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ABSTRACT This paper presents a novel semi-parametric approach for local function ap-

proximation under limited global information about the underlying data generating structure.

The related technique, named hierarchical local regression (HLR), is based on an aggregate

of local models with random mean parameters. The structure is hierarchical in that the lo-

cal random mean parameters assume probability distributions that are de�ned by common

globally parameterized mean-variance functions. While the global mean function expresses

global information about the expected response, the variance function quanti�es the uncer-

tainty associated with the global information. On the one hand, this formulation accounts

for the parsimonious nature of the global mean function. On the other hand, the information

provided by estimated global parameters is combined with locally weighted data to achieve

robust local adaptation in data sparse regions which occur frequently in high-dimensional

situations (curse of dimensionality). We suggest a criterion for estimation of the parameters

and derive an empirical Bayes prediction formula. We present two numerical studies to illus-

trate di�erent aspects of the method. One example involves prediction of power production

in windmill farms based on real data.

Keywords: Hierarchical local regression, Function approximation, Curse of dimensionality,

Empirical Bayes, BLUP, Global information.
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1 Introduction

Data-based prediction (simulation) of the response of a given system is a central problem

in statistics, system theory, and arti�cial intelligence. A fully parametric approach utilizes for

the observed data a family of probability distributions indexed by a parameter. A parameter

estimate is a value that minimizes an appropriately de�ned \discrepancy measure" between

the predicted and observed responses. In many situations of practical interest, it may be diÆ-

cult to construct global models that accommodate the trade-o� between model parsimony and

unbiasedness of the resulting estimates without extensive knowledge of the underlying data

generating structure. For instance, a global regression function that could provide good trend

description of data may perform poorly in adapting to localized function variations. Sim-

ple increase in the number of regression function parameters may not remedy the situation as

over-parameterization leads to over-�tting and random error in estimated parameter values. A

nonparametric approach based on local �t, on the other hand, aims at predicting the response

at a point by utilizing statistical properties of the nearby data. Examples of such approach

are local regression in statistics (Cleveland & Delvin, 1988) and locally weighted learning in

arti�cial intelligence (Atkeson, Moore, & Schaal, 1997). Local models with small number

of parameters are usually suÆcient to describe function variations in small neighborhoods.

However, they generally fail to provide good estimates in high dimensional situations, since

as the dimensions increase the bandwidth in each coordinate should be selected very large in

order to accommodate only a moderate percentage of data points. It is easy to verify that a

bandwidth covering a certain fraction of each coordinate, say 0 < � < 1, on a p-dimensional

cube covers only �p of the cubic volume and this quickly tends to zero as p increases. Tech-

niques such as projection pursuit regression (Friedman & Stuetzle, 1981) attempt to alleviate

the situation. However, no prior information is exploited in these approaches. The problem of

high-dimensionality, sometimes referred to as the curse of dimensionality, is a major limitation

in many areas related to regression analysis.

The method presented here extends the ideas of hierarchical modeling (Bryk & Rau-
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denbush, 1992) to local regression, hence the technique is named hierarchical local regression

(HLR). In this approach, expected response parameters are assumed to be random e�ects

whose probability distributions are de�ned by a common mean-variance function with un-

known global parameters. An important part of HLR modeling involves estimation of the pa-

rameters of the mean-variance function. Note that in contrast to traditional regression analysis

where parameters of the response distributions are estimated, HLR provides a technique for

estimation of the expected response distributions. The globally parameterized mean-variance

functions respectively express information about global behavior of the expected response and

the associated uncertainty. In this spirit, the global mean function only attempts to capture

basic trends in data rather than provide detailed description. Depending on the particular

problem of interest, structures such as those derived from low order polynomials and splines,

various types of qualitative information (periodicity, symmetry, etc.), and basic laws of physics

may be regarded as suitable candidates for incorporation into the global mean function. HLR

provides detailed description of the response by relying on assumptions analogous to those

related to local regression, hence introducing only minimal a priori smoothness restrictions.

HLR is distinguished from local regression by the fact that the information embedded in the

estimated global parameter values is combined with locally weighted data to obtain robust

local adaptation in data sparse regions which occur frequently in high-dimensional situations.

