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Abstract

The paper presents a new method for online identi�cation of pay-loads

for a two-link �exible robot. The method bene�ts from the close corre-

spondance between parameters of a discrete-time model represented by

means of the Delta-Operator, and those of the underlying continuous-time

model. Although the applied principle might be general in nature, the

paper is applied to the well-known problem of identifying a pay-load of a

moving �exible robot. This problem is almost impossible to solve by mea-

surements, so an estimation technique must be applied. The presented

method bene�ts from the close correspondance with the continuous-time

representation to allow a scalar and implicit adaptive technique which

based on �exibility measurements leads to the online estimation of the

pay-load.

Keywords : Flexible Link Robot; Delta-Operator; System Identi�cation; Pa-

rameter Estimation; Adaptive Control.
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1 Introduction

The desire for high-performance manipulators and the bene�ts o�ered by a
light-weight �exible arm capable of maneuvering large pay-loads have lead to
analysis of the behavior of the dynamics in which �exibility is the essential issue.
The high-performance requirements will inevitably produce designs that during
operation will excite vibrations in the manipulator structure.

The �exibility generates a severe problem in controlling the motion due to the
inevitably excitation of structural vibrations which a�ect the accuracy of the
manipulator. Therefore a successful controller implementation of a �exible ma-
nipulator system is contingent on achieving acceptable performance taking into
account variations in e.g. pay-load and environmental disturbances.

The aim of the controller is to suppress the structural vibration while in addition
to minimize the cycle time of the manipulator system. For �exible manipulator
systems, it is necessary to use a model-based controller in order to mitigate the
�rst harmonics. However, changes in pay-load degrades the model and conse-
quently the performance of the control system, unless some sort of adaptation
or gain-scheduling is taken into account to estimate these e�ects.

In order to investigate di�erent aspects of control of �exible links robot con�g-
urations an experimental setup has been made. This experimental setup form
the basis for the work described in this paper and consists of two very �exible
links with two actuators located in the joints. In this work the links are moving
in the horizontal plane making gravity ignorable. The geometry of the links
makes the predominant bending take place in this plane making it possible to
ignore torsion. The actuators are DC-motors with a su�cient gear ratio and
tachometers making an analog velocity feedback feasible, this suppresses the
friction and other non-linearities in the actuators. Apart from the tachometers
there are two kinds of sensors on the setup, a potentiometer in each joint en-
abling a measurement of the position of the joint and a number of strain gauges
located on each link enabling the measurement of the bending of the link. The
simulation model used in this study is derived using physical modelling from
the this setup. A photograph of the setup is shown in Figure 1 and a schematic
view in Figure 3.

In (M'Saad, Dugard & Hammad 1993) experiments are described for a �exi-
ble single-beam system, where time-varying black-box input-output forms are
proposed as suitable descriptions of the system. In (Luca & Panzieri 1994)
experimental results featuring gravity compensation are presented for a double
link robot with a �exible forearm. But like other references, practical algorithms
seem to igonore the fact that one could construct an adaptation technique that
directly gains insight to the pay-load parameter.

This is topic for the present work. By deducting a linear state-space model
describing the pay-load parameter's in�uence in the continuous-time model, it
is possible to apply a Delta-Operator technique for estimation of this parameter
in discrete-time.
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Figure 1. The robot consists of two �exible links and two actuators (DC-motors). It is
equipped with two tachometers and four strain gauges in order to measure the link angles
and de�ection, respectively

To demonstrate this, the paper starts by recapturing the fundamental equations
of a two link manipulator system in Section 2. In Section 2.1 the Delta-Operator
is introduced, and also the discrete-time estimation technique is presented. As
the linearised model is in general su�cient to capture the dynamics of each
�exible link, it is demonstrated in Section 4, that the pay-load may be estimated
using a recursive parameter estimation technique.

It is worth noting that the presented estimation technique is tied to the Delta-
Operator. Provided the discretizing had been based on the conventional shift-
operator, one would inevitably had lost the clear physical interpretation of the
parameters, and the method would have failed. However, as the presented
method is discretised using the Delta-Operator (Middleton & Goodwin 1990),
a close correspondence appear between the discrete-time parameters and the
underlying continuous-time system.

2 System model

The �exible manipulator system studied here, see Fig. 3, carries a pay-load,
mp, at its tip and moves in the horizontal plane. The active degrees of freedom
are the two rotational angles θb1 and θ2.

In literature the equations of motions are commonly modelled by either a Finite
Element Method (see. e.g. (Sakawa, Matsuno & Fukushima 1985)) or the
Eigenvalue Method (see e.g. (Kruise 1990)). As the latter method is normally
considered more accurate when only a limited number of modes are included,
c.f (Baungaard 1996), the following description is be based on this approach, cf.
(Rostgaard 1995).

