IMM DEPARTMENT OF MATHEMATICAL MODELLING

> Technical University of Denmark DK-2800 Lyngby – Denmark

J. No. MEXP 17.2.2000 HBN/ms

MULTI-EXPONENTIAL FITTING OF LOW-FIELD ¹H NMR DATA

Hans Bruun Nielsen

TECHNICAL REPORT IMM-REP-2000-03

IMM

1. INTRODUCTION

MULTI-EXPONENTIAL FITTING OF LOW-FIELD ¹H NMR DATA

Hans Bruun Nielsen

Contents 1. Introduction 2. Analysis 3. Example 3. Example 4. SVD Algorithm 5. Least Squares Fit 6. Example. II 7. Applications 8. Conclusion References

17

20

22

23

29

29

1. Introduction

A typical set of low-field ¹H NMR relaxation data $(t_i, y_i), i = 1, ..., m$, is shown below.

It can be modelled by

$$i_i = M(\mathbf{x}, \mathbf{c}, t_i) + \varepsilon_i$$
, (1.1a)

where

ဖ

G

$$M(\mathbf{x}, \mathbf{c}, t) = c_0 + \sum_{j=1}^{n} c_j e^{x_j t} = \sum_{j=0}^{n} c_j e^{x_j t} , \qquad (1.1b)$$

with $x_0 = 0$. The $\{\varepsilon_i\}$ are "white noise". satisfying

$$E(\varepsilon_i) = 0, \quad E(\varepsilon_i \varepsilon_j) = \delta_{ij} \varepsilon^2, \quad (1.1c)$$

where δ_{ij} denotes the Kronecker delta. We shall use the term "noise level" to denote the standard deviation ε .

We want to estimate the parameters by means of least squares. If n is known and a good starting guess for the $\{x_j\}$ is available, we recommend to exploit the fact that the model is *separable*, see Section 5. In this report we discuss the common case, where we do not have this a *priori* knowledge, but we know that m is large, n is small $(n \leq 6)$ and the data abscisse are equidistant, $t_{i+1} \Leftrightarrow t_i = h$.