In this way, HLR enjoys the bene�ts of both global and local approaches. In analogy with

hierarchical models, the combination of globally estimated parameters with locally weighted

data has the consequence that local regression estimates are pulled towards the estimated

global mean function which may be thought of as an attraction surface (in contrast to regres-

sion surface) for prediction of function values. Another major di�erence between HLR and

local regression is in the way the optimization problem for estimation of the parameters is set

up. A local regression estimate at a point may be regarded as the solution to an optimization

criterion that uses locally weighted data around the neighborhood of interest. As we move

from one neighborhood to another, a new criterion is obtained, not only because the data

weighting changes, but also because a new set of local optimization parameters is involved.
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Estimates at various neighborhoods may then be thought of as solutions to disjoint problems

of this type. Missing in such formulation is a method of incorporating global information in

form of imposing certain functional relations among the local optimization parameters. The

HLR global parameter estimate, on the other hand, is the solution to a single criterion, com-

puted as the sum of local log-likelihoods of data in di�erent neighborhoods. The estimated

values of the global parameters determine the common mean-variance function for the local

random e�ects, or equivalently, their unconditional (prior) probability distributions. Empir-

ical Bayes predictions (Maritz & Lwin, 1989) of the function values, also known as BLUP

estimates (Robinson, 1991), are computed as the posterior mode of the local e�ects using

the aforementioned estimated prior distributions and locally weighted data. The result is a

prediction formula with the appealing property that local regression estimates are attracted

towards the (estimated) global mean function, where the magnitude of attraction is a decreas-

ing function of the number of available data points in the neighborhood of interest and the

ratio of estimated values of the global variance function to the measurement noise variance

at the location of interest. Finally, attention is restricted to normally distributed variables

throughout the paper. Even though the normal assumptions facilitate presentation and inter-

pretability of the results, the technique is quite general and may be almost directly applied

to other distribution assumptions.

The rest of this paper is organized as follows. Section 2 presents the problem formu-

lation, assumptions, and the method. In Section 3, the theory is applied to modeling of a

linear time varying dynamic system using simulated data, and prediction of power production

in windmill farms using real data. Section 4 o�ers concluding remarks.

2 Motivation and Formulation

Let x 2 R
n , y 2 R, and � 2 R generically denote the explanatory variable, the observed

response, and the expected response, respectively. We only consider �xed design (non-random

explanatory variables) situations. For random design cases, the following discussions hold if
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all distributions are conditioned on the explanatory variables. Our primary goal is to predict

the response at arbitrary values of the explanatory variable or equivalently to estimate a

value for the expected response � based on observed values of x and y. In most applications

of practical interest, some information about the global dependency of y upon x is given

which may translate into a parametric structure f(x; �) for the expected response �(x) where

� is the parameter. Relying totally on such parametric models may lead to highly biased

estimates if they are only crude approximations to the \true" mean structure. Relying on

purely data driven approaches such as local regression, on the other hand, ignores the existing

information which might turn indispensable in predicting the response in sparse data regions.

The hierarchical structure we propose leads to predictions of the form

�̂(x) =

�P
i

w(xi � x)

��1P
i

w(xi � x)yi +

�P
i

w(xi � x)

��1
��2(x)�2(x)f(x; �)

1 +

�P
i

w(xi � x)

��1
��2(x)�2(x)

(2.1)

where xi and yi, i = 1; � � � ; N , are observed pairwise data, fw(xi � x)g is a positive weight

sequence that downplays or totally eliminates the contribution of observations whose corre-

sponding value of the explanatory variable is \far" from the point of interest x, �2(x) is the

noise variance at x, and �nally �2(x) is a global variance function that re
ects the \quality"

of the parametric model f(�; �) at x. Small values of �2(x)��2(x)
�P

i

w(xi � x)

��1
in the

equation (2.1) lead to the kernel estimator
P
i

w(xi � x)yi=
P
i

w(xi � x) (Nadaraya, 1964;

Watson, 1964; Gasser & M�uller, 1979). Large values of this ratio, on the other hand, simply

render f(x; �) as the predicted response. The prediction formula (2.1) implies that f(x; �) is

an attraction surface for �̂(x) where �2(x)��2(x)

�P
i

w(xi � x)

��1
determines the magni-

tude of attraction towards the surface. Since �, �(x), and �(x) are unknown, they should be

�rst estimated from the data. We present local and global assumptions that lead to derivation

of a suitable objective function for calculation of �, �(x), and �(x) and thereafter study the

response prediction problem.