The model of the �exible link robot consists of four parts; namely the models for
the two actuators and the two arms. The dynamics of the �exible arms can be
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Figure 2. The robot system consists of two �exible links, two actuators (DC motors) and
four strain gauges for meaurering the de�ection of the links.
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Figure 3. Top view of robot system.

described by a PDE which can be transfered into a ODE by using the method
of separation of variable. In that case the de�ection, wj(x, t), j = 1, 2, of the
arms is written as

wj(x, t) =
∞∑
i=1

ϕji(x)qij(t)

where ϕji(x) and qji(t) are the normal and harmonic function of mode i and
arm j, respectively.

2.1 The Main Equations of Motion

For the actuator dynamics, only the �rst order integration is included, as the
time constant of the motor dynamics is typically 10-20 times lower than the �rst
hamonic of the manipulator links. In literature, this has been referred-to as a
reduced order of the manipulator system, and this description is attractive from
a control point of view, as the reduction a�ects only the highfrequent area of the
actuator dynamics, which is outside the dominant frequency of the structural
vibration and thus di�cult to observe and control anyhow.

The four basic di�erential equations can be summarized, cf. (Rostgaard 1995).
For the shoulder-actuator:

k13θ̇b1 + k11u1 + k12EI1

n∑
i=1

ϕ1i(0)′′q1i = 0 (1)
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where k11, k12 and k13 are parameters descriping actuator 1 and where I1 is the
beam inertia for the upper arm j = 1. E is the Young's modulus for the beam.

For the elbow-actuator we have in a similar fashion:

k23θ̇2 + k21u2 + k22EI2

n∑
i=1

ϕ2i(0)
′′q2i = 0 (2)

For the lower arm (ie. j = 2) we have the ODE equation for each mode (i =
1, 2, ... n):

ω2
2iq2i + 2ζ2iω2iq̇2i + q̈2i = (3)

n∑
j=1

κ∗2ij q̈2j + α∗
2i


θ̈2 + θ̈b1 +

n∑
j=1

ϕ′
1j(L1)q̈1j(t)




+β∗2i


L1θ̈b1 +

n∑
j=1

ϕ1j(L1)q̈1j


 cos(θ2) (4)

where ω2i and ζ2i are the harmonic frequency and damping for mode i (and the
second or lower arm). Lj is the length of arm j and the modal parameters for
the lower arm are linearly denpending of the payload, ie.

α∗
2i = α2i − mp

µ2
L2ϕ2i(L)

β∗2i = β2i − mp

µ2
ϕ2i(L2) (5)

κ∗2ij = −mp

µ2
ϕ2i(L2)ϕ2j(L2)

where payload free modal parameters, α2i and β2i, are depending on the geom-
etry and the normal functions. µ2 is one quarter of the mass of the link, ie.
µ2 = 1

4ml2.

For the upper arm the situation becomes a little more complicated. This is due
to the coupling between elbow-actuator and the de�ection of the upper arm.
Here the modal equations are:

ω2
1iq1i + 2ζ1iω1iq̇1i + q̈1i =

n∑
j=1

κ∗1ij q̈1j + θ̈b1

[
α∗

1i +
Jhϕ

′
1i(L1)
µ1

]

+
Jhϕ

′
1i(L1)
µ1

n∑
j=1

ϕ′
1j(L1)q̈1j − F

(1)
ye

µ1
ϕ1i(L1)

+
J2N2ϕ

′
1i(L1)

µ1

[
k21u2 + k23θ̇2

]
(6)

where Jh, J2 are hub and rotor inertia of actuator 2 and where

F (1)
ye = Fb2 cos(θ2) + Fx2 sin(θ2)
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Fb2 = EI2

n∑
j=1

ϕ2j(0)
′′′q2j(t)

Fx2 = (ml2 +mp) sin(θ2)


L1θ̈b1 +

n∑
j=1

ϕ1j(L)q̈1j(t)


 (7)

ml2 is mass of arm 2. Here the modal parameters α∗
1i and β

∗
1i are independent

of the payload mass (but do depend on the mass of actuator 2). Notice, the
linear dependence on the pay load mass, mp, enters through (7).

If the actuator equations, (1) and (2), are used for obtaining the angular acceler-
ations in (4) and (6) the four main equations can be written in a more compact
form.

Introduce the notation:

q =
[
q11, ... q1n, q21, ... q2n

]T
, (8)

u =
[
u1

u2

]
, θ =

[
θb1

θ2

]
(9)

Then the description of the �exibility, (4) and (6), can be linearized and brought
into the following compact form (see Appendix A, (58)):

q̈ = M1q +M2q̇ +M3q̈ +M4u+M5u̇ (10)

where the matrices, M2, M3 and M5 are a�ne in mp. Notice, the matrices
depend on the linearization point. In this case the matrices depend only on θ2.
Also, notice the angular acceleration, q, occurs on both side of the i equation.