$\sum_{j=0}^{n} c_{j}\xi_{j}^{i} = \sum_{j=1}^{K} b_{k} \left(\sum_{j=0}^{n} c_{j}\xi_{j}^{i}+k\right) = \sum_{j=0}^{n} c_{j}\xi_{j}^{i} \left(\sum_{j=1}^{K} b_{k}\xi_{j}^{k}\right) . \tag{2.2a}$	$t_i = a + ih , \qquad (2.1a)$	The assumption about equidistant data abscissae implies that	2. Analysis	systems of equations. We take \mathbf{b} (or \mathbf{f}) as a least squares solution and in Section 2 we discuss how this can be used to find the parameters \mathbf{x} and \mathbf{c} . The behaviour of the algorithm is illustrated in Section 3, while enhancements are presented in Sections 4 – 6. Finally, in Sections 7 – 8 we apply the algorithm to the data of Figure 1.1 and attempt some conclusions.	systems of conations. We take \mathbf{b} (or \mathbf{f}) as a least squares solution and
	and therefore $M(\mathbf{x}, \mathbf{c}, t_i) = \sum_{j=0}^{n} c_j e^{x_j (a+ih)}$ $= \sum_{j=0}^{n} c_j e^{x_j a} \cdot \left(e^{x_j h}\right)^i \equiv \sum_{j=0}^{n} \widetilde{c}_j \xi_j^i . (2.1b)$	$t_{i} = a + ih, \qquad (2.1a)$ and therefore $M(\mathbf{x}, \mathbf{c}, t_{i}) = \sum_{j=0}^{n} c_{j} e^{x_{j}(a+ih)}$ $= \sum_{j=0}^{n} c_{j} e^{x_{j}a} \cdot (e^{x_{j}h})^{i} \equiv \sum_{j=0}^{n} \tilde{c}_{j} \xi_{j}^{i} . \qquad (2.1b)$	The assumption about equidistant data abscissae implies that $t_i = a + ih$, (2.1a) and therefore $M(\mathbf{x}, \mathbf{c}, t_i) = \sum_{j=0}^{n} c_j e^{x_j (a+ih)}$ $M(\mathbf{x}) \mathbf{c}, t_i) = \sum_{j=0}^{n} c_j e^{x_j a} \cdot (e^{x_j h})^i \equiv \sum_{j=0}^{n} \tilde{c}_j \xi_j^i$. (2.1b)	2. Analysis The assumption about equidistant data abscissae implies that $t_i = a + ih$, (2.1a) and therefore $M(\mathbf{x}, \mathbf{c}, t_i) = \sum_{j=0}^{n} c_j e^{x_j (a+ih)}$ $= \sum_{j=0}^{n} c_j e^{x_j a} \cdot (e^{x_j h})^i \equiv \sum_{j=0}^{n} \tilde{c}_j \xi_j^i$. (2.1b)	in Section 2 we discuss how this can be used to find the parameters x and c . The behaviour of the algorithm is illustrated in Sections 3, while enhancements are presented in Sections 4 – 6. Finally, in Sections 7 – 8 we apply the algorithm to the data of Figure 1.1 and attempt some conclusions. 2. Analysis 7. Analysis The assumption about equidistant data abscissae implies that $t_i = a + ih$, $(2.1a)$ and therefore $M(\mathbf{x}, \mathbf{c}, t_i) = \sum_{j=0}^{n} c_j e^{x_j a} \cdot (e^{x_j h})^i \equiv \sum_{j=0}^{n} \widetilde{c}_j \xi_j^i$. (2.1b)
In the following we shall not distinguish between c_j and \tilde{c}_j (they are equal in the typical case, where $a = 0$). Inserting this expression in (1.2b) we get	and therefore $M(\mathbf{x},\mathbf{c},t_i) = \sum_{j=0}^n c_j e^{x_j(a+ih)}$	$t_{i} = a + ih ,$ and therefore $M(\mathbf{x}, \mathbf{c}, t_{i}) = \sum_{j=0}^{n} c_{j} e^{x_{j}(a+ih)}$ (2.1a)	The assumption about equidistant data abscissae implies that $t_i = a + ih$, (2.1a) and therefore $M(\mathbf{x}, \mathbf{c}, t_i) = \sum_{j=0}^{n} c_j e^{x_j (a+ih)}$	2. Analysis The assumption about equidistant data abscissae implies that $t_i = a + i\hbar$, (2.1a) and therefore $M(\mathbf{x}, \mathbf{c}, t_i) = \sum_{j=0}^{n} c_j e^{x_j (a+i\hbar)}$	in Section 2 we discuss how this can be used to find the parameters x and c . The behaviour of the algorithm is illustrated in Section 3, while enhancements are presented in Sections 4 – 6. Finally, in Sections 7 – 8 we apply the algorithm to the data of Figure 1.1 and attempt some conclusions. 2. Analysis The assumption about equidistant data abscissae implies that $t_i = a + ih$, $t_i = a + ih$, (2.1a) and therefore $M(\mathbf{x}, \mathbf{c}, t_i) = \sum_{i=0}^{n} c_j e^{x_j (a+ih)}$
$=\sum_{j=0}^{n} c_{j} e^{x_{j}a} \cdot (e^{x_{j}h})^{i} \equiv \sum_{j=0}^{n} \tilde{c}_{j} \xi_{j}^{i} \cdot (2.1b)$ In the following we shall not distinguish between c_{j} and \tilde{c}_{j} (they are equal in the typical case, where $a = 0$). Inserting this expression in (1.2b) we get	and therefore	$t_i = a + i h \ , \eqno(2.1a)$ and therefore	The assumption about equidistant data abscissae implies that $t_i = a + i h \ , \eqno(2.1a)$ and therefore	2. Analysis The assumption about equidistant data abscissae implies that $t_i = a + i\hbar$, (2.1a) and therefore	in Section 2 we discuss how this can be used to find the parameters x and c. The behaviour of the algorithm is illustrated in Section 3, while enhancements are presented in Sections 4 – 6. Finally, in Sections 7 – 8 we apply the algorithm to the data of Figure 1.1 and attempt some conclusions. 2. Analysis The assumption about equidistant data abscissae implies that $t_i = a + ih$, (2.1a) and therefore
$M(\mathbf{x}, \mathbf{c}, t_i) = \sum_{\substack{j=0\\j=0}}^{n} c_j e^{x_j (a+i\hbar)}$ $= \sum_{\substack{j=0\\j=0}}^{n} c_j e^{x_j a} \cdot (e^{x_j \hbar})^i \equiv \sum_{\substack{j=0\\j=0}}^{n} \tilde{c}_j \xi_j^i \cdot $ (2.1b) In the following we shall not distinguish between c_j and \tilde{c}_j (they are equal in the typical case, where $a = 0$). Inserting this expression in (1.2b) we get		$t_i = a + ih , \qquad (2.1a)$	The assumption about equidistant data abscissae implies that $t_i = a + i h \ , \eqno(2.1a)$	2. Analysis The assumption about equidistant data abscissae implies that $t_i = a + i\hbar$, (2.1a)	in Section 2 we discuss how this can be used to find the parameters x and c. The behaviour of the algorithm is illustrated in Section 3, while enhancements are presented in Sections 4 – 6. Finally, in Sections 7 – 8 we apply the algorithm to the data of Figure 1.1 and attempt some conclusions. 2. Analysis The assumption about equidistant data abscissae implies that $t_i = a + ih$, (2.1a)

This is satisfied for all $i = 1, \dots m \Leftrightarrow K$ if the $\{\xi_j\}$ are roots of the polynomial

$$\widetilde{P}_{K}(\xi) = 1 \Leftrightarrow b_{1}\xi \Leftrightarrow \dots \Leftrightarrow b_{K}\xi^{K} .$$
(2.2b)