Local assumptions: Around a point x the local assumption is stated through the
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model

for all data points (xi; yi) such that i 2 I(x) : yij�(x) � N
�
�(x);

�2(x)

w(xi � x)

�
(2.2)

where I(x) denotes the set of data indices i for which w(xi � x) > 0 and �2(x) is a variance

term that re
ects measurement noise variance at x. We only consider weight sequences that

are computed from product kernels (H�ardle, 1990) with �nite support (w(xi � x) = 0 for xi

outside the support of the kernel around x). We remind that product kernel functions in multi-

variate cases are computed as the product of one-dimensional kernel functions that correspond

to each explanatory variable. The variance term �2(x) may be assumed to be an unknown

global constant or parameterized as a function of x with unknown global parameters. In both

cases, for simplicity we denote the parameters of �2(x) by �. We return to the problem of

estimating the parameters of the measurement noise model later when estimation of global

parameters is discussed. Using (2.2) to obtain a maximum likelihood estimate for the mean

leads to a kernel estimator (Nadaraya, 1964; Watson, 1964; Gasser & M�uller, 1979). It is easy

to see that this estimate does not change if the weights are scaled. Such scaling will however

change the estimated values of the global parameters and predicted values of the response for

HLR. It is therefore important to scale the weights properly. The scaling is chosen such that

for in�nitely many uniformly distributed explanatory variables within a �nite support kernel,

a constant function, and constant measurement noise variance, the mean of the maximum

likelihood estimate for the measurement noise variance, parameterized as a constant, is equal

to the true noise variance. This holds if (
R
w(x0�x)dx0)(R dx0)�1 = 1 where both integrations

are taken over x0 : w(x0 � x) > 0.

We continue by forming a set S of sampled values of the explanatory variable and

constructing local models around xj 2 S. Later in this section, we connect the local models

around xj 2 S through a hierarchical structure. The set of sampled values S may not

necessarily coincide with the set of available values of the explanatory variable in the dataset.

Instead, selection of S is reserved as a design factor for optimal estimation of global parameters.

Even though we do not treat this topic formally in the present article, we provide numerical
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support for relative merit of several sampling schemes in the examples of Section 3.

Now, for each xj 2 S let Y(xj) denote fyiji 2 I(xj)g. Given (2.2) and assuming

independent measurements, the likelihood of observing Y(xj) is given by

p(Y(xj)j�j) = 1p
(2�)nj�

nj
j

exp

0
@� 1

2�2j

X
i2I(xj)

wij(yi � �j)
2

1
A (2.3)

where �j = �(xj), wij = w(xi � xj), �j = �(xj), and nj is the number of elements of I(xj).

Remark 1 The smoothness assumption underlying (2.2) is that the function may be suÆ-

ciently described as a local constant in small neighborhoods. Extension to local polynomials

of higher order, say order m, is possible through

8i 2 I(x) : yij�(x); � � � ; �(m)(x) � N
�
�(x) + � � �+ �(m)(x)(xi � x)m;

�2(x)

w(xi � x)

�
(2.4)

where �(k)(x) is proportional to the kth derivative of the expected response at x. If (2.4)

is considered, all discussions in the paper may be applied, keeping in mind that the local

parameter at x is (�(x); � � � ; �(m)(x))> rather than �(x). Similarly, other appropriate forms

of local models may be employed within the analysis.

Global assumptions: As stated earlier, local assumptions stated so far are analogous

to the general framework for local regression. We depart from this framework by introducing

information about the global behavior of the response. Regarding the local parameters f�jg
as random variables, we use the global information to derive a parametric class of probability

distributions for these variables. The (global) parameters involved are unknown and should

be estimated from the data. This is quite analogous to the approach followed in hierarchical

modeling (Bryk & Raudenbush, 1992). More speci�cally, we assume

�(x) � N �f(x; �); �2(x)� ; (2.5)

where f(x; �) and �2(x) are common mean-variance functions for local e�ects. The variance

function �2(x) may be assumed to be an unknown global constant or parameterized as a
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function of x with unknown global parameters. In both cases, for simplicity we denote the

variance parameters of (2.5) by �. From (2.3) and (2.5), we compute the (marginal) likelihood

of Y(xj) as a function of the global parameters by integrating out the local e�ect in (2.3).