Also the actuator dynamics can be written in a compact form (see Appendix A,
(60))

θ̇ = M6q +M7u (11)

Now the compact description in (10) and (11) is to be transformed into a state
space description. The algebraic loop (related to q̈ in (10)) can be solved if the
following matrix inverse exists,

Λ = (I −M3)−1

Notice M3 depend linearly on the pay load mass, mp. Taking the states

x =


 θ

q

q̇ − ΛM5u


 (12)

one obtains easily the state space description

ẋ=


 0 M6 0

0 0 I
0 ΛM1 ΛM2




︸ ︷︷ ︸
A

x+


 M7

ΛM5

ΛM2ΛM5 + ΛM4




︸ ︷︷ ︸
B

u
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where the state transition matrix is of order 2 + 4n with n as the number of
considered modes. For an arbitrary linearization angle, this representation is a
linear approximation to the dynamics, i.e. Mi are functions of the linearization
angle. Thus, one can use the measurements of θ2 to obtain a running linear
description around the actual orientation.

Since the pay load mass is unknown or even time varying we will have rephrase
the model in such a way that it is possible to estimate the pay load mass, mp.
The suggested method takes starting point in the split-up of the state transition
and state control matrices of the form

A = A0 +mpA
m, B = B0 +mpB

m (13)

wheremp is the pay-load attached to the lower arm. It is to be preferred that the
four matrices on the right hand side are mass independent. Since, it is the Mi

matrices, which are linearly dependent on mp, this is however not the case. This
leads to a pseudo-linear description where the four state space matrices in (13)
depend on mp. This might be seen as a problem, but the method proposed in
this paper, is based on recursive estimation ofmp. That opens for the possibility
of using the a priory estimate of mp in the expressions for the four state space
matrices in (13).

We have in the previous sections established the following linear dependencies
of mp

M2 = M0
2 +mpM

m
2

M3 = M0
3 +mpM

m
3

M5 = M0
5 +mpM

m
5 (14)

whileM1,M4,M6 andM7 are independent of mp. Notice (13) is not necessarily
a Taylor expansion, but heavily rely on the de�nition of the four matrices in
(13). If we de�ne:

A0 =


 0 M6 0

0 0 I
0 ΛM1 ΛM0

2


 Am =


 0 0 0

0 0 0
0 0 ΛMm

2




B0 =


 M7

ΛM5

B0
3


 Bm =


 0

ΛMm
5

ΛMm
2 ΛM0

5 + ΛM0
2 ΛMm

5


 (15)

where

B0
3 = ΛM0

2 ΛM0
5 +m2

pΛM
m
2 ΛMm

5 + ΛM4 (16)

then (13) is ful�lled.

3 The measurement system

The measurement system consists of two tachometers and four strain gauges.
The tachometers give measurements of the link angles θb1 and θ2, whereas the
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strain gauges are located tactically on the links in order to give measurements
of the de�ections ie. q.

The measurement are connected to the state of the description through

yt = Cxt C =


 Ctg 0 0

0 Csg1 0
0 0 Csg2


 (17)

where Ctg, Csg1 and Csg2 are observation matrices for the two tachometers and
the strain gauges located on the two links. These are:

Ctg =
[
ktg1 0
0 ktg2

]
Csg1 =

[
ksg1ϕ

′′
11(l11) ksg1ϕ

′′
12(l11)

ksg2ϕ
′′
11(l12) ksg2ϕ

′′
12(l12)

]

(Csg2 is de�ned in a similar manner). The constants ktgi and ksgi are constants
characterizing the tachometers and the strain gauge, whereas lji are the location
(no i) on the the links (link no. j).

0 5 10 15
−0.5

0

0.5

time in sec.

M
ea

su
re

d 
θ b1

, w
1 (

ra
d)

Measurements

0 5 10 15
−0.5

0

0.5

time in sec.

M
ea

su
re

d 
θ 2, w

2 (
ra

d)

Figure 4. Measuremed angles θb1 and θ2 and their reference w1 and w2.

4 The pay-load estimation

So far the model of the dynamics has been given in the continuous-time form

A = A0 +mp(t)Am

B = B0 +mp(t)Bm (18)

where the four matrices on the right hand side are calculated based on informa-
tion available at time t−1. The system is sampled with a period of T . By use
of the approximation

Ω =
1
T

∫ T

0
e( A0+mp(t−1) Am ) τdτ

≈ I +
n′∑

i=1

((A0 +mp(t−1)Am)T )i

(i+ 1)!
(19)
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(n′ being �large�), the discrete-time delta-model shows a similar linearity of the
pay-load as its continuous-time counterpart,

A
0 = ΩA0, B

0 = ΩB0

A
m = ΩAm, B

m = ΩBm (20)

Obviously, as mp tends to stationarity the approximation becomes better. If
mp(t−1) = mp(t) then the discrete-time model

δxt = Axt +But

yt = Cxt (21)

using the de�nitions

A = A
0 +mp(t)A

m

B = B
0 +mp(t)B

m
(22)

describes perfectly the underlying continuous-time system at the sampling in-
stants.