Similarly we see that

Our approach is based on methods for other types of NMR analysis, where it is recommended (see e.g. [2]) to exploit that the model satisfies a *linear predictor*,

$$M(\mathbf{x}, \mathbf{c}, t_i) = \sum_{k=1}^{K} f_k M(\mathbf{x}, \mathbf{c}, t_{i-k})$$
(1.2a)

for any $K \ge n$ and $i \ge K$. This is a *forward* predictor. Alternatively, we can use a *backward* predictor

$$M(\mathbf{x}, \mathbf{c}, t_i) = \sum_{k=1}^{K} b_k M(\mathbf{x}, \mathbf{c}, t_{i+k}) .$$
(1.2b)

If we use the latter relation for $i = 1, \ldots, q$ and replace $M(\mathbf{x}, \mathbf{c}, t_s)$ by y_s , we get the following system of equations,

$$\mathbf{H}_{:,2:K+1}\mathbf{b} \simeq \mathbf{H}_{:,1} , \qquad (1.3a)$$

where $\mathbf{b} = [b_1, \dots, b_K]^{\mathsf{T}}$ and $\mathbf{H}_{:,2:K+1}$ denotes the submatrix consisting of columns $2, \dots, K+1$ in

$$\mathbf{H} = \begin{bmatrix} y_1 & y_2 & \cdots & y_{1+K} \\ y_2 & y_3 & \cdots & y_{2+K} \\ \vdots & \vdots & \vdots \\ y_q & y_{q+1} & \cdots & y_{q+K} \end{bmatrix} .$$
(1.3b)

A similar derivation shows that the coefficients $\mathbf{f} = [f_K, \ldots, f_1]^{\mathsf{T}}$ of the forward predictor satisfy

$$\mathbf{H}_{:,1:K}\mathbf{f} \simeq \mathbf{H}_{:,K+1} . \tag{1.3c}$$

Note that q and K must satisfy

$$q + K \le m \quad \Leftrightarrow \quad q \le m \Leftrightarrow K . \tag{1.4}$$

Suppose that we take the largest possible value for q, $q = m \Leftrightarrow K$, and demand that $q > K \Leftrightarrow K < \frac{1}{2}m$. Then (1.3a,c) are overdetermined

1. INTRODUCTION

9

In order to relate to (1.3) we

Then we can write $M(\mathbf{x}, \mathbf{c}, t_i) =$

 $^{\rm OI}$

<u>-</u>-

2. Analysis

чичив, ст. р. 1ð. ndde

3. EXAMPLE

$$\mathbf{V}_{1:K,1:p}^{\mathsf{T}} \mathbf{f} = \mathbf{V}_{K+1,1:p}^{\mathsf{T}} .$$
(2.8b)

These two systems are underdetermined (p equations in K unknowns), and we use the *minimum norm solution* for **b** and **f**, respectively. Rather than giving a thorough discussion (see e.g. [3] for that) we shall consider an example that displays some typical features.

3. Example

Let

$$W(\mathbf{x}, \mathbf{c}, t_i) = 10^{-2} + 2e^{-0.5t_i} + 4e^{-t_i} + 8e^{-2t_i} , \qquad (3.1a)$$

with $t_i = 0.01i$. The $\{y_i\}$ are found by rounding the *M*-values to 6 decimal digits and adding further noise, so that

$$y_i = M(\mathbf{x}, \mathbf{c}, t_i) + \varepsilon_i^{(\mathbf{\Gamma}6)} + \varepsilon \nu_i$$
, (3.1b)

where the $\{\nu_i\}$ are normal random numbers with mean zero, generated by MATLABS **randn** and normalized so that $\|\nu\|_2 = 1$. Figure 3.1 shows the data for $\varepsilon = 10^{-3}$.

In Figure 3.2 we give the singular values for fixed K and three values of ε . Except for the first few singular values the $\{\sigma_j\}$ are almost constant. This reflects the "background noise". For $\varepsilon \leq 10^{-6}$ the noise level is about 10^{-6} (caused by the rounding to 6 digits)

and we recognize that **H** has effective rank p=4, which is equal to the number of parameters in M above. For $\varepsilon = 10^{-3}$ and $\varepsilon = 10^{-1}$ the background noise is of the same order of magnitude as ε , the dominant singular values are almost unchanged, but the smaller values "drown"

in the background noise, so that the effective rank reduces to 3 and

In the remainder of this section we look at the problem for $\varepsilon = 10^{-3}$. By increasing K it is possible to get information about the true number of terms in M: Figure 3.3 illustrates the effective rank of **H** as K grows. For some K-value between 40 and 80 the 4th contribution to M appears, and for larger K values it distinguishes better from the background noise. This is typical: with a larger "window"

Figure 3.3. Singular values $\sigma_1, \ldots, \sigma_{10}$ for increasing K

The behaviour is further illustrated in Figures 3.4-5, where we give the first 6 columns in **U** and **V** for K = 40, 80, 160. Notice how $\mathbf{u}_1 = \mathbf{U}_{:,1}$ reflects the shape of the data in Figure 3.1 and how the fourth vectors are "purified" as we increase K. For all the K-values vectors nos. 5 and 6 look like noise.

