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Preface

This thesis has been prepared in the section for statistics at the Department
of Mathematical Modelling at DTU, the Technical University of Denmark,
in partial ful�llment of the requirements for the degree of PhD within the
Mathematical Phd Program at DTU.

In this thesis uncertainty associated with stock assessment has been con-
sidered, in particular uncertainty associated with the input data to the
model. The thesis provides new approaches to analyse the sources of vari-
ation in the input data and their magnitude, and an alternative approach
for modelling the dynamics of a �sh population is suggested.

The project has been directed towards the North Sea sandeel �shery. How-
ever, the methods developed may easily be transferred to other �sheries
and areas.

Lyngby, July 1999

Trine Kvist
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Summary

In this thesis uncertainty associated with stock assessment has been con-
sidered, especially uncertainty associated with the input data to the model.
The thesis provides new approaches to analyse the sources of variation in
the input data and their magnitude, and an alternative approach for mod-
elling the dynamics of a �sh population is suggested.

A new approach is introduced to analyse the sources of variation in age
composition data, which is one of the most important sources of informa-
tion in the cohort based models for estimation of stock abundancies and
mortalities. The approach combines the continuation-ratio logits, which
can take the ordinal and multinomial characteristics of the response into
account, and the generalized linear mixed models, which allow for �xed as
well as random e�ects to be analysed.

Catch at age data and the associated uncertainties have been estimated, by
separating the statistical analysis into separate analyses of the various data
sources. The results were combined into estimates of the catch at age data
and the associated uncertainties for the sandeel landings from the North
Sea in 1989 and 1991.

An overview of age-structured stock assessment models is given and it is
argued that an approach utilising stochastic di�erential equations might be
advantagous in �sh stoch assessments.



viii



ix

Resum�e

Denne PhD afhandling vedr�rerer usikkerhed i modellering af �skebestande,
is�r usikkerhed i datagrundlaget. Afhandlingen beskriver en ny metode til
analyse af variationskilder og deres omfang i datagrundlaget, og en alter-
nativ metode for modellering af populationsdynamiken i en �skebestand
freml�gges.

Afhandlingen beskriver en ny metode til analyse af variationskilderne i
alderssammens�tningsdata, som er en af de vigtigste informationskilder i
kohortebaserede modeller for estimation af bestandsst�rrelser og d�delig-
heder. Metoden kombinerer teorier for forts�ttelses-logiter, som tager
h�jde for ordningen af responset s�avel som de multinomiale karakteris-
tika af responset, og de generaliserede line�re mixed modeller, som tillader
analyse af b�ade tilf�ldige og systematiske e�ekter.

Estimater af fangst per aldersgruppe og tilh�rende usikkerheder er es-
timeret ved at opdele den statistiske analyse i s�rskilte analyser af de
forskellige datakilder. Resultaterne kombineres til estimater af fangst per
aldersgruppe samt usikkerheder, for tobisfangster fra Nords�en i 1989 og
1991.

Et overblik over alders-strukturerede bestandsmodeller gives og det argu-
menteres for at en metode som benytter stokastiske di�erentialligninger kan
v�re fordelagtig i modellering af �skebestande.
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Chapter 1

Introduction

1.1 Background

Exploited �sh stocks are modelled in order to optimise the yield, make sure
that it is sustainable and assess the impact of the �shery on the ecosystem.
Such models are presumably rather inaccurate and model errors of a certain
magnitude must be expected. In addition, observing the system in an
ocean is di�cult; some important information may not be available at all,
inducing further uncertainties in the model and the observations might be
prone to errors. Thus, in order to obtain reliable estimates and assess the
associated uncertainties, statistical modelling of the �sh stocks are certainly
needed. Although much work has already been done in this area, lack of
computer capacity has limited the development of the models.

The background of this particular project is that doubts have been raised
by environmental organisations about the sustainability of the Danish in-
dustrial �shery in the North Sea. Although the present assessment of the
impact of the �shery suggests that the �shery is sustainable (ICES, 1996),
environmental organisations argue that the uncertainties are so large that
it is reasonable to fear that the �shery might lead inadvertely to a stock
collapse. They also fear that such a collapse could have detrimental con-
sequences for the North Sea ecosystem at large. Thus it is important to
assess the uncertainties of the relevant quantities in order to evaluate the
legitimacy of the critisism.
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The project has been directed towards the North Sea sandeel �shery, be-
cause it is the main target of the Danish industrial �shery. In addition, the
investigations can be performed on Danish data alone as the sandeel �sh-
ery in the North Sea is completely dominated by the Danish �shery, except
for a few areas outside Norway which is excluded from the investigations.
Gaining access to �shery data can be both di�cult and time-consuming.

Although directed towards a single species, the methods developed can
easily be transferred to other �sheries and areas.

The sandeel �shery actually covers a few variants of sandeel, but the �shery
is completely dominated by the lesser sandeel(Ammodytes marinus Raitt)
and therefore in the following the term sandeel refers to Ammodytes mari-
nus. It is one of the most abundant �sh species in the North Sea (Sparholt,
1990). The name is apt because of its burrowing behaviour and physical
appearance. It is a small slender �sh, which feed on plankton, with a max-
imum length of approximately 25 cm. Sandeels occur in shoals and tend to
be concentrated in well-de�ned areas where there is coarse well-oxygenated
sand (Macer, 1966). The sandeel constitutes an important prey for many
species of �sh, seabirds and marinemammals (Daan et al., 1990 and Wright,
1996).

The industrial �shery in the North Sea began in the early 1950s and has
since developed into an important �shery accounting for approximately two
thirds of the total landings of �sh from the North Sea. The landings are
processed to �sh meal and oil or used directly as animal foodstu�. In the
early years herring made up the bulk of the industrial landings, but in the
1970s the sandeel �shery increased rapidly (refer to �gure 1.1) (Kirkegaard
and Gislason, 1996). In the last 20 years appr. 700 000 tonnes of sandeel
have been landed every year.

Since its start the industrial �shery has been subject to intense debate
and discussion. On one hand it has been argued that the �shery provides
a good way to utilise a resource that otherwise would remain untapped.
On the other hand it has been argued that the large amount of small �sh
caught may deplete the food supplies of human consumption �sh stocks and
other predators such as seabirds, seals, cetaceans and salmonids. Another
possible consequence is that industrial �shing because of the by-catch of
species such as haddock, whiting and herring, remove �sh which would
become available to human consumption �sheries if they were left in the
sea (Kirkegaard and Gislason, 1996). However, the by-catch in the sandeel
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Figure 1.1: Sandeel landings in the Danish industrial �shery
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�shery is small and hence that particular aspect is not a problem for this
�shery.

The stock size and the impact of the �shery are assessed regularly by the
International Council of Exploration of the Sea (e.g. ICES, 1996). The
basic information in most �sh stock assessments, including the assessment
of the sandeel stock, is the catch at age data. The data consists of the
estimated number of individuals caught for a given species, age, area and
time period. In addition, information of the catch rate is also utilised as a
measure of the abundance of the population. One often uses a standard-
ised unity called catch per unit of e�ort (CPUE) and assumes that this is
proportional to the abundance of the species. Information on CPUE can
often be obtained from data on the �shery, but often �shery-independent
information is desirable and surveys are performed regularly by the author-
ities. The advantages of the surveys are that they can be more controlled
regarding to �shing position, equipment etc. On the other hand they are
expensive to perform and the amount of data is much smaller than from the
�shery, although probably less prone to errors. Unfortunately, survey data
has not been available for the sandeel �shery, because sandeel is not caught
by the standard equipment on the survey vessels. The main characteristics
of the assessment model for sandeel are that the rate of removals from the
population is proportional to the abundance of the population, that the
mortality caused by other reasons than �shery has to be established out-
side the model and that the CPUE is assumed to be proportional to the
abundance of the population. Even this short overview of the data sources
and main assumptions in the model has adumbrated that considerable un-
certainties may be associated with the data as well as the model. It is the
aim of this project to contribute to the detection and assessment of the
uncertainties and to improve the assessment model such that the sources
of uncertainties may be more realistically modelled and thus give improved
estimates of parameters and uncertainties. The obtained information on
sources of uncertainties may also be utilised to �nd e�cient ways of re-
ducing the uncertainties. Focus has been on the uncertainties associated
with the age composition and catch at age data, but approaches to improve
upon the assessment model has also been investigated.
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1.2 Outline of the thesis

In the present chapter the background and motivation for the work is given,
and the organisation of the thesis is outlined.

Chapter 2 gives an overview of age-structured stock assessment models and
the model used at present for assessment of the sandeel stock in the North
Sea.

In chapter 3 the uncertainty associated with one of the most important
sources of information in age-structered assessments is investigated, viz.
the age composition estimates of the catches. The importance of various
possible sources of uncertainty is evaluated and estimators of uncertainties
of age compositions are provided. Age composition estimates are derived
from samples taken at random from the catch or by a strati�ed sampling
scheme. An analysis of the importance of various factors is impeded by the
structure of the response, which may be considered ordered categorical. A
new method to analyse such data is presented.

In chapter 4 a method for analysing the uncertainties associated with the
age composition under strati�cation on length groups is presented. Strati-
fying on length groups is a common approach to reduce the number of age
determinations, as age determinations often are time-consuming and ex-
pensive to perform. Instead simple measurements of the lengths are made
and the correlation between age and length is utilised.

In chapter 5 the accumulated uncertainty of catch at age is assessed utilising
the results from chapter 3. Besides uncertainty of the age composition,
catch at age also is in
uenced by uncertainty of the catch per area and the
species composition of the catches, and uncertainties associated with the
transformation of the unit of measurement of the size of the catch from
tonnes to numbers.

In chapter 6 it is argued that an approach utilising stochastic di�erential
equations might be advantegous in �sh stoch assessments.

Chapter 7 contains conclusions.