4.1 Adaptation of the pay-load

In general (21) is connected with a Kalman predictor (K, P ) that takes into
account measurements

δx̂t = Ax̂t +But +K(yt − Cx̂t) (23)

This estimate can be put into a linear mass-dependent form

x̂t = x̂0
t +mp(t) x̂m

t (24)

Here

x̂0
t = (I + T A

0 − T K C) x̂t−1

+T B0
ut−1 + T K yt−1

x̂m
t = T A

m
x̂t−1 + T B

m
ut−1 (25)

and A, B, C and K are all calculated on the basis of information available at
time t−1. In particular C does not have to be a row vector. Therefore all
measurements are used to construct the best estimates of x̂t and consequently
also of x̂0

t and x̂m
t . In contrast to this, let

y′t = C
′
x̂t + et (26)

be a single composite measurement (possibly a weighted sum of all measure-

ments) and C
′
a row vector (with entries that correspond to the composite

measurement). The noise term et is zero-mean and uncorrelated with x̂t. From
(24) and (26) the least squares regression model

ψt = ϕ>
t θt + et (27)
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is produced with

ψt = y′t − C
′
x̂0

t

ϕ>
t = C

′
x̂m

t

θt = mp(t) (28)

The regression form is pseudo-linear since ϕt is calculated on the basis of the
estimate at time t−1. However, by use of this approach all measurements are
used to construct the �best� estimate of x̂t, although only a single composite
measurement is used within the regression part. This will possibly imply a
better estimate asymptotically, since the additional measurements will guide
the model in the direction of the true plant model (if plant model is within the
model set). The choice of y′t is here taken in an ad-hoc way as the angle of the
end-point of the forearm, θ2e. This choice seems reasonable since the lower arm
is mostly a�ected by variations in the pay-load.

To obtain a robust parameter identi�cation a selective forgetting method is
suggested, (Parkum 1992). This algorithm shows tracking ability without the
drawback of covariance blow-up. The method has a close parallel to the EFRA
method and gains the same advantages at a less computational expense. This
overcomes the problems of neither the covariance matrix tending to zero nor to
blow-up. Also it guarantees that identi�cation is always alert to some extent.
The selective forgetting scheme (SF1) can be written as

εt = ψt − ϕ>
t θ̂t−1

κt =
Pt−1ϕt

1 + ϕ>
t Pt−1ϕt

θ̂t = θ̂t−1 + κtεt (29)

Pt|t−1 =
α1 − α0

α1
Pt−1 + α0I

Pt = (I − κtϕ
>
t )Pt|t−1

where 0 < α0 < α1 < ∞. The algorithm is illustrated in Fig. 5 - Fig. 9 using
the parameters:

α0 =0.1, α1 =2, P0 =2
θ̂0 =0, mp =0.1, T =0.01
n′=15 R1 =10−4 I R2 =10−4 I

(30)

where R1, R2 denote respectively the process and the measurement covariance
matrices. The state space LQG controller is iterated a single iteration per
sample � asymptotically producing the optimal feed-back gain based on the
loss covariances

Q1 = C
′>
C

′
, Q2 = 0.005 I (31)

The value ofmp can be compared to e.g. the mass of the lower arm, ml2 = 0.133,
saying that the manipulator is heavily loaded. A better performance can be seen
after the second step re�ecting that mp is almost estimated after 3 seconds, see
Fig. 5. From here it also appears that only when the set-points are varied new
information is obtained.



5 Conclusions 11

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

time (sec)

Estimated payload (kg)

E
st

im
at

ed
 m

p 

0 5 10 15
10

−1

10
0

10
1

10
2

time (sec)

P
ay

lo
ad

 C
ov

ar
ia

nc
e

Figure 5. Estimated pay-load m̂p(t) and variance of estimate in a closed-loop experiment.
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Figure 6. Estimated pay-load m̂p(t) and variance of estimate in a closed-loop experiment.

5 Conclusions

The paper has presented a new method for online identi�cation of pay-loads for
a two-link �exible robot. First the state-space model has been derived, and then
the model is discretised using the Delta-Operator, which bene�ts from the close
correspondance between parameters of a discrete-time model and those of the
underlying continuous-time model. Due to the close correspondance, it is shown
that both domain models can produce almost the same linearity with respect to
a pay-load. This fact is used in a pay-load estimation technique. By simulation
it is demonstrated that it is possible to identify a time-varying pay-load of a
two link �exible robot during closed-loop control.
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A Dynamics of a DC motor

Consider a DC motor, which (cf. (Leth 1982)) can be described (to a reasonable
desgree) by a �rst order model as depicted in Figure 10. Let Va denote the
voltage input, Mm is the resulting external torque (ie. torque not included
in the model) and θ̇m is the angular velocity of the motor shaft. Then using
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Figure 9. Control inputs u1 and u2 as functions of time.
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1
J
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θ̇

1
s

Figure 10. DC-motor

Newton second law the mode can given as

Jθ̈m = Mm − f θ̇m +
kt

Ra

(
Va − keθ̇m

)

where ke = kt represent motor constants, f the total viscous friction of the
motor, Ra the electrical resistance and J the total inertia of motor. Introducing
the dynamic constants

F =
kekt

Ra
τm =

J

F + f
kvm =

kt

Ra(F + f)
=

kt

kekt + fRa

τmθ̈m + θ̇m = kvmVa +
Ra

kt
kvmMm

A.1 Tacho feed back

In order to reduce the in�uence from the disturbances, non linearities and other
imperfects, the DC-motor is included in a tacho loop, in which the di�erence
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between the reference voltage Vr and the tacho voltage Vtg = ktg θ̇m is ampli�ed
(gain kp) and feed into the motor, ie.