Next, in Figure 3.6 we show the roots of (2.2b) and (2.3b) with the coefficients computed by (2.8) in the case K = 40.

All roots except for the interesting ones lie close to the unit circle, respectively outside and inside for the backward and forward predictor. They are located between two circles centered in Origo and with radii \underline{r} and \overline{r} that tend to 1 as K grows:

	K = 10	K = 20	K = 40	K = 80	K = 160	K = 320
		E	Backward	predictor		
\underline{r}	1.2442	1.0809	1.0396	1.0244	1.0095	1.0050
\overline{r}	1.3036	1.1392	1.0851	1.0537	1.0279	1.0163
		-	Forward j	predictor		
\underline{r}	.83247	.87919	.92164	.95429	.97290	.98400
\overline{r}	.86655	.92652	.96197	.98164	.99057	.99498

 Table 3.1. Inner and outer radius

The interesting roots are real and in the range $0 < \xi_j \leq 1$. For these we find the exponents as $x_j = (\ln \xi_j)/h$. We get the following results

3. EXAMPLE

							_			
K = 320		$\Leftrightarrow 0.0026$	40.5009	⇔1.0019	⇔2.0005		$\Leftrightarrow 0.0021$	⇔0.5008	⇔1.0018	⇔2.0005
K = 160		⇔0.0080	$\Leftrightarrow 0.5026$	⇔1.0044	⇔2.0009		7000.0⇔	$\Leftrightarrow 0.5014$	⇔1.0034	⇔2.0008
K = 80	redictor	$\Leftrightarrow 0.2003$	$\Leftrightarrow 0.5671$	⇔1.0638	$\Leftrightarrow 2.0053$	edictor	⇔0.0394	$\Leftrightarrow 0.5261$	⇔1.0435	$\Leftrightarrow .0061$
K = 40	ackward p		⇔0.4244	$\Leftrightarrow 0.9173$	\Leftrightarrow 1.9912	Forward pr		$\Leftrightarrow 0.4154$	⇔0.9027	⇔1.9875
K = 20	В		$\Leftrightarrow 0.4152$	⇔0.9069	7686.1⇔			⇔0.4319	$\Leftrightarrow 0.9325$	⇔1.9952
K = 10			⇔0.6228	¢d.7818	${\Leftarrow}2.4954$			+0.9617	$\Leftrightarrow 0.6954$	⇔1.9469
j		0	1	2	ŝ		0	1	2	ŝ

Table 3.2. Estimated exponents $\{x_j\}$

Comparing with the values in (3.1) we see that already for K = 40 we have reasonably good approximations to the three exponents, while the constant term in (1.1b) has slower convergence. Also note that for the larger K-values the forward predictor seems to give slightly better approximations than the backward predictor.

The coefficients $\{c_j\}$ can be found by solving the least squares problem corresponding to (1.1). If we consider the $\{x_j\}$ as known (accept approximate values from Table 3.2), then we just have to solve a linear problem. Otherwise, as mentioned in the introduction, we can take these values as starting point for a nonlinear least squares solver, which is described in Section 5. For illustration take the forward predictor values for K = 320. The linear least squares solution is

$$c_{0:3}^* = (1.0071 \cdot 10^{-2}, 2.0104, 3.9969, 7.9927)$$
.

The estimated standard deviation is $s = 3.44 \cdot 10^{-5}$, and in Figure 3.7 we give the residuals.

Figure 3.7. Residuals. Linear fit, forward predictor, K = 320

For the nonlinear approach we use the iterative method discussed in Section 5. Figure 3.8 shows residuals for a starting guess corresponding to K = 80 and for the solution.

The solution has the estimated standard deviation $s = 3.12 \cdot 10^{-5}$ and the parameters

j.	x_j^*	c_{j}^{*}
0	0	$1.0007.10^{-2}$
1	$\Leftrightarrow 0.5002$	2.0034
2	¢J.0008	4.0011
3	$\Leftrightarrow 2.0003$	7.9956

Table 3.3. Nonlinear least squares fit

For comparison, if we compute the linear fit with the "true" parameter values from (3.1a), we get $s = 3.13 \cdot 10^{-5}$, indicating that the rounding to 6 decimals and the further added noise has a (small) effect on the "best" values of the parameters.