Denoting this likelihood by p(Y(xj); �;�;�) to emphasize the dependency upon the global

parameters, we have

p(Y(xj); �;�;�) =

Z
�j

p(Y(xj)j�j)p(�j)d�j (2.6)

where p(�j), as given by (2.5), is the density function of a Gaussian distribution with mean

fj = f(xj; �) and variance �j = �(xj).

Remark 2 HLR is able to incorporate global information in a variety of forms. To illus-

trate this point by an example, let us consider a function of the scalar variable x which is

\almost" symmetric around the midpoint of some interval. De�ning the equidistant sam-

pling S = fx0; � � � ; x2Tg where x0 and x2T coincide with the end points of the interval and

� = (�0; � � � ; �T )>, the global mean function may be written as fj = �j for j = 0; � � � ; T , and
fj = �2T�j for j = T + 1; :::; 2T (the global variance function may be assumed constant). In

the simple \almost" symmetric case here, HLR essentially uses dense data regions at one half

of the range of x to infer upon function values at data sparse half of the range.

Estimation of the global parameters: While separate optimization of local likelihoods

(2.3) with respect to �j for varying j yields local estimates for the local parameters, the

approach fails for estimation of the global parameters since optimizing (2.6) for �, �, and �

yields local estimates for the same global parameters as j varies. The situation may be viewed

as a multi-objective optimization where varying local criteria log p(Y(xj); �;�;�) compete for

the same global resources �, �, and �. The local criteria may be aggregated into a single

global objective function by

J(�;�;�) =
X

j:xj2S

Lj(�;�;�) (2.7)

where Lj(�;�;�) = log p(Y(xj); �;�;�). The objective function in (2.7) is proportional to

the logarithm of the total likelihood of data, if 8xj;xj0 2 S, j 6= j 0 : I(xj)\ I(xj0) = ;, i.e. in
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case the supports of the kernels centered around xj 2 S are non-overlapping. In the general

situation of overlapping kernel supports, the objective function (2.7) may be regarded as the

decomposition

J(�;�;�) =
MX

m=1

X
j:xj2Sm

Lj(�;�;�) (2.8)

where each subset Sm consists of kernel centers with non-overlapping supports and S =
S
m

Sm.

Each term
P

j:xj2Sm
Lj(�;�;�) in the decomposition (2.8) is the log-likelihood of data given the

local models centered around xj 2 Sm. Optimizing
P

j:xj2Sm
Lj(�;�;�) with respect to �, �,

� yields various estimates for the same global parameters as m varies. By integrating these

criteria into the global objective function (2.8) a global estimate of the global parameters is

obtained. This heuristically justi�es the use of J(�;�;�) as an appropriate objective function

to estimate the global parameters from.

Asymptotic behavior: Consider a situation where a set of kernels cover the whole

dataset of N independent observations. In case the observations within kernels are indepen-

dently obtained, N coincides with the sum of number of observations within the kernels, and

under general regularity conditions the law of large numbers for weighted sums implies con-

vergence of N�1J(�;�;�) to its asymptotic limit
P

j:xj2S
EfLj(�;�;�)g as N !1. This can

be shown following arguments similar to the proof of Proposition (1) below. The indepen-

dence for example holds for kernels with non-overlapping supports as discussed above. The

proposition below shows similar convergence results for a more general case.

Proposition 1 Let the true data generating mechanism be such that each data point is

Gaussian with bounded deterministic mean and variance. Deleting all kernels that contain no

observation, consider the decomposition (2.8) where for each m the kernels corresponding to

Sm cover all the observations. Denote the number of elements of Sm by Km and let N !1
and Km !1 for all m = 1; � � � ;M (note that the average number of observations per kernel

for each m cannot tend to zero, or equivalently Km=N < 1 for all m = 1; � � � ;M , since no

empty kernel exists in the set). Also, assume that for all values of � and �, the functions
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�2(x), �2(x), ��2(x), and ��2(x) are bounded for all x. Then

N�1J(�;�;�) �!a.s.
X

j:xj2S

EfLj(�;�;�)g

if M is smaller than a variable of order N
1

2
�

1

�0 for some �0 � 1.