Va = kp(Vr − ktg θ̇m)

input voltage is

−ktg

1
Ra kt

1
J

Ia

Mm

ke

θ̇

1
s

−f

kp

VaVr

Figure 11. DC-motor

If for short

ket = ke + kpktg Ft =
ketkt

Ra

the Newtons second law gives the description

Jθ̈m + (f + Ft)θ̇m =
ktkp

Ra
Vr +

1
f + Ft

Mm

or

τmtθ̈m + θ̇m = kpkvmtVr +
Ra

kt
kvmtMm

where

τmt =
J

f + Ft

kvmt =
kt

Ra(f + Ft)
=

kt

ketkt + fRa
=

kvm

1 + kpktgkvm

A.2 Gear

There is a gear between the motor shaft (θm) and the manipulator (θb). The gear
is considered sti� and is constructed as a three step gear with a total gear-ratio
of N,

θb =
1
N
θm
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LetMb denote the external momentum a�ecting the motor at the external shaft,
where

Mb = NMm

It is convenient to rewrite the motor equation as

θ̈b = k1Vr + k2Mb + k3θ̇b (32)

where the constants are

k1 =
kvmtkp

Nτmt

k2 =
kvmtRa

N2ktτmt
=

1
JN2

k3 = − 1
τmt

(33)

Let us de�ne
Jb = N2J

then
Jbθ̈b = Jb

(
k1Vr + k3θ̇b

)
+Mb (34)

or from the motor side:

Jθ̈m = J
(
Nk1Vr + k3θ̇m

)
+Mm

The induced torque is given by

Md = Jbθ̈b −Mb

= Jb

(
k1Vr + k3θ̇b

)
(35)

and
Mdm = J

(
Nk1Vr + k3θ̇m

)
from the motor side.

B Dynamics of a prismatic beam

Consider the beam segment in Figure 12. Let x denote the distance along the
beam and w(x, t) the de�ection of the beam. Here a is the cross section area
of the beam. The beam is physically described by b, h and L representing the
measures width, height and length. Since transversal vibrations appear athwart
to the beam the cross section area and inertia are

a = b h

I =
∫ h

0
[2

∫ b
2

0
r2dr]dy =

b3h

12
(36)
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b

F: Shearing force

M: Bending torque

h

y

x

Figure 12. Forces and torque in a cross section of a beam

Taking the resulting shearing forces and torque we obtain the following relations

∂F

∂x
+ ρa

∂2w(x, t)
∂t2

= 0

and

F =
∂M

∂x

From the elementary �exural theory (Timoshenko, Young & Weaver 1974) we
have

M = EI
∂2w(x, t)
∂x2

These three last equations gives us the Euler Bernoulli equation for the beam

EI
∂4w(x, t)
∂x4

= −ρa∂
2w(x, t)
∂t2

(37)

The solution to this equation with boundary conditions can be found by using
separation of variable. This means

w(x, t) =
∞∑
i=1

ϕi(x)qi(t)

which is equivalent of expand the de�ection of the beam in modes. ϕi(x) repre-
sent functions of x that de�ne the shapes of the natural modes of vibration and
are called principal functions or normal functions, (Timoshenko et al. 1974). It
can be shown (see (Rostgaard 1995) for details) that the normal functions are
orthogonal and posses other interesting properties. qi(t) describes a harmonic
time-function. With this expansion we have

M = EI

∞∑
i=1

qi(t)
∂2ϕi(x)
∂x2

F = EI

∞∑
i=1

qi(t)
∂3ϕi(x)
∂x3
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For each mode we have the following

∂2qi(t)
∂t2

+ ω2
i qi(t) = 0

∂4ϕi(x)
∂x4

− γ4
i ϕi(x) = 0

where

ω2
i =

EI

ρ a
γ4

i

The general solution to the time-function is

qi(t) = Ai cos(ωit) +Bi sin(ωit)

whereas the solution to the normal function can be written as

ϕi(x) = c1i cosh(γix) + c2i sinh(γix)
+c3i cos(γix) + c4i sin(γix) (38)

It might be useful to notice that

∂nϕi(x)
∂xn

= γn
i (c1i c2i c3i c4i)




0 1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0




n 


cosh(γix)
sinh(γix)
cos(γix)
sin(γix)




B.1 Clamped - free beam

The constants (Ai, Bi, c1i, c2i, c3i, c4i) are determined from the boundary
conditions (in time and space). In the clamped - free case we have the following
conditions on the normal function

ϕi(0) = 0
∂ϕi(0)
∂x

= 0
∂2ϕi(L)
∂x2

= 0
∂3ϕi(L)
∂x3

= 0 (39)

The �rst two conditions are due to clamped end (x = 0) and the latter are
coursed by the fact that F (L) = 0 and M(L) = 0.