4. SVD Algorithm

The discussion in the previous section shows that in order to get a reliable determination of the number of terms we have to take K large. Then the computation of the SVD decomposition of the matrix \mathbf{H} (1.3b) is a considerable workload. Basically, the purpose is to find a set of p linearly independent vectors that span the same subspace as \mathbf{H} , with respect to the noise in the data. By taking into account the special features of the problem we can reach this goal in a cheaper way:

First, based on the experiences of Section 3 we concentrate on the forward predictor and look only at the first K columns in **H**, i.e., we reformulate (1.3b–c) to

$$\mathbf{H}\mathbf{f} \simeq \begin{bmatrix} y_{1+K} \\ \vdots \\ y_{q+K} \end{bmatrix} \quad \text{with} \quad \mathbf{H} = \begin{bmatrix} y_1 & \cdots & y_K \\ \vdots & \vdots \\ y_q & \cdots & y_{q+K-1} \end{bmatrix} .$$
(4.1)

Next, we still use the SVD decomposition if $K \leq 10$, with (2.8) replaced by

$$\begin{split} & \bigcup \widetilde{\mathbf{\nabla}} \widetilde{\mathbf{\nabla}}^{\mathsf{T}} \mathbf{f} \simeq \mathbf{y}_{K+1} : m \\ & \downarrow \\ & \qquad \widetilde{\mathbf{\nabla}}^{\mathsf{T}} \mathbf{f} = \widetilde{\mathbf{\Sigma}}^{-1} \widetilde{\mathbf{U}}^{\mathsf{T}} \mathbf{y}_{K+1} : m \equiv \boldsymbol{\eta} \\ & \downarrow \\ & \qquad \mathbf{f}_{\mathrm{mn}} = \widetilde{\mathbf{\nabla}} \boldsymbol{\eta} \quad , \end{split}$$
(4.2)

where \mathbf{f}_{mn} is the minimum norm solution.

For K > 10 we know that p < 10, and start by doing a series of 10 Householder reflections with column pivoting. We can express this in the form

$$\mathbf{Q}^{\mathsf{T}}\mathbf{H}\mathbf{P} = \begin{bmatrix} \mathbf{R} & \mathbf{W} \\ \mathbf{0} & \mathbf{E} \end{bmatrix}, \tag{4.3a}$$

where \mathbf{Q} is orthogonal, \mathbf{P} is a permutation matrix, $\mathbf{R} \in \mathbb{R}^{10 \times 10}$ is upper triangular, and the elements of $\mathbf{E} \in \mathbb{R}^{(q-10) \times (K-10)}$ reflect the noise level. This means that the first 10 rows of the transformed matrix hold the significant information of \mathbf{H} . In particular, we can find the effective rank by computing the SVD of this submatrix,

$$\mathbf{\Lambda}^{\mathsf{T}} = \begin{bmatrix} \mathbf{R} & \mathbf{W} \end{bmatrix}^{\mathsf{T}} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathsf{T}} , \qquad (4.3b)$$

and proceed as in (2.7), except that experiments showed that the factor 1.5 should be changed to 1.25. Then (4.2) is modified to

$$\widetilde{\mathbf{V}}\widetilde{\boldsymbol{\Sigma}}\widetilde{\mathbf{U}}^{\mathsf{T}}\mathbf{P}^{\mathsf{T}}\mathbf{f} \simeq (\mathbf{Q}^{\mathsf{T}}\mathbf{y}_{K+1};m)_{1:10} \equiv \boldsymbol{\zeta}$$

$$\downarrow \qquad \mathbf{f}_{\mathrm{mn}} \simeq \mathbf{P}\widetilde{\mathbf{U}}\left(\widetilde{\mathbf{U}}^{\mathsf{T}}\widetilde{\boldsymbol{\Sigma}}^{-1}\widetilde{\mathbf{V}}^{\mathsf{T}}\boldsymbol{\zeta}\right). \tag{4.3c}$$

The vector ζ can advantage ously be computed together with the transformation (4.3a). Another "costly" part of the algorithm is the computation of all roots of a polynomial of high order. We are only interested in the real

logarithmic plot of the data in Figure 3.1.

component, see Section 7.

 $\widehat{y}_i = e^{\eta_i}, \quad i = 2, 4, \dots, m \Leftrightarrow 1$

10⁻²

Section 6.

10²

100

19

iteration with deflation.

6. EXAMPLE. II

6. EXAMPLE. II

the residuals with respect to the parameters. This is an $m \times n$ matrix, and by applying the ideas of [11, Sections 2 - 3] we find that

$$= \mathbf{GC} \Leftrightarrow \mathbf{FC}' , \tag{5.5a}$$

able from Figure 3.3, and in Table 4.1 we give the number of flops in

MATLAB needed to compute \mathbf{f} by means of (4.3), compared with a full

We have used the ideas from Section 4 on the data from Section 3. A plot of the the singular values computed by (4.3a-b) is indistinguish-

6. Example. Il

SVD of \mathbf{H} , (4.1), followed by (4.2). Also, we compare the number of

flops needed to find all the roots of \widetilde{P} by means of the MATLAB func-

tion $roots^3$ with the number of flops needed to find the p interesting

roots by means of Newton-Raphson's method.