Appendix A to C contain the papers 'Using continuation-ratio logits to
analyse the variation of the age-composition of �sh catches' (Kvist et al.,
1998), 'Sources of variation in the age composition of sandeel landings'
(Kvist et al., 1999a), and 'Uncertainty of Catch at Age Data for Sandeel'
(Kvist et al., 1999b).
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Appendix D contains plots referred to in chapter 4: 'Analysis of age com-
position strati�ed by length groups'.
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Chapter 2

Age-structured Stock

Assessment Models

2.1 Introduction and overview

Age-structured stock assessment methods constitute the primary basis for
providing management advice in many world �sheries, because the pop-
ulation dynamics of exploited �sh stocks may be reconstructed and vital
mortality rates and absolute abundances may be provided (Megrey, 1989).
A historical overview of the age-structured methods is given by Megrey
(1989). The �rst part of the overview presented here, relies to a large
extent on his work.

Age-structured stock assessment methods can be traced back to the begin-
ning of the 19th century (Ricker, 1971). The basic idea was to consider a
stock as consisting of cohorts. A cohort is constituted by �sh of the same
species, spawned in the same year and area. By use of catch per age group
and year, the size of a cohort at the time the cohort enters the exploitable
phase may be reconstructed by simply adding the catches removed from
that cohort during the years it has contributed to the �shery. This pro-
vides an estimate of the population that must have been alive in order to
generate the catches observed. The estimated stock size from these cal-
culations is the minimum stock size, and the quantity is often referred to
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as the 'utilised stock' because it does not include �sh that die for other
reasons than �shery. In order to get a more realistic estimate of the stock
abundance, models were developed to include \mortality" caused by other
reasons (natural mortality) (Beverton and Holt, 1957; Paloheimo, 1958).
They also included e�ort data to model the �shing mortality as a product
of �shing e�ort and catchability.

In models incorporating natural mortality, the main assumption is that
removals from a cohort is proportional to the number of alive individuals
from that cohort:

dN (t)

dt
= �zN (t) (2.1)

with the solution

N (t) = N (0) exp(�zt) (2.2)

where N (t) denotes the number of individuals in the cohort at time t and
z = f + m denotes the mortality constituted by two components; f and
m. f stands for the �shing mortality, comprehending all deaths caused
by �shing and m stands for the natural mortality comprehending all other
deaths, such as deaths caused by predation, disease, old age etc.. The nat-
ural mortality is di�cult to estimate due to lack of data. It mostly has
to be inferred from investigations on similar species elsewhere and it is of-
ten assumed to be constant through the years. However, natural mortality
has been shown to vary with age, density, disease, parasites, food supply,
predator abundance, water temperature, �shing pressure, sex and size. At-
tempts are made to estimate the natural mortality by eg. mark-recapture
data and stomach-content analyses or by deriving analytical relationships
with quantities such as maximum age, length and weight, growth rate and
age at sexual maturity (an overview is given by Vetter (1988)).

The number of individuals �shed from the cohort constitutes the basic
observation for estimation of the stock size, C(t):

C(t) =
f

z
N (0)(1� exp(�zt)) (2.3)

The parameters f and m are assumed to be constant within a time period,
often a year and therefore equation (2.1) is broken down into intervals
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within which the parameters are assumed to be constant. The equation to
connect the number of individuals in two subsequent intervals is called the
stock equation (here the length of the interval is a year):

Na+1;y+1 = exp(�za;y)Na;y (2.4)

Na;y denotes the number of individuals of age a at the beginning of year
y and za;y = fa;y + ma;y . The corresponding equation for the number of
individuals of age a �shed in year y, Ca;y is:

Ca;y =
fa;y
za;y

Na;y(1� exp(�za;y)) (2.5)

The two equations, the stock size equation (2.4), and the catch equation
(2.5) are fundamental in the age structured assessments. By using these
equations, the historical stock abundancies may be reconstructed. How-
ever, some additional information is needed. Gulland (1965) suggested a
backwards solution of the equations. At �rst, the �shing mortality for the
oldest �sh and the last year, Y , are needed. Thereafter, Na;Y , the num-
ber of individuals of age a at the beginning of the last year where catch
at age data exist, Y , may be calculated by the catch equation, (2.5), as
all other quantities are known; the catch at age, Ca;Y , natural mortality,
ma;Y , and the �shing mortality, fa;Y . The �shing mortality in the previ-
ous year, fa�1;Y�1, may hereafter be estimated from the catch equation for
Ca�1;y�1, by substituting Na�1;y�1 with Na;y exp(za�1;y�1) from the stock
equation, (2.4):

Ca�1;y�1 =
fa�1;y�1
za�1;y�1

Na;y exp(za�1;y�1)(1 � exp(�za�1;y�1)) (2.6)

However, an iterative procedure is required. At this point the algorithm
starts over again at the previous step and calculates the number of indi-
viduals at the beginning of the second last year using the stock equation
(2.4), etc.. This approach and its similarities are often referred to as virtual
population analysis (VPA), although the term �rst was used by Fry (1957)
to describe the utilised stock, i.e. corresponding to setting the natural mor-
tality to zero in the catch and stock equation. Murphy (1965) suggested a
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catch-ratio model, where the catches were de�ned as in (2.5). The ratios
of catches from the same cohort in two successive periods were considered,
such that a density-independent model was obtained. The linked system
of equations was solved by an iterative procedure which is similar to the
one which was used in Gulland's (1965) model. Equation (2.6) is time-
consuming and di�cult to solve without proper computer facilities and
therefore Pope (1972) suggested an approximation that greatly simpli�ed
the computations and became very widespread. The approximation was
based on the assumption that all �sh caught in any age group are taken
exactly half way through the year.

The robustness of Pope's approximation (Pope, 1972) and other VPA-like
models (Gulland, 1965; Murphy, 1965) have been investigated by eg. Jones
(1981), Pope (1972), Agger (1973), and Ulltang (1977). They found that
the methods were relatively robust towards errors in the starting guesses of
the �shing mortalities and seasonal trends in the mortalities, but that the
bias of the �shing mortality would be appr. 25% if the natural mortality
is known with a mean error of 0.1.

The obvious drawbacks of the deterministic models are that they are heav-
ily parametrised; they contain more parameters than observations. Thus
the estimates are extremely dependent on the data and no uncertainties can
be estimated. In addition, cohorts are not linked, i.e. each cohort is anal-
ysed separately. Parameter values estimated from one cohort are in no way
related to those from other cohorts in the population. In order to reduce
the number of parameters and utilise a presumed common structure of the
�shing mortality for the cohorts, a separability assumption was introduced.
The idea is that the �shing mortality, fa;y, of a-year-olds in year y may be
described by the product of two factors; a time-dependent factor describing
the variation in �shing e�ort between years, and an age-dependent factor
describing the selectivity of age groups (Agger et al., 1971). This reduces
the number of parameters dramatically, and the parameters are statistically
estimated in a simultaneousmanner rather than sequentially, by minimizing
the squared di�erence between observed and predicted catch observations.
At the same time, a separability assumption simultaneously link data from
several cohorts. Introduction of the separable formulation of �shing mor-
tality was an important conceptual advance because it moved the study of
stock assessment methodology into the realm of more generalised mathe-
matical models and went a long way toward promoting statistical analysis
of catch at age data (Megrey, 1989). However, the separability assumption
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does not always hold. The selectivity of the age groups may change with
time because of technological developments of the gear. The assumption
may also be violated in cases where the stocks are exploited by more than
one 
eet, using �shing gear with di�erent selectivity, if the relative propor-
tion caught by each 
eet changes. The problem can sometimes be avoided
by working with catch at age data disaggregated by 
eets.

Despite the advantages of the separability assumption, it did not overcome
the problem that catch at age data alone do not contain enough information
to estimate �shing mortality in the most recent �shing year with acceptable
precision. In addition, stock sizes and �shing mortality parameters become
highly negatively correlated when based on catch at age data alone (Dou-
bleday, 1976; Pope, 1977). Therefore various approaches often referred to
as 'tuning virtual population analyses' or 'integrated analysis' have been
attempted, where auxiliary information in terms of additional data or as-
sumed relationships which restrict the model has been introduced in the
stock assessments. Such information could be catch per unit e�ort (CPUE)
data assumed to be an index of abundance either estimated on the basis of
data from the �shing vessels (Pope and Shepherd, 1985) or from research
vessels (Doubleday, 1981), relationships between spawners and recruits (eg.
Ricker, 1954; Beverton and Holt, 1957) or more or less complicated models
for the catchability, under the assumption that the �shing mortality may
be described as a product of the e�ort and the catchability. Lewy (1988)
utilised the following model for catchability in the assessment of the North
Sea whiting stock:

q';a;y = s';a;y q1;';y q2;';a (2.7)

where one relationship is determined for every 
eet, '. q1;';y is a tech-
nological factor accounting for development of �shing power. s';a;y is the
selectivity de�ned as the proportion of �sh retained in the trawl modelled
as a function of age or length of the �sh and the mesh size. q2;';y is an
age factor dependent on availability and behaviour of the �sh. The per-
formance of some tuning methods are compared by Pope and Shepherd
(1985).

Fournier and Archibald (1982) and Deriso et al. (1985) proposed very gen-
eralised mathematical models incorporating the separability assumption.
The models allow incorporation of �shery-independent data directly into
the simultaneous parameter estimation procedure. Unfortunately, neither
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of those models can encompass both measurement error of catch at age
data and model errors at the same time. However, introducing time series
models one obtains the capability to account for model errors with their
cumulative properties as well as observation errors. The models may be
estimated by the use of Kalman �lter techniques. Age structured time
series models for �sh stocks have been described in eg. Kettunen (1983)
and Schnute (1994), and applied by eg. Mendelssohn (1988), Gudmunds-
son (1994), Fargo and Richards (1998). The models are discretised into
intervals of years before a term accounting for model errors is entered.
Gudmundsson (1994) discretises (2.2) and (2.3) into (2.4) and (2.5) before
terms are introduced to take the uncertainties into account. The �shing
mortality is modelled as a state variable by a separable model allowing for
four sources of random variation having transcient and permanent in
uence
on the �shing mortality. Gudmundsson (1994) assumes that the natural
mortality is known and that the recruitment is varying around a constant
level, described by a Gaussian distribution and thus is independent of the
amount of sexually mature �sh. Recently Bayesian approaches have been
applied (McAllister and Ianelli, 1997; Punt and Hilborn, 1997). The ap-
proaches are attractive because rather complicated relationships may be
fairly easy to describe and because prior knowledge of the distribution of
the parameters may be provided, either by 'expert' knowledge, by histori-
cal data or by results from assessments from other stocks. The output is a
distribution of the model parameters. However, care must be taken when
interpreting the results. In particular, selection of priors designed to be
noninformative with respect to quantities of interest is problematic (Punt
and Hilborn, 1997).