0 = c1i + c3i

0 = γi(c2i + c4i)
0 = γ2

i (c1i cosh(γiL) + c2i sinh(γiL) − c3i cos(γiL) − c4i sin(γiL))
0 = γ3

i (c1i sinh(γiL) + c2i cosh(γiL) + c3i sin(γiL) − c4i cos(γiL)) (40)

The only non trivial solution (cf. (Rostgaard 1995), p. 14) to 40 obeys

c3i = −c1i c4i = −c2i

and (to ensure a nontrivial solution to the last two equations in (40))

cosh(γiL) cos(γiL) = −1 (41)

which is denoted as the frequency equation. Its numerical solution is discussed
in Appendix G.
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Figure 13. Normal functions and their �rst derivative.
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Figure 14. Second and third derivative of normal functions, which are propor-

tional to torque and shear force.
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C A moving beam with external forces

See (Rostgaard 1995) page 26-28.

Assume that the beam is moving such its beginning having an acceleration, ÿb,
perpendicular to beam axe. The angle between the beam axe and vertical is θb.
Furthermore, assume that an external force, Fe, perpendicular to the beam axe
and a torque is acting at the end of the beam.

In this case, the Euler-Bernoulli equation (37), is extended to

EI
∂4w(x, t)
∂x4

+ ρa
∂2w(x, t)
∂t2

+ρa
[
ÿb + xθ̈b + wθ̇b + g sin(θb)

]
(42)

+
∂δ(x− L)Me

∂x
+ δ(x − L)Fe = 0

Using the same method (separation of variable) as in appendix B where the
de�ection is expanded in modes, ie.

w(x, t) +
∞∑
i=0

ϕi(x)qi(t)

equation (42) becomes

ω2
i qi + 2ζiωiq̇i + q̈i

= αiθ̈b + βi

[
ÿb + g sin(θb)

]
(43)

− 1
µ

∂ϕi(L)
∂x

Me − ϕi(L)
µ

Fe

where

αi = − 4
L

∫ L

0
xϕi(x)dx (44)

βi = − 4
L

∫ L

0
ϕi(x)dx (45)

µ =
ρaL

4

Here the coriolis term wθ̇b has been neglected and friction has been added to the
model. See appendix H for numerical method for determine the beam constants
αi, βi and µ.
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Figure 16. 1DOF �exible robot arm.

D 1DOF �exible link with payload

The link is a�ected by a mounted DC-motor and a payload (massmp) positioned
at the end of the beam. Applying Newtons law on the pay load, we have

mpÿe = Fe −mpg sin(θb)

where the perpendicular accelration of the end point (and the pay load) is

ÿe = Lθ̈b + ẅ(L, t)

ie

Fe = mp

[
lθ̈b +

∞∑
j=1

ϕj(L)q̈j + g sin(θb)
]

(46)

Assuming Me = 0 (ie. assuming the pay load is a point mass) (43) becomes:

ω2
i qi + 2ζiωiq̇i + q̈i =

[
αi − mp

µ
ϕi(L)

]
θ̈b

+
(
βi − mp

µ
ϕi(L)

)
g sin(θb) (47)
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−mp

µ
ϕi(L)

∞∑
j=1

ϕj(L)

This can also be written as

ω2
i qi + 2ζiωiq̇i + q̈i = α?

i θ̈b + β?
i g sin(θb) +

∞∑
j=1

κ?
ij q̈j(t)

where

α?
i = αi − mp

µ
ϕi(L)

β?
i = βi − mp

µ
ϕi(L) (48)

κ?
ij = −mp

µ
ϕi(L)ϕj(L)

The DC-moter is descriped by (32)

θ̈b = k1Vr + k2Mb + k3θ̇b (49)

where

Mb = EI
∞∑
i=1

ϕ′′
i (0)qi(t)

D.1 Moving 1DOF with payload and external forces

If the beam with pay load is moving and have external forces the (43) becomes

ω2
i qi + 2ζiωiq̇i + q̈i = α?

i θ̈b + β?
i g sin(θb) +

∞∑
j=1

κ?
ij q̈j(t)

+βiÿb (50)

− 1
µ

∂ϕi(L)
∂x

Me − ϕi(L)
µ

Fe

where Fe and Me are external shear forces and torques (in additional to the
force from the pay load).

E 2DOF �exible link robot with pay load

E.1 Beam 1

The e�ect on beam 1 of the actuator 2 is modelled as a pay load. The impact
of beam 2 is described through F1e and M1e.

The resulting torque on the end point gives:

Jhθ̈1e = −M1e −Md
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2 DOF �exible robot

Figure 17. 2DOF �exible robot arm.

where the induced torque (cf. (35)) is given by:

Md = J2N2

(
k21u2 + k23θ̇2

)
and

θ̈1e = θ̈1 +
∞∑

j=1

∂ϕ1j(L)
∂x

q̈1j

This results in

M1e = −Jhθ̈1 − Jh

∞∑
j=1

∂ϕ1j(L)
∂x

q̈1j − J2N2

(
k21u2 + k23θ̇2

)
(51)

The shear force acting on the end point is the orthogonal projection of the shear
(Fb2) and the axial (Fx2) force from beam 2, ie.