20 က က က 4

1.33e3

2.13e4 1.33e5 8.44e5 6.12e6 4.39e7 3.20e8

1.08e6 9.06e5 1.95e6

> 4.57e6 1.93e7 7.38e7

204080

.5c)

 $K \text{ roots } \mid p \text{ roots}$

Alg. (4.3)

full SVD 1.08e6

X

5.26e3 1.10e4 2.96e4

3.91e6

6.51e4

2.62e3

$$\mathbf{F} = \Leftrightarrow \operatorname{diag}(t_1:m)\mathbf{F}_{:,2}:n+1, \quad \mathbf{C} = \operatorname{diag}(c_1:n) , \quad (5.5b)$$

$$(\mathbf{F}^{\mathsf{T}} \mathbf{F}) \mathbf{C}' = \mathbf{F}^{\mathsf{T}} \mathbf{G} \mathbf{C} \Leftrightarrow \operatorname{diag}(\mathbf{G}^{\mathsf{T}} \mathbf{r}) \equiv \mathbf{B}$$

$$(\mathbf{F}^{\mathsf{T}} \mathbf{R}) (\mathbf{P}^{\mathsf{T}} \mathbf{C}') = \mathbf{P} \mathbf{B} .$$
(5)

and a back substitution followed by row interchanges. Note that this Thus, after having computed \mathbf{B} , the matrix \mathbf{C}' is found by a forward use of the factorization (5.4a) enhances accuracy and saves computational effort.

(for small t), while we can use larger spacing at the "tail". We shall Without significant effect on the results we can save some computational effort if we use close t_i -values where the model values vary most In contrast to the SVD analysis we do need equidistant t_i -values. illustrate this in Section 7.

tion combined with a standard Levenberg-Marquardt-Gauss-Newton method [10], tuned to take into account that all components of \mathbf{x} The results in this report were found by using this formulashould be negative.²⁾

http://www.imm.dtu.dk/~hbn/Software/grfacsol.m

We also need the *Jacobian* $\mathbf{J}(\mathbf{x})$, containing the partial derivatives of

$$\mathbf{J} = \mathbf{GC} \Leftrightarrow \mathbf{FC}' , \qquad (5.5a)$$

where

$$= \Leftrightarrow \operatorname{diag}(t_{1:m})\mathbf{F}_{:,2:n+1}, \quad \mathbf{C} = \operatorname{diag}(c_{1:n}) , \qquad (5.5)$$

and the matrix $\mathbf{C}' \in \mathbb{R}^{(n+1) \times n}$ solves the equation

$$(\mathbf{F}^{\mathsf{T}} \mathbf{F})\mathbf{C}' = \mathbf{F}^{\mathsf{T}} \mathbf{G}\mathbf{C} \Leftrightarrow \operatorname{diag}(\mathbf{G}^{\mathsf{T}} \mathbf{r}) \equiv \mathbf{B}$$

 $(\mathbf{F}^{\mathsf{T}} \mathbf{R}) (\mathbf{P}^{\mathsf{T}} \mathbf{C}') - \mathbf{P}\mathbf{R}$

Table 6.1. Number of flops used to compute ${f f}$ and roots of \widetilde{P}_K 7.31e6 1.21e7 1.01e9 2.86e8 160320

Table 6.2 gives the estimated exponents. By comparison with the lower part of Table 3.2 we notice a good agreement.

j	K = 20	K = 40	K = 80	K = 160	K = 320
0				$\Leftrightarrow 0.0256$	⇔0.0022
1	⇔0.5760	$\Leftrightarrow 0.4215$	$\Leftrightarrow 0.4103$	⇔0.5075	$\Leftrightarrow 0.5008$
2	⇔1.4352	⇔0.9098	⇔0.8928	⇔1.0101	⇔1.0019
3	⇔2.1207	⇔1.9886	$\Leftrightarrow 1.9841$	${\Leftarrow}2.0016$	$\Leftrightarrow 2.0005$
1 ³	hble 6.2 M	Vew algoriti	hm. Estim	ated expon	ents $\{x_j\}$

Next, Table 6.3 shows the effect of reducing the number of data points. By comparison with Table 6.2 we see a considerable improvement for $K \leq 160$, while the results for K = 320 are poorer. The re-

It needs the function implementing the QR-factorization http://www.imm.dtu.dk/~hbn/Software/mexpfit.m $^2)$ A MATLAB implementation is available at

 $^{^{3)}}$ This function computes the roots of a polynomial as the eigenvalues of the associated companion matrix.

