clauset et al. For the grass-land network, only two out of
five nodes define binary splits. We attribute the superior
link predictive performance of our model to its ability to
model more complex hierarchical structure than that formed
by restricting the modeling to binary trees.



Fig. 5: Top: MAP estimate of tree structure in grassland
network. Bottom: Same for terrorist network.

In addition to the above results, the hierarchical model
was evaluated on a number of large (∼ 2 − 5000 vertices)
networks2, indicating the method scale well. A prominent
feature of the detected hierarchies are the surprising degree
of binary splits, indicating the IRM model tend to introduce
to many parameters than neccesary to describe the network,
but results are omitted due to space limitations.

IV. CONCLUSION

We proposed a model for detecting hierarchical structure in
networks, that can interpolate between arbitrary hierarchical
structures. On synthetic data we demonstrated that the model
was indeed able to infer hierarchies while performing on par
with the non-hierarchical IRM model when no hierarchical
structure was planted in synthetic data. On the Zachary
network, our model detected an interpretable hierarchical
structure in compliance with ground truth. We further found
that the model was on par with [14] when the hierarchical
structure in the data could well be represented by a binary
tree whereas our model outperformed [14] for the grass-land
species network.

In many real world networks, the presence or absence of
hierarchical structure is not known. We have formulated a
generative model that includes flat hierarchies, binary trees,
and everything in between in its hypothesis space. Our model
can thereby be used to investigate if hierarchical structure is
present in networks, and in turn lead to a better comprehension
and account of network structure in general.
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