F1e = Fb2 cos(θ2) − Fx2 sin(θ2) (52)

where

Fb2 = EI2

∞∑
i−1

ϕ′′′
2i(0)q2i

and
Fx2 = −(ml2 +mp)ẍb2 + ((ml2 +mp)g cos(θ2)

where

ẍb2 = ÿe1 sin(θ2)

=
(
L1θ̈b1 +

∞∑
i=1

ϕ1i(L)q̈1i

)
sin(θ2) (53)

Introducing this in (50) we are obtaining (6) and (37) ie..

ω2
1iq1i + 2ζ1iω1iq̇1i + q̈1i =

n∑
j=1

κ∗1ij q̈1j + θ̈b1

[
α∗

1i +
Jhϕ

′
1i(L1)
µ1

]

+
Jhϕ

′
1i(L1)
µ1

n∑
j=1

ϕ′
1j(L1)q̈1j − F

(1)
ye

µ1
ϕ1i(L1)

+
J2N2ϕ

′
1i(L1)

µ1

[
k21u2 + k23θ̇2

]
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and

F (1)
ye = Fb2 cos(θ2) + Fx2 sin(θ2)

Fb2 = EI2

n∑
j=1

ϕ2j(0)
′′′q2j(t)

Fx2 = (ml2 +mp)


L1θ̈b1 sin(θ2) +

n∑
j=1

ϕ1j(L)q̈1j(t) sin(θ2)




E.2 Beam 2

For the lower beam (beam 2) there are no external forces (except for the e�ect
from the pay load), so the only non zero terms in (50) are the accelrations of
the beginning of the beam (ie. ÿb2 and θ̈b2).

Now, since

θb2 = θ1 +
∞∑
i=1

ϕ′
1i(L)q1i + θ2

the angular accelration is

θ̈b2 = θ̈1 +
∞∑
i=1

ϕ′
1i(L)q̈1i + θ̈2 (54)

Furthermore

ÿb2 = ÿ1e cos(θ2)

= (L1θ̈1 +
∞∑
i=1

ϕ1i(L)q̈1i

)
cos(θ2) (55)

Introducing these two accelrations into (50) we obtain the description for beam
2, ie. (4) or:

ω2
2iq2i + 2ζ2iω2iq̇2i + q̈2i =

n∑
j=1

κ∗2ij q̈2j + α∗
2i


θ̈2 + θ̈b1 +

n∑
j=1

ϕ′
1j(L1)q̈1j(t)




+β∗2i


L1θ̈b1 +

n∑
j=1

ϕ1j(L1)q̈1j


 cos(θ2)

F Equations of Motion in a Compact Form

If we de�ne the vectors q
1
and q

2
as

q
1

=



q11
...
q1n


 , q

2
=



q21
...
q2n


 (56)
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then the acturator equations (1) and (2) can be brought into a more compact
form

θ̇b1 = P1u1 + P2q1 (57)

θ̇2 = P3u2 + P4q2 (58)

where Pi, i = 1 ∼ 4 are given directly from (1) and (2).

If we introduce the matrices

M6 =
[
P2 0
0 P4

]
, M7 =

[
P1 0
0 P3

]
(59)

then the actuator dynamics, (57) and (58), can in a compact form be written
as

θ̇ = M6u+M7q (60)

The link equations (6) and (4) can also be expressed in a condensed form. Let
us introduce the notation:

Wi =



ω2

i1 0
. . .

0 ω2
in


 Ri =




2ζi1ωi1 0
. . .

0 2ζinωin


 i = 1, 2

If (57) and (58) are introduced in (6) and (4) (for θ̈b1 and θ̈2, then the upper
link can be described by

W1q1 +R1q̇1 + q̈
1

= B11q̈1 +B12

[
P1u̇1 + P2q̇1

]
+B13q̈1 +B14q2 +B15

[
P1u̇1 + P2q̇1

]
+B16q̈1

+B17u2 +B18

[
P3u2 + P4q2

]
(61)

where B1i, i = 1 ∼ 8 are de�ned through (6). Due to (37) B15 and B16 are
a�ne in the pay load mass mp. This can also be expressed as:

W1q1 +R1q̇1 + q̈
1

= [B14 +B18P4] q2
+ [B12P2 +B15P2] q̇1 + [B11 +B13 +B16] q̈1
+ [B17 +B18P3] u2 + [B12P1 +B15P1] u̇1

= P11q2 + P12q̇1 + P13q̈1 + P14u2 + P15u̇1 (62)

where the latter equality implicitly de�nes P1i, i = 1 ∼ 5. That results in an
a�nity of mp in P12, P13 and P15.

For the second link (or the lower arm) we can in a similar fashion express (4) as

W2q2 +R2q̇2 + q̈
2

= B21q̈2

+B22

[
P3u̇2 + P4q̇2 + P1u̇1 + P2q̇1 +B23q̈1

]
+B24

[
P1u̇1 + P2q̇1

]
+B25q̈1 (63)
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Here the a�ne dependency enters through B21, B22 and B24. An rearangement
of this equation yields

W2q2 +R2q̇2 + q̈
2

= B22P4q̇2 + [B22P2 +B24P2] q̇1
+B21q̈2 + [B22B23 +B25] q̈1 +B22P3u̇2

+ [B22P1 +B24P1] u̇1

= P21q̇2 + P22q̇1 + P23q̈2 + P24q̈1 + P25u̇2 + P26u̇1 (64)

where, again, the latter equality implicitly de�nes the P2i i = 1 ∼ 6, which all
are a�ne in mp.