The overview above has focused on age-structured models for stock assess-
ment as these are most relevant to the project. Another main approach to
stock assessment is models based on the length composition of the catch
instead of the age composition. E.g. Ralston and Ianelli (1998) give an
example of a species (Bocaccio), where the age determination is so di�cult
that the estimates of the age-composition is too uncertain to be of any
use. Instead length composition data was used. Quinn et al. (1998) and
Matsuishi (1998) also discuss length-based population analyses. Sullivan
(1992) presents a state-space model of a length structured population under
commercial harvest. A Kalman �lter is used for estimation. Approaches
for stock assessment based on catch-e�ort data alone, i.e. where the data
consists of annual aggregated catches and annual aggregated �shing e�ort,
could be another supplement to the catch at age based sandeel stock as-
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sessments when age determinations are too uncertain. Such models are
presented by eg. Chen and Paloheimo (1994) and Reed and Simons (1996).

2.2 Stock assessment of sandeel

The sandeel stock in the North Sea is assessed every year by the Interna-
tional Council of the Exploration of the Sea (ICES). The method used is
called Seasonal Extended Survivors Analysis (SXSA) (Skagen, 1994), which
is a modi�cation of Extended survivors analysis (XSA) (Doubleday, 1981).
The name is apt because the method focuses on the estimation of the abun-
dance of the survivors at the end of the period covered by the catch data,
for each cohort. Most other VPA-like methods estimate the stock size at
the beginning of the years where catch at age data is available. Thus, the
stock size at the end of the last year, which often is of great importance
for the �shery management, is not assessed in the algorithm but derived
from the �shing mortality for the last year. The term 'seasonal' in SXSA
refers to the fact that constant �shing mortality is assumed in periods of
half years, in stead of whole years, due to the seasonal characteristic of the
�shery. In general, the �shery peaks during spring and early summer.

The method is a 'tuning' of Pope's approximation to VPA (Pope, 1972)
by additional measures of relative stock abundance, CPUE data. In the
approximation it is assumed that the entire catch is taken exactly midway
through the period. Thus, the number of survivors at the end of a period,
which is the same as the the number of individuals at the beginning of the
following period, Na0+1;y0+1 is:

Na0+1;y0+1 = Na0;y0 exp(�ma0 )� Ca0;y0 exp(�ma0=2) (2.8)

where a0 and y0 denotes the age and year, counted in half years; Ca0;y0 is
catch at age data and ma0;y0 is the natural mortality, which is estimated
to be higher for the youngest �sh and generally lower in the second half of
the year, because the sandeel hides in the sediment in the winter period.
The natural mortality for 1

2 � 1-year-olds is assumed to be 0.8 and for 1-
112 -year-olds it is assumed to be 1.0. For older �sh the natural mortality is
assumed to be 0.4 in the �rst half of the year and 0.2 in the second half of
the year. From equation (2.8) the survivors each period may be expressed
easily as a function of the survivors from the previous period.
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The 'tuning' is done on the basis of CPUE data, ua0;y0 . It is assumed that
ua0;y0 is proportional to the mean number of individuals N of that age
group in the period:

ua0;y0 = qa0N (2.9)

where the catchability, qa0 , is dependent on the age only. Thus, the CPUE
data is based also on information on the population size. Estimates of
catchability and survivors are obtained by a trade-o� between the two
sources of information (the CPUE and the catch at age data), by means of
a least square approach. The estimates associated with older �sh and with
the second half of the year are assumed to be more uncertain than other
estimates. To give the observations an in
uence in accordance with these
expectations a manual weighting in the estimation has been introduced.

2.3 Sources of uncertainties in the assessment

of sandeel

2.3.1 Uncertainties associated with the model

The models of �sh stocks are of course only crude approximations of the
actual population dynamics. When the system is complex and informative
observations are di�cult to obtain it cannot be otherwise. However, the
characteristics of sandeel make the results even less reliable compared to
most other species. The natural mortality of sandeel is much higher than
for most other commercially exploited �sh species. As the sandeel is a
short-lived species only a few observations are obtained per cohort. A
reliable model for recruitment is di�cult to obtain, as no clear dependency
can be recognized between the spawning stock biomass and the number of
0-year-olds (�gure 2.1). The spawning stock is the weight of the individuals
in the stock that is at least two years old; the estimated age of maturity of
sandeel (Macer, 1966).

Fishery independent data such as survey data are not available to improve
the assessments, because sandeel is not caught by the standard equipment
on the survey vessels. Adult sandeels bury themselves in the sediment
at night and during winter and are mostly found in areas of coarse well-
oxygenated sand, (Macer, 1966). Presumably, there is little migration of
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Figure 2.1: Abundance of 0-year-olds versus spawning stock biomass.



16 Chapter 2. Age structured Stock Assessment Models

adult sandeel between the various sandeel grounds in the North Sea, and
regional di�erences in age-composition can therefore be expected. In addi-
tion, there are indications that the �shery can direct their �shery towards
particular cohorts. Thus, the separability assumption is questionable. Due
to the burrowing behaviour of the adults the catch rates vary between dif-
ferent age groups, with season and during the day (Reeves, 1994). The
burrowing behaviour may also depend on tide and weather.

2.3.2 Uncertainties associated with the estimation pro-
cedure

The estimation procedure is of course closely connected to the model. The
scope for development of models is often restricted by the estimation pro-
cedure and the evaluation of a model depends on the properties of the
procedure. Therefore, it has been considered irrelevant to evaluate the
sources of errors in connection with the estimation of the SXSA in this
project, as the aim is to improve the model. This subject will be addressed
whenever relevant in the thesis, i.e. in connection with estimates of the
age composition of catches (chapter 3, section 3.3.1) and discussion of �sh
stock models (chapter 6, section 6.1).

2.3.3 Uncertainties associated with the data

The data utilised in the assessment of sandeel is catch at age data and
CPUE data. The data are far from direct observations even though they
are referred to as such. They are the result of a combination of information
from several di�erent data sources. The �rst hand buyers report the weight
of each industrial landing that is bought. The �shermen on vessels with an
overall length of 17 m or more report daily in their logbooks information on
what, where, when and how much they have caught. In addition informa-
tion on the vessel size and gear is reported. The authorities collect samples
to estimate the catch compositions with regard to the species composition,
the age composition and the distributions of weight and length. Of course
all those observations presumably have some kind of observational error
associated. The uncertainties are addressed in connection with the assess-
ment of the uncertainties in the catch at age data (Kvist et al., 1999b)
(Appendix C).
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The dominating sources of uncertainties in catch at age data are associated
with the age composition, discussed in chapter 3. The procedure for esti-
mation of catch at age data and their associated uncertainties is described
in chapter 5.

The CPUE data is estimated on the basis of information from the logbooks.
The number of �shing days by vessel category are estimated by counting
the number of days where the logbook indicates that sandeel constituted
more than 70% of the total daily catch. Seven categories of vessel sizes
are used. The corresponding total catch of sandel for each vessel category
is estimated as the sum of the logbook estimate of the sandeel catch. In
each vessel category the mean catch per �shing day, season and year is
estimated. In order to account for di�erences in �shing power between
year, season and vessel size, the following model was �tted to the data:

CPUEy;seas;cat = ay;seas Vcat
by;seas (2.10)

where y denotes year, seas, indicates winter and summer season, Vcat is
the mean vessel size of the category cat and ay;seas and by;seas are the
parameters to be estimated. By this procedure an estimate of the CPUE
of a vessel of standard size is provided.

The �shing e�ort, i.e. the number of standardised �shing days, per season
and year may be obtained by dividing the catch of sandeel by the standard-
ised CPUE. However, the information on the amount caught recorded by
the �shermen is more impresise than the information from the �rst hand
buyer, where the catch has actually been weighed and not appreciated by
eye, an eye which might be prone to underestimate. Thus, an improved
estimate is obtained by using the catch per species estimated on the basis
of a combination of the information from the logbooks, the �rst hand buyer
and the samples taken by the authorities. How this is obtained is described
in Kvist et al. (1999b) (Appendix C).

An analysis of the possible sources of uncertainties of the CPUE data has
not been performed in this project. This could be done by choosing the
catch of sandeel per �shing day where sandeel indeed was the target species,
as response. Thus, the raw data is used and not an average of all �shing
days in a season per vessel group. By this approach no uncertainties are
aggregated and therefore sources of uncertainties and their magnitudes are
easier to assess. The response could then be modelled as a function of
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various possible factors or functions of those; vessel size, year, time of year,
geographical position, gear, mesh size. Presumably, the distribution of
the response may be satisfactorily described by a continuous distribution
belonging to an exponential family or perhaps a log-normal distribution, i.e.
that the logarithm to the response is normally distributed. It is, however,
not trivial to determine in each case whether the target species was sandeel
or not because it may happen that the catch is di�erent from the target.
Currently, the de�nition of a �shing day where sandeel was the target
species is a day where more than 70% of the catch is constituted by sandeel.

Richards and Schnute (1992) also suggest some methods for analysing
CPUE data. However, they focus on transformation parameters for nor-
malising the response instead of utilising the theory of generalised linear
models (McCullagh and Nelder, 1989), which can handle other distributions
than the normal distribution.