data points. Also, Figure 1.1 shows a long flat tail. We decide to keep only those points, that are larger than 0.1% of the first one. More specifically, we take point numbers $3, \ldots, \widetilde{m}$, defined by	$y_i > 0.001 y_3 \text{ for } i = 3, \dots, \widehat{m},$ $\widehat{m} := \max\{\widehat{m}, \min\{m, 1002\}\},$ $\text{if } \widehat{m} > 0.8m \text{ then } \widetilde{m} := m \text{ else } \widetilde{m} := \widehat{m}.$ (7.1)	The result is $\tilde{m} = 1558$, and in Table 7.1 we give the exponents computed by the algorithm of section 4. We give values corresponding to	two sets of "active" points, given by the indices $\Omega_1 = 3:1:\widetilde{m}$, $\Omega_2 = 3:2:\widetilde{m}$. (7.2a)	The number of points is $\overline{m}_1 = 1556$ and $\overline{m}_2 = 778$, respectively, and we take $K = \min\{300, \frac{1}{2}\overline{m}\}$. The result is $n_1 = 3$, $n_2 = 4$ and	j Ω_1 Ω_2 1 -5.9738e+00 -5.1834e+00	2 -1.9766e+01 -1.7859e+01 3 -4.3148e+01 -3.0483e+01	4 -1.3096e+02 Table 7.1. Exponents estimated via SVD	We take the second set of exponents as starting point for the nonlinear least squares solver. As mentioned in Section 5 we do not have to take all data points, and we have tried three different choices of "active" indices, viz. Ω_1 , Ω_2 and	$\Omega_3 = 3:1:52, 54:2:152, \dots, 768:16:\widetilde{m}$, $\overline{m}_3 = 259$. (7.2b)	The results are given in Table 7.2 and the corresponding residuals are shown in Figure 7.1.	There is no significant difference between the estimated standard deviations and the three values for x_1 and x_2 agree to (almost) one digits accuracy, while the accordance is increasingly poorer for x_3 and
duced data set contains $m = 511$ points, and these results indicate that the condition $K \leq \frac{1}{2}m$ should be taken seriously.	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Finally, the simple smoothing (4.4) is not a good idea. In Table 6.4 we give results for some choices of the weights $\mathbf{w} = [w_0 \ w_1]$.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Table 6.4. Exponents estimated from $\widehat{\mathbf{y}}_{2:2:1022}$. $K = 80$	The quality of the results increases as the ratio w_0/w_1 grows. In the limit $w_0/w_1 \to \infty$ we get the results from Table 6.3.	We have experimented with a number of other smoothing algo- rithms, e.g. fitting $\{y_i\}$ or $\{\ln y_i\}$ with cubic splines as described in [9, Chapter 5]. None of these experiments were successful.	7. Applications	The data in Figure 1.1 are from an NMR scanning of meat, performed as described in [5]. It contains a total of $m = 3072$ noints. Not all of	In many (most?) practical applications, the first few data points may have exceptionally large errors, e.g. because the apparatus has

23

7. Applications

7. Applications

24

		luats	quares resu	.l. Least s	Figure 7	
very tast.	0.6	0.5	0.4	0.3	.1 0.2	0
five components of the model, as given by the Ω_i in Table 7.2. This illustrates why especially (x_4, A_4, A) Already from the start it is the smallest compone						0
\mathbb{P}_{i}^{i} with 7.2 is a contribution that of the $\%$		m = 259				• -0
Figure 7.2. Residuals for all d				-		
0 0.2 0.4 0.6 0.8	0.6	0.5	0.4	0.3	.1	0
-200 -						-0
-100						0
		m = 778	•			•
	0.6	0.5	0.4	0.3	.1 0.2	0
100	•	•	•	• •*	•	•
they are suparter than 0.970 of the corresponding						0
siderably larger than the rest. It should be ment		m = 1556			•	• - 0
Figure 7.2 illustrates that the tail is well mo it did not take part in the fitting process. The f were also ignored, and the absolute values of tho		-		-		
developed we suggest to use the choice Λ_{12} as a real between robustness and computational efficiency.	tion	ndard devia	ers and sta	ted paramet	2. Estimat	Table 7.
on the lines of [1], [7], [8], [4]. Until such an	9	26.	.2	55	6.	25
Further work should investigate the use of rc	1.71e+03	-8.57e+02	1.71e+03	-7.19e+02	1.53e+03	-6.87e+02
residuals will pull the least squares in downward	1.54e+03	-6.33e+01	4.20e+03	-3.87e+01	3.24e+03	-4.26e+01
case. I fils lack of balance between positive and	4.35e+04	-2.07e+01	4.19e+04	-1.98e+01	4.27e+04	-2.00e+01
Induces are not in Λ_{22}), and this is even more preserve π_{12} , π_{12} , μ_{22} , μ_{23} , μ_{24} , $\mu_{$	5.39e+03	-7.59e+00	4.24e+03	-6.75e+00	4.39e+03	-6.88e+00
the Ω_2 set some of the large positive residuals have \cdot	ر 8.31e+01	0	ر 5.61e+01	0	ر 6.16e+01	0
$ r_i $, but here the positive and hegative values set	c_{j}	x_{i}	c_i	x_{j}	c_i	x_{i}

7. Applications

7. Applications

An inspection of Figure 7.1 shows that the full data set contains a number of "wild points" – points with abnormally large values for $|r_i|$, but here the positive and negative values seem to balance. For the O of set source the large mainting mainline have discussed (their re disappeared (their provided in the Ω_3 negative wild point

 Ω_3

 Ω_2

 C_{1}

bust estimation, e.g. algorithm has been sonable compromise

rst two data points delled even though e residuals are cononed, however, that ordinates.