Proof: See the appendix.

Prediction: Predictions of function values may be easily obtained once the global pa-

rameters are calculated from (2.7). We insert estimated values of �, �, � in p (�(x)), and

p
�Y(x)j�(x)�, and compute the posterior mode of �(x),

�̂(x) = argmax
�(x)

p
�Y(x)j�(x)� p (�(x)) ; (2.9)

at a point x where the prediction is desired. The posterior mode �̂(x) is the predicted value,

which in the Gaussian case coincides with posterior mean. The prediction formula (2.1) is the

closed form solution to (2.9) for the locally constant model (2.2). More general local models,

such as local polynomials of arbitrary orders (see Remark 1), may be treated similarly to

derive suitable prediction formulas.

Finally, for the locally constant model (2.2) we compute the variance of the posterior

distribution of �(x) which yields

var(�̂(x)) =
�2(x)�2(x)P

i2I(x)

w(xi � x) + �2(x)
:

This equation is useful for calculation of con�dence bounds for the predicted function values.

3 Applications

3.1 Modeling of a linear time-varying system

In this numerical study, we consider modeling of a linear time-varying dynamic system

based on simulated data. We pursue several objectives in this example. First, it is well-

known that local regression performs poorly in high dimensional situations as a result of
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increasing data sparsity. This example concerns a 4 dimensional case with moderate number

of observations for which local regression fails due to lack of suÆcient data points in several

neighborhoods. Second, we study the ability of HLR to adapt to localized variations as well

as the ability to provide good overall description of the trend in data as compared to a fully

parametric approach where the comparison is performed for di�erent number of observations.

Third, we study the e�ect of kernel placement schemes on the performance of HLR.

Let us consider the following data generating mechanism,

yt = a1;t yt�1 + a2;t yt�2 + b0;t ut + b1;t ut�1 + �t (3.10)

where ut � N(0; 1) is the measured input and �t � N(0; 0:04) is the (measurement) noise

term. Moreover, f�tg and futg are i.i.d. and mutually independent. The time-dependency of

the parameters is described by

a1;t = 0:4 sin
�yt�1+yt�2

2

�
;

a2;t = 0:4 cos
�
yt�1+yt�2

2

�
;

b0;t = 1:2 + 0:4 cos
�
yt�1+yt�2

2
+ ut + ut�1

�
;

b1;t = �0:2 + 0:4 sin
�yt�1+yt�2

2
+ ut + ut�1

�
;

(3.11)

and histograms over parameter variations are shown in Figure 1. Let x(t) denote the vector
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Figure 1: Histograms of the parameter values of the training data.

(yt�1 yt�2 ut ut�1)
>, and assume a linear mean and constant variance function for local e�ects,
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i.e. �(x) � N (x>�; �2) where � is an unknown global parameter vector and �2 is an unknown

global constant. For the local model (2.2), we select �2(x) to be a global constant and denote

it by �2. We generate data for parameter estimation by simulating 400 time steps of the

recursive equation (3.10) and optimize the criterion (2.7) to calculate global parameter esti-

mates. The same dataset is later used as the set of pairwise data points xi, yi, i = 1; � � � ; N ,

for calculations of the equation (2.1) and for local regression calculations. We repeat the

procedure of estimating the global parameters for three di�erent kernel placement schemes

viz. uniformly distributed sets of disjoint kernels, multivariate normally distributed kernels,

and kernels centered at each observation. In all cases, triangular product kernels each having

hyper-rectangular support have been used.

Uniformly distributed sets of disjoint kernels: First �x a collection of disjoint

kernels that cover the entire range of the explanatory variables. We can obtain di�erent col-

lections of this type by setting various position parameters, and simultaneously shifting all the

kernel centers by the same position parameter. Starting from a �xed set of disjoint kernels, we

generate various sets by sampling the position parameters from a uniform distribution. Delet-

ing the kernels that contain no data, the set S is taken as the center positions of the union

of all the generated kernels. Addition of a new set of disjoint kernels obviously changes the

value of the estimated parameter. We select the number of sets of disjoint kernels (M) such

that further addition of a set of kernels does not cause a signi�cant change in the estimated

values of the global parameters. In this example, 200 sets of disjoint kernels, each containing

an average of 28 kernels is selected.