19

Chapter 3

Uncertainties Associated

with the Estimated Age

Composition

3.1 Introduction

The age composition of the catch provides vital information for age-struc-
tured stock assessments. In addition, the age composition of the catch gives
a picture of the age composition of the part of the stock that is available to
the �shery, although the picture presumably is biased. Estimates of the age
composition are derived from samples taken at random from the catch or
by a strati�ed sampling scheme. The catch samples are sorted into species,
the number of individuals of each species is counted, and the individuals
are measured and their age determined by counting the number of growth
rings in hard parts such as otoliths. The age composition may vary from
sample to sample due to a multitude of factors including spatial or tem-
poral di�erences in catch composition and errors in the age determination
itself. By breaking down the variation into its original sources, improved
estimates of the age compositions and their uncertainties, and valuable in-
formation concerning the stock dynamics may be obtained. Furthermore,
the gained knowledge of the sources may be used to optimise the sampling
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scheme under strati�ed sampling. Thus, it is certainly useful to detect the
sources and magnitudes of variation in the age composition. However, this
subject has seldom been addressed. This may partly be due to a lack of
suitable methods. The distribution of the number of individuals in di�erent
age groups in a sample may be described by a multinomial distribution and
no standard methods are available for evaluating the signi�cance of factors
in
uencing such a distribution. A new method for analysing age compo-
sition data has been presented in Kvist et al. (1998) (Appendix A). The
method combines continuation-ratio logits (Agresti, 1990) and the theory
for generalised linear mixed models (Breslow and Clayton, 1993; Wol�nger
and O'Connel, 1993). It transforms the probability of the multinomial re-
sponse into a product of binomial probabilities for which generalised linear
mixed models can be directly applied to study the possible sources of vari-
ation. It is particularly suitable for age composition data because it allows
individual cohorts to be followed and compared over time.

3.2 Transforming the multinomial response

probability into a product of binomial prob-

abilities

An important issue of the assessment of the uncertainties associated with
the age composition is to establish factors of importance for the age compo-
sition. This may be done by modelling the age composition as a function
of various possible factors and testing the signi�cance of these. The re-
sponse is the index of individuals in each age group, Xs = (XRs; : : : ; XAs),
where s denotes the sample number, and the age groups are R; : : : ; A. The
number of the age group usually corresponds to the age it covers, except
for age group A, which most often covers ages A and above. R stands
for recruitment age, which is the youngest age group that appears in the
landings. If we assume that the age composition of the species of interest
in a particular sample does not depend on the occurence of other species
in the sample and that the samples are representative for the age compo-
sition in the catch then the response may be modelled by a multinomial
distribution:

Xs 2Mult(ns; pRs; : : : ; pAs) (3.1)
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where ns denotes the sample size and pjs denotes the proportion of individ-
uals in the catch classi�ed as belonging to age group j, j = R; : : : ; A. With
A�R+1 age groups present A�R probabilities will be needed to describe
the distribution. The pjs's describe the real age composition of the catches
if the age determination is unbiased. If a bias exists, the proportion pjs
describes the proportion of the species in the catch that would be classi�ed
into age group j. In order to analyse the age composition, the multino-
mial probability is factorised into a product of binomial probabilities. This
is done by considering the conditional distributions of XRs; : : : ; X(A�1)s,
where the distribution of Xjs is conditioned on the event that the age is j
or higher:

XjsjXjs + : : :+XAs = sumjs 2 Bin(sumjs; �js) (3.2)

where j = R; : : : ; A � 1; Xjs is the number of j-year-olds and �js is the
probability of age j given that the age is at least j:

�js =
pjs

pjs + : : :+ pAs
(3.3)

Thus, the probability of the multinomial response, Xs, of dimension A�R
is transformed into a product of A�R binomial probabilities. The ordinary
logits associated with the �js's:

Ljs = log
�js

1� �js
(3.4)

are called continuation-ratio logits for Xs, because such a logit compares
the proportion of an age group to the proportion of older age groups, which
becomes obvious if the conditional probabilities in (3.4) are substituted by
the unconditional probabilities, i.e. (3.4) equals:

Ljs = log
pjs

p(j+1)s + : : :+ pAs
(3.5)
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3.3 Analysis of the transformed probability

The factorisation of the multinomial probability has the advantage that
the conditioned probabilities may be modelled separately by means of gen-
eralised linear mixed models as long as they do not have any parameters
in common. Thus, the distribution of the multinomial response, Xs, of
dimension A � R is modelled by A � R continuation-ratio logits of the
form:

Lj = bj�j + Zjuj (3.6)

where j = R; : : : ; A � 1. bj denotes the explanatory variables associated
with the �xed parameters �j and Zj the explanatory variables associated
with the random parameters uj. The random parameters are assumed to
be normally distributed on the logit scale. If the random parameters are
omitted the model is a generalised linear model, described in McCullagh
and Nelder (1989).

A dispersion parameter, �, is included to account for the variance that could
not be attributed to the binomial variance or the explanatory variables.
The dispersion parameter enters as a simple multiplicative factor on the
binomial variance, and must therefore be greater than zero. � = 1 indicates
that the variance of the response is in accordance with the nominal binomial
variance. � < 1 indicates that the data is underdispersed, and that the
variance of the response is less than the nominal binomial variance. � > 1
indicates overdispersion, where the variance of the responce exceeds the
nominal binomial variance. Introducing a dispersion parameter means that
the conditional distributions are no longer exactly binomial:

Xjsjxjs + : : :+ xAs 2gBin(Xjs + : : :+XAs; �js; �js) (3.7)

The dispersion parameter has been described in more detail in e.g. McCul-
lagh and Nelder (1989).

The excess random variation of the model is thus modelled partly by a
dispersion parameter and partly by variance components (from random
e�ects). A variance component describes variation between observations
with di�erent probabilities and the dispersion parameter describes variation
between observations with the same probabilites. The magnitudes of the
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two are di�cult to compare as they are measured on di�erent scales, but
the interpretation of the dispersion parameter and the variance components
may be illustrated further by considering the following simple example.

Example

Assume X is binomially distributed with an associated dispersion param-
eter, �:

X 2gBin(n; p; �) (3.8)

where E[p] = p0, l = log(p=(1� p)), and V[l] = �2.

The variance of the observation X=n can then approximately be expressed
as:

V

�
X

n

�
� p0(1 � p0)

�
p0(1� p0)�

2 +
�

n

�
1� p0(1� p0)�

2
��

(3.9)

The �rst factor of the expression describes the basic binomial variance
structure. The �rst term within the square brackets describes the variation
between observations with di�erent p's (transformed from the logit scale
to the probability scale), and the last term describes the average variation
between observations with the same p (because of the convexity of p(1�p)
this average variation will be less than �p0(1�p0)). Note that if the variance
component,�, is zero the variance reduces to the variance, p0(1 � p0)�=n,
corresponding to a binomial distribution with a dispersion parameter. Note
also that according to (3.9), an increase of the sample size will reduce the
contribution from the dispersion parameter, but not the contribution from
the random e�ect.

The choice between modelling an e�ect as �xed or random depends on the
purpose of the model and the nature of the e�ect. In the three examples
presented in the papers Kvist et al., (1998) (Appendix A); Kvist et al.,
(1999a) (Appendix B) and Kvist et al., (1999b) (Appendix C), three di�er-
ent models have been introduced for the same response, where the structure
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depends on the purpose of the model. Each model has been motivated in
the respective paper. In particular it has been found advantageous, to
model geographical e�ects as random, because modelling an e�ect as ran-
dom implies a dependency between the observations, in the present cases
between age compositions within the same area. Thus, age compositions in
subareas within the same area are correlated. The dependency also has the
advantage that the age composition of areas with no samples and the asso-
ciated variance can be estimated, simply by estimating it to be the average
age composition within the larger geographical area it belongs to. Another
important advantage is that even though there was a signi�cant variation
of the smallest possible areas available in the analysis, the signi�cance of
larger geographical areas could be evaluated.

The primary interest of a random e�ect is often the magnitude of the associ-
ated variance component. However, estimates of the e�ects of the separate
levels of the normally distributed variable, may also be of interest. An es-
timate of the e�ect at a particular level of a random e�ect is determined as
a compromise between the speci�c observations associated with that level
and the average e�ect. Usually this estimate is chosen as the Best Linear
Unbiased Predictor (BLUP) (e.g. Robinson, 1991). There is some confu-
sion in the terminology regarding to whether an estimate of the e�ect at a
level of a random e�ect should be called estimate or predictor (Robinson,
1991).

Continuation-ratio logits are particularly suitable for analysing age compo-
sition data because they allow individual cohorts to be followed and com-
pared over time. By considering the di�erence between logits associated
with the same cohort from two succesive years, Ly;a;c and Ly+1;a+1;c the
relative development of the cohorts may be studied. A di�erent indexing
than (3.5) has been used in order to emphasize that it is the same cohorts
that are compared; y denotes year, a denotes age and c = y � a denotes
the cohort. I.e. the logits to be compared are

Ly;a;c = log
py;a;c

py;a+1;c�1 + py;a+2;c�2 + : : :
(3.10)

and

Ly+1;a+1;c = log
py+1;a+1;c

py+1;a+2;c�1 + py+1;a+3;c�2 + : : :
(3.11)
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As the indices indicate, the same cohorts are compared to each other. Such
a comparison has been performed based on age composition data from the
sandeel �shery (Kvist et al., 1999a) (Appendix B). The analyses showed
that the age proportion of a cohort changed through the years, even though
compared to the same cohorts, viz. older. Apparently, the �shery for
0-year-olds at the present �shing intensity does not in
uence the �shing
possibilities of 1-year-olds the year after. Another conclusion was that there
is indication of that the �shery has been attracted to 1-year-old �sh in years
where they were abundant. In addition, a pattern could be recognized to
be utilised for inference and prediction.

The transformed probability of the multinomial response was modelled by
generalized linear mixed models, where the random e�ects were modelled
as normally distributed on the logit scale. Another promising approach has
been suggested by Lee and Nelder (1996). They present models even more
generalized, which may handle random components of other distributions
than the normal distribution. Thus, more natural distributions of the ran-
dom components may be applied. In the application presented here, where
the multinomial probability is transformed into a product of binomial prob-
abilities, the beta-distribution may be applied. This alternative approach
may very well result in improved estimates of the age composition and its
uncertainties, as the beta-distribution presumably describes the random
variation of probabilities better than the normal distribution on the logit
scale. If however, the variance components are small the two will result
in approximately the same results. Unfortunately, the random components
are large in the actual case studied. Therefore, the new approach presented
by Lee and Nelder (1996), might be bene�cial.