-values for \mathbf{x} and \mathbf{c} 24) are hard to find: nt, and it "dies out" ctive" data and the

Now, let us turn to the poor estimate in Table 7.1 obtained with the Ω_1 index set. Using this as starting point for the nonlinear least squares estimator with index set Ω_2 we get

(7 9.)	(10.04)	
-2.99e+02	1.33e+03	
-2.16e+01	4.29e+04	
-8.45e+00	7.07e+03	
0	9.79e+01	
х	С	

The estimated standard deviation is s = 28.0 and the residuals are shown below. They indicate a *trend* for $t \leq 0.3$, caused by overlooking one (or more) components.

8. Conclusion

7. Applications

By applying SVD analysis to the residuals the trend can be quantified:

$$n_r = 2, \quad \mathbf{x}_r = \begin{bmatrix} -7.5899e+01 & -8.3404e+02 \end{bmatrix}^{\mathsf{T}}.$$
 (7.3b)

By comparing Table 2 and (7.3) we see that the latter has caught the slowest and the fastest component and has merged the two intermediate components into one. A new nonlinear least squares estimation with starting point given by the \mathbf{x} of (7.3a) augmented by -7.5899e+01 will give the solution from Table 7.2. An SVD analysis applied to the corresponding residuals gives $n_r = 0$ indicating a successful fitting.

We have tried the same approach on other "real life" problems and got similar results. We got all the data from Henrik T. Pedersen and Søren B. Engelsen, Food Technology, The Royal Veterinary and Agricultural University of Denmark. The values were computed with the index set Ω_1 if $\widetilde{m} < 1000$, otherwise Ω_2 .

name	y_1	m	\widetilde{m}	u	n_r	S
filter	6.87e+04	3072	902	3	0	73.2
fish	1.31e+04	1024	1024	3	1	8.95
meat	5.10e+04	3072	1558	4	0	25.2
seed	1.00e+04	4096	3148	4	0	10.0
sugar	6.78e+03	512	512	2	0	4.33
E		م		-	11.	

Table 7.3. Performance of algorithm

0	22

Although we only have a limited experience with practical problems, the algorithm looks very promising and seems to be robust. Some parts are still under development. Among these are to find a better way of choosing which initial points to leave out (rather than just skipping the first two points). Also, it might be worthwhile to use a robust method instead of least squares estimation.

References

- H. Ekblom and K. Madsen (1989): Algorithms for Non-Linear Huber Estimation. BIT 29, 60 – 76.
- H. Gesmar and P.C. Hansen (1994): "Fast" Linear Prediction and its Application to NMR Spectroscopy. J. MAGNETIC RESONANCE, Series A, 106, 236 - 240.
- [3] P.C. Hansen (1988): Rank-Deficient and Discrete III-Posed Problems. SIAM, Philadelphia.
- [4] D. Hermey and G.A. Watson (1999): Fitting Data with Errors in all Variables Using the Huber M-Estimator. SIAM J. Scl. COMP. 20-4, 1276 - 1298.
- [5] S.M. Jepsen, H.T. Pedersen and S.B. Engelsen (1999): Application of Chemometrics to Low-Field¹ H NMR Relaxation Data of Intact Fish Flesh. J. SCI. FOOD AGRIC. 79, 1793 – 1802.
- [6] C. Lanczos (1957): Applied Analysis. Prentice-Hall, Englewood Cliffs, N.J.
- G. Li and K. Madsen (1988); Robust Nonlinear Data Fitting. In D.F. Griffiths and G.A. Watson (eds): Numerical Analysis 1987, Longman Scientific and Technical, London.
- [8] K. Madsen and H.B. Nielsen (1990): Finite Algorithms for Robust Linear Regression. BIT 30, 682 - 699.
- [9] H.B. Nielsen (1998): *Cubic Splines*. Lecture notes, 2nd ed. IMM, DTU. 1 – 80.

References

- [10] H.B. Nielsen (1999): Damping Parameter in Marquardt's Method. IMM, DTU. Report IMM-REP-1999-05. Available at http://www.imm.dtu.dk/~hbn/publ/TR9905.ps.Z
- [11] H.B. Nielsen (2000): Separable Nonlinear Least Squares. IMM, DTU. Report IMM-REP-2000-01. Available at http://www.imm.dtu.dk/~hbn/publ/TR0001.ps.Z
- [12] R. Prony (1795): Essai Expérimental et Analytique sur les Lois de la Dilatibilité et sur celles de la Force Expansive de la Vapeur de l'Eau et de la Vapeur de l'Alkool, a Différentes Températures. J. DE L'ÉCOLE POLYTECHNIQUE 1, 24 - 76.