Multivariate normally distributed kernels: The center positions of the kernels

are sampled from a multivariate normal distribution whose mean and covariance are the sam-

ple mean and covariance estimates for the sequence of explanatory variables in the dataset.

We select 7000 normally sampled kernels. Similar to previous kernel placement scheme, the

criterion for selection of the number of kernels is the convergence of estimated values of the

global parameters.

Kernels centered at observations: In this kernel placement scheme, the set S is
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selected as the set of available explanatory variable values in the dataset.

For validation and selection of bandwidth, we generate new data from the data gen-

erating mechanism (3.10) by simulating 500 time steps with �t = 0. Using the formula

(2.1) recursively, where at stage t of the recursion the explanatory variable x is set to

x(t) = (�̂(x(t � 1)) �̂(x(t � 2)) ut ut�1)
>, we generate a sequence of 500 simulated val-

ues. Initial conditions in both of the 500 step simulations are selected to be zero. The mean

squared error (sim2) is used to assess the performance of the estimated model where the error

sequence is de�ned as the di�erence between output sequences of the two 500 step simulations.

The optimal bandwidth for each case is selected as the bandwidth minimizing sim2.

The results are summarized in Table 3.1 and Figure 2. In Table 3.1, values of the esti-

mated variance parameters, optimized sim2 values, and the corresponding optimal bandwidths

are shown for the three kernel placement schemes and di�erent number of observations. For

comparison, the table also shows the results obtained from estimating a linear ARX model.

Figure 2 compares the linear (ARX) and the HLR estimated models where uniform kernel

placement scheme is used for HLR. It is found that even though the linear ARX model is able

to capture the main dynamics of the system, it is clearly outperformed by HLR regardless of

the kernel placement scheme. The superior performance of HLR becomes more pronounced

as the number of observations increases. Notice that HLR uses no information about the

dynamical relations (3.11) nor does it attempt to model the dynamics of parameter varia-

tions. Furthermore, we apply local regression with the same bandwidth as the one used for

HLR. The simulated values are obtained recursively in exactly the same manner as the one

for HLR except for that all simulated values (including those inserted in x(t) for the recursive

calculations) are now local regression estimates rather than HLR estimates. Local regression

fails to simulate the behavior of the system as in all our simulations (even when the number

of observations is 400) the recursions hit a point around which the kernel contains no data

points.

Finally, our experiment with this example shows that kernel placement scheme in
u-

ences the performance of the estimated model and is an important design factor. Furthermore,
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Model type �̂2 �̂2 b sim2

Linear 400 obs. 0.3412 { { 0.40

Linear 200 obs. 0.4038 { { 0.41

Linear 100 obs. 0.4076 { { 0.43

Linear 50 obs. 0.5759 { { 0.46

HLR, On Obser. 400 obs. 0.33 0.33 1.6 0.21

HLR, On Obser. 200 obs. 0.46 0.40 2.0 0.22

HLR, On Obser. 100 obs. 0.60 0.27 2.1 0.26

HLR, On Obser. 50 obs. 0.71 0.54 2.5 0.28

HLR, Uniformly 400 obs. 0.15 0.46 1.3 0.22

HLR, Uniformly 200 obs. 0.24 0.59 1.8 0.22

HLR, Uniformly 100 obs. 0.31 0.52 2.1 0.28

HLR, Uniformly 50 obs. 0.63 0.61 3.0 0.29

HLR, Normally 400 obs. 0.23 0.21 1.4 0.23

HLR, Normally 200 obs. 0.32 0.19 1.7 0.25

HLR, Normally 100 obs. 0.46 0.20 2.0 0.28

HLR, Normally 50 obs. 0.83 0.18 2.6 0.28

Table 1: Validation results using three kernel placement schemes of HLR and linear ARX
model for di�erent number of observations. The estimated values of �2 and �2, and the
bandwidth are denoted by �̂2, �̂2, and b respectively.

we �nd that the number of kernels required for the convergence of the global parameter (i.e.

a situation where addition of new kernels does not cause a signi�cant change in the estimated

value of the global parameter) is smaller for uniformly distributed sets than for normally

distributed kernels.
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Figure 2: The solid curves show a simulation of the true function with no added noise. The
dashed lines show the results of simulations with a linear (upper �gure) and HLR (lower
�gure) models.
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3.2 Modeling of power production in windmill farms

The second study concerns prediction of the output power in windmill farms as a function

of observed meteorological data. The objective of this example is to apply the technique to

a real modeling problem where a parsimonious physical model will be employed as the global

mean function. Furthermore, this example illustrates a situation where noise and model

quality variances are best modelled as functions of x rather than constants.