3.3.1 Estimation of generalised linear mixed models

At present, there is not any procedures available in the statistical software
packages to �t the generalised linear mixed models using exact maximum
likelihood. The estimation procedure utilised in this project is a procedure
suggested by Wol�nger and O'Connel (1993) and implemented in the macro
glimmix in SAS 6.12. It is an approximatemethod combining two analytical
and one probabilistic approximation. First, consider the generalised linear
mixed models formulated as:

y = � + e (3.12)
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where y is a vector containing n observations, � is the mean de�ned by a
link function which should be monotonic and di�erentiable:

g(�) = b� + Zu (3.13)

Thus the mean is a nonlinear function of the explanatory variables. � is
a vector of unknown �xed e�ects with known model matrix b and u is a
vector of unknown random e�ects with known model matrix Z. Efug = 0

and Covfug = G, where G is unknown. e is a vector of unobserved errors
with

Efej�g = 0 (3.14)

and

Covfej�g = R
1=2
� RR

1=2
� (3.15)

where R� is a diagonal matrix containing evaluations at � of a known
variance function for the model under consideration and R is unknown.
The �rst analytical approximation is to approximate e = y � � by a �rst
order Taylor series approximation expanding about b� and bu:

~e = y � b�� (g�1)0(bb� + Zbu)(b� � bb� + Zu� Zbu) (3.16)

where b� = g�1(bb� + Zbu) is a diagonal matrix with elements consisting of
evaluations of the �rst derivative of g�1. Hereafter the conditional distri-
bution of ~e given � and u is approximated with a Gaussian distribution:

~ej�;u 2 N(0;R
1=2
� RR

1=2
� ) (3.17)

At last � is substituted by b� in the variance matrix. The approximations
result in model equations similar to those of ordinary mixed models. The
mixed model equations are:

�
b0R

�1
b b0R

�1
Z

Z0R
�1
b Z0R

�1
Z +G�1
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�

u

�
=

�
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�1
y

�
(3.18)
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and the generalised linear mixed model equations are:

�
b0Wb b0WZ

Z0Wb Z0WZ +G�1

� �
�

u

�
=

�
b0Wy

�

Z0Wy
�

�
(3.19)

where

W = DR�1D

y� = b� + (y � b�)D�1

D = [@�=@�]
R = Varfeg
� = b� + Zu

The di�erences between the ordinary mixed model equations and the gen-
eralised linear mixed model equations are two transformations; one of the
observations, y, and one of the weighting matrix, R�1. The transforma-
tions are necessary because whereas observations and paramaters from an
ordinary mixed model are measured on the same scale, observations and
parameters from generalised linear mixed models are not necessarily mea-
sured on the same scale. Thus, to obtain a solution for the �xed and
random parameters, � and u, the observations utilised in the generalised
linear mixed models are transformed into observations, y�, on the scale
where the �xed and random parameters are measured. The weighting ma-
trix R�1 is replaced by DR�1D, again to make a transformation into the
scale of the �xed and random parameters. The procedure is presented
in detail in Wol�nger and O'Connel (1993). Unfortunately, approximate
maximum likelihood estimates of this kind have some unsatisfactory prop-
erties. In particular, the variance of the predictions of the separate levels of
a random e�ect (re�ered to as Best Linear Unbiased Predictor (BLUP)) is
biased and underestimated under standard (small domain) asymptotic as-
sumptions especially if the variance components are not small (Kuk (1995),
Lin and Breslow (1996), Breslow and Lin (1995) and Booth and Hobert
(1998)).

Attempts are made for developing procedures for �nding exact maximum
likelihood estimates in the generalised linear mixed models setting, e.g.
Booth and Hobert (1999). They suggest two methods based on the Monte
Carlo EM algorithm (Wei and Tanner, 1990). However, the methods break
down when the intractable integrals in the likelihood function are of high
dimension. Booth and Hobert (1999) suggest that approximate methods
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such as those implemented in the macro glimmix should be used for model
selection until the exact methods have been improved.

3.4 Estimation of the age composition and

the associated uncertainties

By application of generalised linear mixed models, estimates of the con-
ditional probabilities, b�s = (b�Rs; : : : ; b�As), and variances and covariances
between conditional probabilities for age groups i and i0, and samples s
and s0, dCovfb�is; b�i0s0g, may be obtained. The unconditional probabilities
may be obtained by the following equation:

pi = �i(1�
i�1X
j=R

pj) (3.20)

where i = R; : : : ; A. Note that the conditional probability for the oldest age
group, �A, equals 1. The variances and covariances are estimated by using
a �rst order Taylor approximation for a product of independent variables:

Vf
nY
i=1

b�ig � nX
i=1

2
4Vfb�ig i�1Y

j=1

b�2j nY
k=i+1

b�2k
3
5 (3.21)

3.5 Uncertainties associated with the age com-

position of the sandeel landings

The approach described above has been applied to age composition data
collected from the Danish sandeel �shery in the North Sea in 1993 in order
to illustrate the method (Kvist et al., 1998) (Appendix A). The model
was formulated, the signi�cance of e�ects were tested and estimates of the
unconditioned probabilities as well as their variances and covariances were
provided (the �rst order Taylor approximation (3.21) for the case of the
sandeel �shery. In the example (Appendix A, section A.3.6), the resulting
covariances had similar characteristics as covariances for multinomial data,
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in the sence that the largest uncertainties were observed for age groups
represented in proportions close to 1

2 . However, the uncertainties in the
middle age groups varied more smoothly than suggested by a crude multi-
nomial model. Another discrepancy from the covariance matrix of ordinary
multinomial data, is that positive covariances were observed.

The sources of variation in the age composition of the sandeel landings
taken in the North Sea between 1984 and 1993, have been analysed in or-
der to evaluate the signi�cance of spatial and temporal di�erences in the
age composition of the sandeel samples as well as to study the importance
of di�erences in age readings between laboratories. The analyses and re-
sults are presented in Kvist et al. (1999a) (Appendix B). The analyses
show that the proportion of older sandeel in the catches is signi�cantly
lower in the start and end of the �shing season and that the age composi-
tion di�er between laboratories. There is considerable variation in the age
composition within small areas, as well as considerable undetected sources
of variation resulting in a large and signi�cant overdispersion.

When the purpose of the model for age composition data changed from
detecting important sources of variation to estimating the resulting uncer-
tainties of the age composition, changes in the models were made. Although
the logits for the di�erent levels are modelled independently and might have
di�erent sources of variation and common sources of variation might be of
di�erent magnitude (refer to Kvist et al. (1998), Appendix A, section A.2),
an overall evaluation of the signi�cant e�ects are needed in order to eval-
uate the relevance of a model. E.g. it is di�cult to see the sense in a
geographical e�ect of importance for ages 0, 1 and 3, but not for age 2
(refer to Kvist et al. (1999a) (Appendix B), table 1). Therefore, when the
purpose of the model changed, the model structure was also changed (refer
to Kvist et al. (1999b) (Appendix C), table 1).

Whether or not predictions/estimates of the e�ects of the individual levels
of the random e�ects are relevant depends on the purpose of the model.
For illustrative purposes it is assumed that the following model applies:

Lijk = log
�ijk

1� �ijk
= o+ ai + s(a)j(i) + lk (3.22)

where Lijk is the logit for the conditioned probability �ijk; a is a geo-
graphical e�ect covering a larger area, with the parameters ai, i = 1; : : : ; 4,
describing the di�erence between the e�ect of area i and the overall e�ect
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o. The area ai is constituted by a set of smaller areas, sj , j = 1; : : : ; 4,
where s(a)j(i) describes the di�erence between the e�ect of area i and the
smaller area j within area i (refer to �gure 3.1).

a

o : overall
     level

s

Figure 3.1: An illustrative example of estimation and prediction

lk, k = 1; : : : ;K, is a laboratory e�ect describing age determination errors.
ai; s(a)j(i) and lk are modelled as random, with the variance components,
�2a; �

2
s(a), and �2l . It is assumed that Eflkg = 0 corresponds to an overall

unbiased classi�cation.

The best estimate of the e�ect, ai, in an area i, without observations, isbo. The variance of this parameter is dVfbog. However, the variance of the

estimate/prediction of the e�ect of such an area is dVfbog + b�2a. The best
estimate/prediction of the e�ect of a small area within that larger area
without observations is still bo, whereas the prediction variance becomesdVfbog + b�2a + b�2s(a). If observations exist from the larger area, ai, but not

from the smaller area, s(a)(j(i)), then the best estimate/prediction of the
e�ect of the smaller area would be bo + bai, and the associated variance

would be dVfbog + dVfbaig + 2 dCovfbo; baig + b�2s(a). Thus, in this example, es-
timates of the e�ects of the separate laboratories, lk, k = 1; : : : ;K, were
not relevant, whereas the magnitude of the variance component, as well
as estimates/predictions of the separate e�ects of the random e�ects were
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relevant for the a and s(a) e�ects.

To examplify, the predictions in the illustrative example in Kvist et al.
(1998) (Appendix A, A.3.6), are predictions of the e�ect in a small area,
viz. a square, SQ, without observations, within a larger area, viz. the
southern part of the North Sea. The estimates of the catch at age data for
years 1989 and 1991 (refer to table 5 in Kvist et al. (1999b) (Appendix C))
are based on predictions of the separate e�ects in each square (i.e. ICES
rectangle). In the cases where observations exist from the square, they are
utilised to improve the predictions, in cases where they are not, the e�ect
of the level is predicted by the mean e�ect of the larger area, A, the square
belongs to.