If we furthermore de�ne

q =
[
q
1
q
2

]
, u =

[
u1

u2

]
, θ =

[
θb1

θ2

]

the we can bring the description of the �exibility into the form

q̈ = M1q +M2q̇ +M3q̈ +M4u+M5u̇ (65)

where

M1 =
[ −W1 P11

0 −W2

]

M2 =
[
P12 −R1 0
P22 P21 −R2

]

M3 =
[
P13 0
P24 P23

]

M4 =
[

0 P14

0 0

]

M5 =
[
P15 0
P26 P25

]

The matrices, M2, M3 and M5, are all a�ne in mp.

G The frequency equation

The solution to the frequency equation

cosh(x) cos(x) = −1

or

cos(x) = − 1
cosh(x)

(as illustrated in Figure 18) can numerically be found as the roots to

f(x) = cos(x) +
1

cosh(x)
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by means of eg. Newton-Rahpson iterations, ie.

xn+1 = xn − f(xn)
f ′(xn)

In Figure 18 the two terms are plotted and it is obvious that the last term vanish
as x increases.
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Figure 18. Plot of the two terms in the frequency equation

As pointed out in (Rostgaard 1995), the roots for cos(x), ie. (i− 1
2)π is a good

approximation (especially for large values of x) and a good starting point for
the iterations.

function y=freqeq(n)

% Solves the frequency equation

%

% Cos(x)*Cosh(x)=-1

%

% for the first n solutions.

res=1e-5;

y=zeros(n,1);

for i=1:n,

err=10;

x=(i-0.5)*pi;

while err>res,

fx=cos(x)+1/cosh(x);

dfx=-sin(x)-sinh(x)/cosh(x)^2;

err=abs(fx);

x=x-fx/dfx;

end

y(i)=x;

end

H Beam parameters

We are interesting in determine the beam constants in (45) and (44). For con-
venience we omit the i index in the following.
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If

v(x) =




cosh(γx)
sinh(γx)
cos(γx)
sin(γx)




then
ϕ(x) = cv(x)

where
c =

[
c1 c2 c3 c4

]
From (Rottmann 1960) p. 146 we have∫

cosh(γx)dx =
1
γ

sinh(γx)∫
sinh(γx)dx =

1
γ

cosh(γx)∫
cos(γx)dx =

1
γ

sin(γx)∫
sin(γx)dx = −1

γ
cos(γx)

or ∫ L

0
v(x)dx = Ã

1
γ

(v(L) − v(0))

where

Ã =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0




ie.

β = − 4
L

∫ L

0
ϕ(x)dx = −4cÃ

1
γL

(v(L) − v(0))

From (Rottmann 1960) we also have:∫
x cosh(γx)dx = − 1

γ2
cosh(γx) +

x

γ
sinh(γx)∫

x sinh(γx)dx = − 1
γ2

sinh(γx) +
x

γ
cosh(γx)∫

x cos(γx)dx =
1
γ2

cos(γx) +
x

γ
sin(γx)∫

x sin(γx)dx =
1
γ2

sin(γx) − x

γ
cos(γx)

or ∫ L

0
xv(x)dx = − 1

γ2
Ã2(v(L) − v(0)) +

L

γ
Ãv(L)
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ie.

α

L
= − 4

L

∫ L

0
xϕ(x)dx =

4c
(γL)2

Ã2 (v(L) − v(0)) − 4c
γL

Ãv(L)

function [gl,c,alfl,beta]=beamc(n)

%Usage: [gl,c,alfl,beta]=beamc(n)

%

%Determine the beam constants

%

% gl: gamma_i*L

% c: [c_{1i}, c_{2i}, c_{3i}, c_{4i}

% beta beta_i

% alfl: alfa/L

%

% for i=1:n.

gl=freqeq(n); % gamma*L

iA=[0 1 0 0; 1 0 0 0; 0 0 0 1; 0 0 -1 0]; % iA=inv(A)

c=zeros(n,4);

beta=zeros(n,1);

alfl=zeros(n,1); % alfa/L

for i=1:n,

ci=[0.5 -0.5*(cosh(gl(i))+cos(gl(i)))/(sinh(gl(i))+sin(gl(i)))];

ci=[ci -ci];

c(i,:)=ci;

beta(i)=-4*ci*iA*(vfi(gl(i))-vfi(0))/gl(i);

alfl(i)=ci*4*iA^2*(vfi(gl(i))-vfi(0))/gl(i)^2-4*ci*iA*vfi(gl(i))/gl(i);

end

function res=vfi(x)

res=[cosh(x);

sinh(x);

cos(x);

sin(x) ];
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