In-depth study of the windmill data used in this example can be found in Nielsen,

Madsen, Nielsen, & T�fting (1999). Sampled observations of the generated power, wind

speed, and wind direction were taken every 30 minutes for a period of one year. We split the

dataset into the data collected during odd weeks and the data collected during even weeks

and use these two datasets for training (estimation) and testing (validation) respectively. The

explanatory variables are wind speed and wind direction. Figure 3 shows a polar plot of the

explanatory variables for the training set. Notice that in some wind directions, no high wind

speed value has been observed during the year. For instance at 120 degrees the maximum

observed wind speed is less than 10 m/s. In Figure 4 the training data is used to plot the

generated power as a function of the wind speed for the wind direction 330�15 degrees and

as a function of wind direction for the wind speed 7.25�0.25 m/s. It can be seen that the

produced power approximately follows a s-shaped function of the wind speed and deviation

from the s-shaped function varies with wind speed. The plot further indicates the dependency

of the generated power upon wind direction. Based on these plots, we see that the unknown

data generating structure is clearly non-linear, the noise intensity is not constant, and no

data exists in certain regions. Since we are interested in predicting the generated power as a

function of meteorological forecasts, which may assume values outside the range of available

data, we should devise a way of making predictions even in sparse or no data regions together

with an uncertainty assessment for the predicted values.

A simple model commonly used for prediction of produced power employs the so-called

Gompertz function. Denoting the wind speed by v, the Gompertz function computes the
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Figure 3: Wind direction and wind speed at which data are obtained.

power production through the relation

G(v; �) = �1 exp(�2 exp(�3v)) (3.12)

where � = (�1; �2; �3)
> is a parameter vector. Even though the dependency of generated power

on wind direction, as established in detailed analysis of Nielsen et al. (1999), is disregarded by

the Gompertz function, there is strong reason to choose (3.12) as the global mean function of

HLR. This is due to the simplicity of the Gompertz function as well as its ability to explain

90% of the power variations (R2 = 0:9) if used as the regression function of a fully parametric

approach. De�ning the explanatory variable as x = (v; 
)>, where 
 denotes wind direction,

we assume the distributions

�(x) � N �G(v; �); �2(v)� (3.13)

for the random e�ects of the locally constant model (2.2). Further examination of the data in

Figure 4 indicates strong dependence of � upon v. Hence, we consider the following piecewise
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Figure 4: The produced e�ect as function of the wind speed at 315�15 degrees, and the wind
direction at 7.25�0.25 m/s.

constant functional relation,

�2(v) =

8>>>><
>>>>:

�2a v < 3
�2b 3 � v < 6
�2c 6 � v < 9
�2d 9 � v < 12
�2e v � 12

(3.14)

where �a, �b, �c, �d, and �e are unknown parameters. We parameterize � in exactly the same

way.

Similar to the previous example, we select triangular product kernels with hyper rect-

angular support and spread them randomly using the uniform distribution scheme (see the

previous example). We select two di�erent bandwidths h
 = 45 degrees and hv = 1:5 m/s in

the 
 and v directions respectively, and �nd that 20 sets of disjoint kernels, each containing

97 kernels in average, are required to obtain stable estimates of the global parameters for

the training set. We apply the HLR prediction formula for the test dataset and achieve an

R2 value of 94%. This value is noticeably larger than 90% found for the simple Gompertz

function model. In Figure 5, the validation data is plotted together with the predicted values

�2� the standard errors calculated as
q
var(�̂(x)) + �̂(x)2. Notice that the con�dence inter-

val increases as the data become increasingly sparse at around 20 m/s. Further beyond this

point, predictions are completely calculated on the basis of the global mean function. Local
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Figure 5: Empirical Bayes prediction with two times the standard errors bands. The shown
data is the validation data for wind direction 315�15 degrees and wind speed 7.25�0:25 m/s.

regression will fail at wind speed values around and beyond 20 m/s.