3.6 Link between age composition and stock

dynamics

In the analysis performed on the age composition data, no assumption of
the population dynamics such as (2.1) have been modelled. If such an
assumption is made, additional analyses may be performed. To illustrate
the analyses, it is assumed that (2.1) holds. Assume further that the age
composition in the sample is representative of the age composition in the
catch. Then the observed age composition in the sample may be used as
an estimate of the age composition in the catch, p(t)R; : : : ; p(t)A, taken in
the instantanous period from t to t0:

p(t)i =
�C(t)iPA
j=R�C(t)j

(3.23)

where i = R; : : : ; A and �C(t)i is the catch of i-year-olds in the period
from t to t0:

�C(t)a = C(t0)a �C(t)a =
fa
za
N (t)a(1� exp(�za(t0 � t))) (3.24)

The nonlinear description of the population dynamics has the consequence
that the age composition will change through the year, unless the age
groups have identic population sizes and mortalities. However, if the pat-
tern of removals may be assumed constant through a year (i.e. no change in
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quantities such as mortalities and availability), this change may be ignored
in most cases, as in the example shown in �gure 3.2 and �gure 3.3. The
�rst example is based on data from the cod �shery in the Icelandic waters
(data from Gudmundsson, 1994) and the second example is a constructed
situation, where the �shing mortalities are larger and di�ers more from
each other than in the example from the cod �shery.

Figure 3.2: Changes of the proportions of the age groups among 4 to 7-year-
old cod through a year. Typical �shing mortalities and stock numbers (N )
are used for 4- to 7-year-olds in the cod �shery in Icelandic waters. Stock
numbers as estimated for the whole North Sea. The horizontal lines corre-
sponds to the proportion of 4-year-olds (N = 200, z = 0:4). Vertical lines
corresponds to proportion of 5-year-olds (N = 100, z = 0:7). Crosshatched
lines corresponds to proportion of 6-year-olds (N = 60, z = 0:9). White
area corresponds to proportion of 7-year-olds (N = 40, z = 0:9). Natural
mortality is 0:2.

Because the changes of the age composition through a year are small in
those cases, they may not be utilised to assess the mortalities. However,
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Figure 3.3: Changes of the proportions of four age groups through a year
for constructed data. The horizontal lines corresponds to the proportion
for an age group with stock numbers at the beginning of the year, N = 200,
and total mortality, z = 1:5. Vertical lines corresponds to N = 100 and
z = 1:0. Crosshatched lines corresponds to N = 60 and f = 0:5. White
area corresponds to N = 40 and f = 0:3. The natural mortality is assumed
to be 0.2.
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the approximately constant level of the age composition (3.23) indicates
that a linear approximation of the term (1� exp(�za(t0 � t))) from (3.24)
is reasonable. A �rst order Taylor series approximation of the catch taken
in a short period, (3.24), gives

�C(t)a � faN (t)a�t (3.25)

where �t = t0 � t. This is the approximation that is used when assum-
ing that CPUE is proportional to the abundance. The approximation is
inserted into the equation for a continuation-ratio logit (refer to (3.5)):

L(t)i = log
p(t)iPA

j=i+1 p(t)j
� log

fiN (t)iPA
j=i+1 fjN (t)j

(3.26)

For simplicity it is assumed that age group A only covers age A. Letting
(3.26) cover a whole year, the continuation-ratio logit becomes:

Ly;a = log
fy;aNy;aPA

i=a+1 fy;iNy;i

(3.27)

where y denotes year and a age group. Thus, instead of the noninformative
comparison of logits within a year, logits for succesive years covering the
same cohort are compared. The di�erence between the logits is:

Ly+1;a+1 � Ly;a = log
fy+1;a+1Ny+1;a+1

PA
i=a+1 fy;iNy;i

fy;aNy;a

PA
i=a+1 fy+1;i+1Ny+1;i+1

(3.28)

Ny+1;a+1 = Ny;a exp(�(fy;a +ma)) is inserted:

Ly+1;a+1 �Ly;a = log
fy+1;a+1 exp(�fy;a �ma)

PA
i=a+1 fy;iNy;i

fy;a
PA

i=a+1 fy+1;i+1Ny;i exp(�(fy;i +mi))
(3.29)

The expression is complicated. Even applying a separability assumption
such as fy;a = uavy, does not result in su�cient simplicity. However, if
another logit called adjacent-ratio logit is used instead of the continuation-
ratio logit, the di�erence between succesive logits becomes less complex.
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The adjacent-ratio logit, L�js, compares an age group only to the subsequent
age group instead of all subsequent age groups. The de�nition is:

L�js = log
pjs

p(j+1)s
(3.30)

where the same notation is used as in (3.5). Using the approximation (3.25)
as before, the approximate adjacent-ratio logit becomes:

L�y;a = log
fy;aNy;a

fy;a+1Ny;a+1
(3.31)

The di�erence between two succesive logits is:

L�y+1;a+1 � L�y;a = log
fy+1;a+1 fy;a+1 Ny+1;a+1 Ny;a+1

fy+1;a+2 fy;a Ny+1;a+2 Ny;a
(3.32)

Inserting the expression Ny+1;a+1 = Ny;a exp(�ma�fy;a) and correspond-
ing expression for Ny+1;a+2 the di�erence becomes:

L�y+1;a+1 � L�y;a = log
fy+1;a+1 fy;a+1 exp(�ma � fy;a)

fy+1;a+2 fy;a exp(�ma+1 � fy;a+1)
(3.33)

Thus, the di�erence is not dependent on the actual stock numbers. If a
separability assumption fy;a = vyua is applied, the expression is further
reduced:

L�y+1;a+1 � L�y;a = 2 logua+1 � logua+2 � logua +ma+1 �ma +

vy(ua+1 � ua) (3.34)

Thus, based on the age composition data only, the �shing mortalities may
be estimated.

However, the assumption of constant mortalities is crucial. In the case of
the sandeel �shery, we have seen that the assumption does not hold, as
the proportion of older sandeel in the catches is signi�cantly lower in the
start and end of the �shing season. The phenomenon is probably caused
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by a change of the proportion of the stock that is available to the �shery
rather than a change in the �shing mortality. However, a change in the
�shing mortality might cause the same change. Therefore, for simplicity,
the availability has been included in the �shing mortality. In the case
of changing mortalities within a year, shorter periods may be considered.
Comparisons of the age proportions of the same cohort within the same
year are then for adjacent-ratio logits:

L�a;t2 � L�a;t1 = log
pa;t2
pa+1;t2

� log
pa;t1
pa+1;t1

(3.35)

Inserting the approximate expression for the catch (equation (3.23) and
(3.25)) one obtains:

L�a;t2 � L�a;t1 = log
fa;t2N (t2)a

fa+1;t2N (t2)a+1
� log

fa;t1N (t1)a
fa+1;t1N (t1)a+1

(3.36)

Assuming that the interval between t1 and t2 is short enough to assume
that the �shing mortality fa;t1 applies in the interval, relationshipN (t2)a =
N (t1)a exp(�za;t1(t2 � t1)) and corresponding relationship for N (t2)a+1
may be inserted. One obtains:

L�a;t2 � L�a;t1 = log

�
fa;t2
fa+1;t2

fa+1;t1
fa;t1

exp(�za;t1 (t2 � t1))

exp(�za+1;t1 (t2 � t1))

�
(3.37)

which might be simpli�ed into:

L�a;t2 � L�a;t1 = logfa;t2 � logfa+1;t2 + log fa+1;t1 � fa;t1

�za;t1(t2 � t1) + za+1;t1(t2 � t1) (3.38)

Further simpli�cation may be obtained if a structure, such as separability
may be assumed. (However, presumably the separability assumption does
not apply to the sandeel �shery.) Thus, even in the case of varying mor-
talities through the year, the approach may be applied when the year may
be divided into several intervals within each of which one may assume that
the mortalities are constant.
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The approach of comparing cohorts between two succesive years has also
been considered by Pope and Shepherd (1982). Although the approaches
have the similarity of comparing cohorts between succesive years, the ap-
proaches are di�erent. Pope and Shepherd (1982) compare the catch from
a cohort for two succesive years, Dy;a:

Dy;a = log
Cy+1;a+1

Cy;a
(3.39)

whereas I compare the relative catch from a cohort for two succesive years
(rewriting of equation (3.28)):

Ly+1;a+1 � Ly;a = log
Cy+1;a+1=

PA
i=a+2Cy+1;i

Cy;a=
PA

i=a+1Cy;i

(3.40)

and in the case of continuation-ratio logits (rewriting of equation (3.33)):

L�y+1;a+1 � L�y;a = log
Cy+1;a+1=Cy+1;a+2

Cy;a=Cy;a+1
(3.41)

in the case of adjacent-ratio logits. The main di�erence between the ap-
proach presented here and the approach of Pope and Shepherd (1982) is
that whereas the approach of Pope and Shepherd (1982) requires catch at
age data, the approach suggested here requires only age composition data.
Thus, information on the position of the �shery, the actual amount caught,
the species composition and the mean weight of the species is not needed
in the approach presented here. Other di�erences are that the approach
of Pope and Shepherd (1982) is based on a least squares estimation pro-
cedure, which does not take into account the special characteristics of the
variance structure of catch at age data, induced by the age composition
data, which is one of the main data sources in estimation of catch at age
data. Furthermore, the approach presented here facilitates an investigation
of the sources of variation.