4 Conclusion

We have presented HLR as a new technique for function approximation under incomplete

global information about the underlying data generating structure. The technique combines

local approximation schemes with global probabilistic information about the function. While

function approximation in dense data regions relies heavily on local properties of the data, the

parameters of the global distributions (the global parameters) essentially provide information

about the function in sparse data regions using the whole dataset. We have derived a cost

function for estimation of the global parameters and examined the asymptotic properties of

the cost as the number of observations tend to in�nity. Numerical studies with both simulated

and real data indicate the superiority of the technique under the realistic situation that only

limited information about the function (e.g. trend information) is available.

There is a variety of directions for future research in this area. Assuming availability

of on-line controlled experiments, HLR may be incorporated within a sequential experiment

design/parameter estimation scheme as follows. Given an initial dataset and starting with a
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collection of non-overlapping kernels, a maximum likelihood estimate for the global parameter

vector may be calculated, which together with an appropriately de�ned experimental design

cost function may determine the optimal placement for a new kernel. Independent measure-

ments within the optimally found kernel may be added to the dataset to re-calculate maximum

likelihood estimates and repeat the whole procedure several times. Another extension is to

regard the variance component as a random variable. This might ease the modeling e�orts

in situations like the second numerical study of the paper where the data clearly indicate

dependency of the variance upon the explanatory variables. HLR may also �nd application

in model validation area through testing the signi�cance of the variance term that re
ects

the quality of the global mean function (attraction surface). Another interesting direction

is applying bootstrapping techniques to generate data for calculation of the cost when the

data are collected o�-line. The cost for estimation of the global parameter is proportional to

the log-likelihood of data only if the data within kernel supports are collected independently.

One may start with placing a set of non-overlapping kernels throughout the space of the ex-

planatory variable and estimating a value for the global parameter vector. This estimate may

then be used to simulate independent series of data within highly overlapping kernels (whose

locations are for example calculated according to some appropriately de�ned experimental

design cost) as they are added to the set and re-estimate the parameters. This procedure

may be repeated several times. Other interesting research directions include quanti�cation of

bias in the estimated HLR parameter values (as compared to global regression models), use

of low-order splines as global mean function structures, various applications in predictive con-

trol, and �nally comparative studies between HLR and \black-box" function approximation

approaches such as those based on arti�cial neural network training.

Acknowledgement: The authors would like to thank Professor Poul Thyregod and Pro-

fessor Henrik Madsen for their comments.
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Appendix: proof of Proposition 1

Let us examine each term in (2.8) more closely. We assume that the data are generated

by an arbitrary mechanism yi = ��i + ��i�i where ��i and ��i are unknown bounded constants

and f�ig are i.i.d. zero-mean Gaussian with var(�i) = 1. Straightforward calculations yield

Lj(�;�;�)

N
=

�nj
N

log�j � log �j
N

� 1
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log(
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+
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Now consider N�1
P
j

Lj(�;�;�) for j : xj 2 Sm. We study the limiting behavior of the sums

N�1
X
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To do so, we apply the results of Chow & Lai (1973) to give strong convergence of weighted

sums of interest under squared summability of the weights. In all summations below, i and j

are such that xj 2 Sm and i 2 I(xj). For the summation (A.2)
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We �rst study the squared summability of the weights in the above sums. Noting that 0 �
wij � wmax and assuming that ��i and ��i are bounded for all i then obviously

X
j

X
i

 
wij��

2
i

�2j
p
N

!2

� w2
maxsupi��

4
i supj�

�4
j

1

N
N <1;

X
j

X
i

 
wij ��i��i

�2j
p
N

!2

� w2
maxsupi��

2
i supj�

�4
j supi��

2
i

1

N
N <1:

22



In addition to the squared summability of the weights as shown above, it holds that
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for all � � 1. Notice further that each Sm is constructed to contain centers of kernels with non-

overlapping support. This implies that the sequence fyig in the summation
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almost everywhere. As for the sum (A.3), �rst denote
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Further
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We have therefore established the convergence
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