The adjacent-ratio logits have the advantage compared to continuation-
ratio logits of not being dependent on the stock numbers. However, they
do have the drawback of being based on fewer individuals, in that one age
group is compared to the subsequent age group, instead of all subsequent
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age groups. Secondly, the in
uence from the age determination errors is re-
duced by utilising continuation-ratio logits instead of adjacent-ratio logits,
as continuation-ratio logits require a classi�cation of the sandeels into at
most three age groups, whereas adjacent-ratio logits require an additional
age group (except for the comparison of the two oldest age groups). The
classi�cations needed for the continuation-ratio logit for age group a, La,
are a classi�cation of the youngest sandeels not encompassed by the logit
(not needed for the logit for age group R), and a classi�cation into the two
groups two be compared, i.e. a group consisting of a-year olds and a group
consisting of older �sh. Adjacent-ratio logits require an additional age
group; the oldest sandeels not encompassed by the comparison have to be
sorted out. This extra uncertainty which is added if the adjacent-ratio logits
are utilised instead of continuation-ratio logits, may be of relatively con-
siderable magnitude, as the di�culties of distinguishing between the ages
are presumed to increase as the sandeels grow older. At last, continuation-
ratio logits are independent as long as they do not have any parameters
in common, whereas adjacent-ratio logits are not. Independence between
the logits of di�erent age groups are a necessary condition for analysing the
logits for the di�erent age groups separately. Which circumstances that are
of most importance may be di�cult to judge. Preliminary analyses have
not shown great di�erences between the models of adjacent-ratio logits and
continuation-ratio logits.
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Chapter 4

Analysis of Age

Composition Strati�ed by

Length Groups

Age determinations of �sh are often time-consuming and expensive to per-
form, and therefore reduction of the number of age determinations is an im-
portant subject in the designing of sampling schemes (e.g. Ketchen, 1950;
Schweigert and Sibert, 1983; Horppila and Peltonen, 1992). The number of
age determinations may be reduced by utilising the correlation between age
and length. Often large samples are collected for estimation of the length
composition of the catch, and then the length groups are subsampled for es-
timation of the age composition. Because length determinations are much
easier to perform than age determinations, length determinations are pref-
fered to age determinations. The age composition may be estimated by e.g.
a Bayesian approach (Nandram et al., 1997) or by a maximum likelihood
approach (e.g. Kimura and Chikuni, 1987; Martin and Cook, 1990; and
Hoenig et al., 1993). The basic idea of (Kimura and Chikuni, 1987; Martin
and Cook, 1990; and Hoenig et al., 1993) is to assume that the length dis-
tribution in the catch is compounded by overlapping normal distributions;
one for each age group i, f(l)i, where i = R; : : : ; A:
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f(l)i =
1p
2��i

exp(� (l � �i)
2

2�2i
) (4.1)

�i and �2i are the mean and variance of age group i. The proportion of age
group i among individuals of length l in the catch, p(l)i, is then

p(l)i =
pif(l)iPA

j=R pjf(l)j
(4.2)

where pi denotes the proportion of i-year-olds of the catch, i = R; : : : ; A.
The likelihood function may then be formulated from the data, which con-
sists of a set of observations of individuals which have been age determined
as well as length determined and a set of observations of individuals which
have been length determined only. Because estimation is based on maxi-
mum likelihood, signi�cance of e�ects may be evaluated by likelihood ratio
tests (e.g. Hoenig et al., 1993). However, models of handling structures of
the age composition which encompass �xed as well as random e�ects (such
as the structures in chapter 3) have not been investigated in this work.
Instead an approach to analyse the age composition data for given length
separately, excluding the length composition data, has been investigated.
The purpose of the analysis is to identify sources of variation and deter-
mine their magnitudes, i.e. the same as in chapter 3 and 5. The approach
is described below.

4.1 Analysing sources of variation in age com-

position for given length

Assume that the length distribution in the catch, for age group i may be
described by a continuous function f(l)i. The corresponding age distribu-
tion for length l is then as shown in equation (4.2). The continuation-ratio
logit (de�ned in equation (3.5)) for given length l, for age group i, L(l)i, is:

L(l)i = log
p(l)iPA

j=i+1 p(l)j
= log

pif(l)iPA
j=i+1 pjf(l)j

(4.3)
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The length distributions for the various age groups for sandeel are shown
in Appendix D for the years 1984-1993. Distributions such as a normal
distribution or a gamma distribution may presumably describe the length
distribution satisfactorily. Note that it is likely that the variation may be
resolved into various components associated with the sources of variation,
such as the period of the year, geographical areas, etc.. If these sources of
variation are taken into account, the overlap between the length distribu-
tions for the various age groups will be reduced. Thereby the age groups
will be easier to distinguish from each other on the basis of the length dis-
tribution. The continuation-ratio logit for age group i, assuming normal
distribution for the length, LN (l)i, is:

LN (l)i = logpi�log�i� 1

2

(l � �i)2

�2i
�log(

AX
j=i+1

pj
�j

exp(� (l � �j)2

2�2j
)) (4.4)

where equation (4.1) has been inserted into (4.3). Unfortunately, the logit
is not a simple function of the length, l. If however, it is realistic to assume
that the length distribution for i + 2-year-olds does not overlap with the
length distribution for individuals which are two years younger, i.e. i-
year-olds, then the continuation-ratio logit may be approximated by the
adjacent-ratio logit, LN�(l)i:

LN�(l)i = logpi�log�i� (l � �i)2

2�2i
�log pi+1+log�i+1+ (l � �i+1)2

2�2i+1
(4.5)

Thus, the continuation-ratio logit may approximately be described by a
second degree polynomium of the length, provided the length distribution
for an age group is approximately normally distributed. The dependency
of the length is even simpler if the standard deviations of the length dis-
tributions of age group i and i + 1, may be assumed approximately equal,
i.e. if �i = �i+1 = �. In this case (4.5) simpli�es to:

LN�(l)i = logpi � logpi+1 � 1

2�2
(2l(�i+1 � �i) � �2i+1 + �2i ) (4.6)

i.e., a linear function of the logit. If the length distribution for age group
i, i = R; : : : ; A, is assumed to be gamma distributed with mean ki�i and
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coe�cient of variation 1=
p
ki, instead of normally distributed, the adjacent-

ratio logit approximation of the continuation-ratio logit (equation (4.5)),
becomes even closer to a linear relation:

LG�(l)i = log pi � log �(ki) � ki log�i + (ki � 1) log l � l

�i
� logpi+1 + log�(ki+1) + ki+1 log �i+1 �
(ki+1 � 1) log l +

l

�i+1
(4.7)

where �(k) is:

�(k) =

Z
1

0

tk�1 exp(�t)dt (4.8)

and k > 0.

In order to assess which of the above approximations of the continuation-
ratio logit that is most appropriate for the sandeel landings, four scenarios
considered to cover most cases of length compositions for sandeel, are anal-
ysed.

4.1.1 Four scenarios of the length composition

In the four scenarios, two cases of length distributions are considered; the
Gaussian or normal distribution and the Gamma distribution. The param-
eters are chosen, so that the mean and standard deviation are equal to the
averages of the mean and standard deviation of the observed distributions
for the years 1984-1993 (Appendix D). Thus, the distributions considered
are conservative regarding the assumed standard deviation, because it has
not been attempted to be resolve the variation into smaller components.
The averages of the means and standard deviations of the years 1984-1993
are:
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Age group Mean (scm=1
2 cm) Std. (scm)

0 18.2 2.4
1 24.3 3.6
2 30.3 3.2
3 33.7 3.1
4 36.7 3.1

As regards the catch at age data, two scenarios for each distribution are
exampli�ed to cover the most common cases; a factor 10 in di�erence be-
tween the catch at age data for two subsequent age groups, and equal sized
catch at age data for all age groups. The relative frequencies are shown in
�gures 4.1 and 4.2 for the Gaussian case and 4.3 and 4.4 for the Gamma
case.

Figure 4.1: Length distribution for the various age groups for the Gaus-
sian case where a factor 10 in di�erence between catch numbers for two
subsequent age groups is assumed.
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Figure 4.2: Length distribution for the age groups for the Gaussian case
where equal catches are assumed for all age groups.
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Figure 4.3: Length distribution for the various age groups for the Gamma
case where a factor 10 in di�erence between catch numbers for two subse-
quent age groups is assumed.
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Figure 4.4: Length distribution for the age groups for the Gamma case
where equal catches are assumed for all age groups.
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The continuation-ratio logits are shown in �gures 4.5 and 4.6 (Gaussian
case) and 4.7 and 4.8 (Gamma case).

A linear relationship and a second degree polynomium between the contin-
uation-ratio logit and the length are �tted based on the range from ] �
5; 5[, which covers appr. 99% of the observations. Thereby heavy extra
polations into the far tails are avoided. The polynomium of second degree
almost coincides with the true relationship. In the Gaussian case, the linear
approximation of the relationship between the contination-ratio logit and
the length for age group 0 is certainly crude, which is caused by a relative
large di�erence between the standard deviation of the length of 0-year-olds
and the neighbour length distribution, which is that of the 1-year-olds. For
the gamma case, the non-linearities are largest for age group 1 in the case
where the di�erence between the sizes of the age groups is large. Thus, in
some cases, it might be relevant to estimate a second degree polynomium,
however, in most cases the linear approximation holds. The estimated age
compositions based on the �tted lines are shown together with the true age
compositions in �gures 4.9 and 4.10 for the Gaussian case, and in �gures
4.11 and 4.12 for the Gamma case. The largest bias occurs in the case
where there are large di�erences between the catch numbers for the various
age groups.

4.1.2 Discussion

The four scenarios indicate that the relationship between the logit and
the length may be approximated with a linear relationship or perhaps a
polynomial of second degree. Thus the length strati�ed data may be anal-
ysed analogously to the data where no strati�cation has been performed
on length groups. The only di�erence is that all e�ects in the models must
contain the length and perhaps even the squared length as a regression
variable. Thus, the continuation-ratio logits, LR;:::;A, may be modelled as:

Li = Y � l + Y � l2 + A � l + A � l2 + : : : (4.9)

where i = R; : : : ; A, Y and A are examples of possible sources of variation.
However, the interpretaion of the parameters refers to age composition as
well as growth. Thus, the analysis does not only concern the age composi-
tion, but also growth.
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Figure 4.5: Continuation-ratio logits versus length for the Gaussian case
where a factor 10 in di�erence between catch numbers for two subsequent
age groups is assumed. A straight line and a polynomium of second degree
are �tted.
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Figure 4.6: Continuation-ratio logits versus length for the Gaussian case
where equal catches are assumed for all age groups. A straight line and a
polynomium are �tted.
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Figure 4.7: Continuation-ratio logits versus length for the Gamma case
where a factor 10 in di�erence between catch numbers for two subsequent
age groups is assumed. A straight line and a polynomium of second degree
are �tted.
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Figure 4.8: Continuation-ratio logits versus length for the Gamma case
where equal catches are assumed for all age groups. A straight line and a
polynomium of second degree are �tted.
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Figure 4.9: Comparison of true (dashed line) and estimated (solid line)
length distributions for the age groups for the Gaussian case where a factor
10 in di�erence between catch numbers for two subsequent age groups is
assumed.
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Figure 4.10: Comparison of true (dashed line) and estimated (solid line)
length distributions for the age groups for the Gaussian case where equal
catches are assumed for all age groups.
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Figure 4.11: Comparison of true (dashed line) and estimated (solid line)
length distributions for the age groups for the Gamma case where a factor
10 in di�erence between catch numbers for two subsequent age groups is
assumed.
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Figure 4.12: Comparison of true (dashed line) and estimated (solid line)
length distributions for the age groups for the Gamma case where equal
catches are assumed for all age groups.
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If estimates of the age compositions are desired from the length composi-
tion data, an extra step compared to the simple case without strati�cation
on length groups is needed (chapter 3). The relevant results from the anal-
ysis of the continuation-ratio logits are estimates of the age composition
for given length group, `, p` = (pR`; : : : ; pA`), where ` = 1; : : : ; n, and
the associated covariance matrix, �p`, which describes the covariances be-
tween any two age groups from the same or di�erent length groups. Before
the age composition for given length is combined with length composition
estimates, the length distribution has to be analysed, in order to deter-
mine geographical areas and periods with similar length composition of
the cathes. Other factors such as the mesh size may also in
uence the
length composition of the catch. This analysis is impeded by the structure
of the response, which is compounded by several continous functions, i.e.
the length distribution for each age group. The analysis should provide
estimates of the length composition, �=(�1; : : : ; �n), and the associated
uncertainties, ��, where n denotes the number of length groups and �` the
proportion of sandeel in length group `, ` = 1; : : : ; n. Finally, the length
composition and age composition for given length are combined, and the
age composition is obtained from:

pi =
nX
`=1

pi`�` (4.10)

where i = R; : : : ; A. The corresponding variance structure may be obtained
by a Taylor approximation of (4.10).

The drawback of this approach to estimate the age composition is that
information on the shape of the length distribution is not utilised in the
analysis of the age composition to resolve the length distribution into sep-
arate length distributions for the age groups. It is likely that the length
distribution for an age group may be described by a uni-modal distribution,
such as a normal distribution. However, such a restriction is not utilised
in the suggested approach; here there is no restriction at all on the shape
of the length distribution for given age, as may be seen on the estimated
length distributions (�gures 4.9 and 4.10 for the Gaussian case and �gures
4.11 and 4.12 for the Gamma case). An extension of the method to also
utilise the presumed shape of the length distribution for given age would
improve the estimates of the age composition.
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Chapter 5

Uncertainties of Catch at

Age Data for Sandeel

Catch at age data constitutes the main source of information in age-struc-
tured stock assessment models, and thus assessment of the associated un-
certainties are important. The uncertainties are assessed in this chapter,
using the sandeel �shery in the North Sea as a case study. However, the
analyses may be applied to other �sheries as well, with a similar structure
of the data sources.

The perhaps most important sources of variation are associated with the
age composition estimates, considered in chapter 3. However, other sources
may also be of importance, such as uncertainty of the catch per area and
the species composition of the catches, and uncertainties associated with
the transformation of the unit of measurement of the size of the catch from
tonnes to counts. In order to obtain an assessment of the accumulated
uncertainty of catch at age data, the various sources of information utilised
in the estimation of catch at age data are analysed separately and thereafter
combined into estimates of the catch at age data. At �rst, the information
on the weight of the industrial catch is combined with estimates of the
species composition in weight giving the catch weight of sandeel. Secondly,
the mean weight of sandeels is utilised to transform the weight of the catch
into the number of sandeel caught. At last the age composition of the
catches is utilised to get estimates of the number of sandeel caught from
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each age group. The materials, methods, results and discussion have been
presented in Kvist et al. (1999b) (Appendix C), and is not repeated here.
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Chapter 6

Modelling Fish Stocks by

Means of Stochastic

Di�erential Equations

The development of computer facilities has widened the possibilities of us-
ing modelling approaches that have not been considered previously within
this �eld because of limitations in computer power. Stochastic di�erential
equations are an example of such a computer intensive tool which facili-
tates more realistic models. The stochastic di�erential equations are an
extension of the ordinary deterministic di�erential equations in continu-
ous time to handle also uncertainties in the system dynamics, as well as
uncertainties in the data. An introduction to stochastic di�erential equa-
tions is given by �ksendal (1995). The tool has become widely used within
di�erent �elds where the fundamental dynamics are described by one or
more di�erential equations. Madsen and Holst (1995) give an example of
modelling the heat dynamics of a building and a good introduction into
the subject of stochastic di�erential equations. Melgaard (1994) consid-
ers the general problems of identi�cation of physical models within the
framework of stochastic di�erential equations, and gives several examples
of areas of application. One of those examples is estimation of parame-
ters in a multi-species system with simulated data. Gard (1988) discusses
various models of population dynamics by means of stochastic di�erential
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equations. Lungu and �ksendal (1997) consider a model for population
growth and discuss optimal harvest strategies. Dennis et al. (1991) con-
sider the modelling of endangered species in order to estimate quantities
related to growth rates and extinction probabilities. An example of the
use of stochastic di�erential equations to model an extremely non-linear
system is given within �nance, by Nielsen et al. (1999).

Stochastic di�erential equations seem to be a promising tool for modelling
�sh stocks, as the fundamental dynamics are considered to be described by
one or several di�erential equations, e.g. in the single-species model the
dynamic is described by equation (2.1), which is repeated here:

dN (t)

dt
= �(f(t) +m(t))N (t) (6.1)

where N (t) denotes the number of individuals in the cohort at time t. f(t)
is the �shing mortality, and m(t) is the natural mortality where the time-
dependency of the mortalities is indicated explicitly. In the current time
series models which do take the cumulative properties as well as observation
errors into account, such as e.g. Gudmundsson (1994), the mortalities are
assumed to be constant through a period, often a year, and therefore the
equation (6.1) is solved for such a period, before any term to account for
uncertainties is entered. References to other time series models are given
in chapter 2, section 2.1.

However, the mortalities are likely to vary during that period and do not
remain constant e.g. through a year, as demonstrated for sandeel in chapter
3. The random variation of those quantities is presumably also varying
through the year. Thus, an intuitively more realistic approach would be
to include a term accounting for the variation in continuous time of the
mortalities:

dN (t)

dt
= � [(f(t) +m(t))N (t) + �(t; N (t))� \noise00] (6.2)

i.e. a stochastic di�erential equation. �(t; N (t)) is a function of the time, t,
and the cohort size, N (t). For most practical purposes, it is desired that the
noise term has certain basic properties, such as the noise at two di�erent
time points are independent and the proces is stationary. However, there
does not exist a function with continuous paths that ful�lls those two basic
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assumptions (see e.g. �ksendal (1995)) and therefore the equation (6.2) is
rewritten in the form:

dN (t) = � [(f(t) +m(t))N (t)dt + �(t; N (t))dw(t)] (6.3)

where w(t) is the standard Wiener process, representing the source of noise
in the system. The standard Wiener process has the appealing properties
that the increments of the process in two non-overlapping periods, are
independent of each other, and that these increments are Gaussian with
mean zero and a variance which is proportional to the length of the interval.

It is reasonable to assume that the uncertainty in model (6.3) is propor-
tional the abundance of the cohort, N (t), i.e.:

dN (t) = �(f(t) +m(t) + �dw(t))N (t)dt (6.4)

so that the uncertainty is associated with the mortalities and thus the
uncertainty of the cohort size is dependent on the abundance of the cohort;
the greater abundance, the greater variance. The uncertainty w(t) accounts
for variation of the �shing mortality, f(t), as well as the natural mortality,
m(t). It would be convenient to split the uncertainty into two additive
terms associated with each of the mortalities, i.e. w(t) = wf (t) + wm(t).
Inserting this relationship into equation (6.4) one obtains:

dN (t) = �(f(t) + �fdw
f (t) +m(t)�mdw

m(t))N (t)dt (6.5)

The catch is then:

dC(t) = (f(t) + �fdw
f (t))N (t)dt (6.6)

The observations are the catch in a certain period:

Otj = C(tj)�C(tj�1)) + �tj (6.7)

where �tj accounts for the uncertainty of the observation Otj , j = 1; : : : ; k.
These uncertainties may be estimated outside the model, on the basis of the
data sources utilised for estimation of catch at age data, as shown in Kvist
et al. (1999b) (Appendix C). The length of the period could be a year
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or shorter, such as a month. As regards the �shing mortality, it often is
modelled by means of the �shing e�ort, E, which is a standardised number
of �shing days, taking into account the e�ectiveness of the vessels (refer to
chapter 2, section 2.1). The �shing mortality is assumed proportional to
the e�ort, i.e. f(t) = q(t) � E(t), where q is called the catchability. The
catchability is associated with the e�ectiveness of the vessels and might be
dependent on the age of the cohort (and/or perhaps length dependent).
Development of the techniques and equipment may be re
ected in an in-
crease of the catchablity over time, i.e. a possible model for the catchability
might be

dq(t) = �dt+ dwq(t) (6.8)

where � represents the trend and wq(t) the uncertainty, described by a
Wiener process. The equations described here are valid for a single cohort
only. Therefore a term representing the age is not necessary.

Another issue of importance for the modelling of the sandeel stock is that
the population available to the �shery varies through a year as the sandeel
buries in the sediment during winter. In addition, the availability varies
di�erently, for di�erent ages (refer to Kvist et al. (1999a) (Appendix B)).
These characteristics may be modelled by introducing an availability coe�-
cent which varies through the year and is di�erent for di�erent age groups.
Fournier and Doonan (1987) de�ned the availability as the proportion of
individuals in an age group with a positive probability of being caught. The
concept was �rst used by (Widrig, 1954), who referred to the availability
as the accessibility of the �sh in the population to the �shing gear. Al-
ternatively one may say that the availability is the proportion of the stock
that is present on the �shing grounds. The availability is di�erent from the
catchability in the sense that the availability refers to the individuals being
available to the �shery, whereas the catchability refers to the probability
that, once available, a �sh will be caught by a unit of e�ort. However,
other de�nitions of the terms might be used, e.g. one of the reasons that
�shing mortality is di�erent for the �rst and second half of the year is that
a smaller part of the stock is available to the �shery in the second half
of the year. For the part of the population which is not avaliable to the
�shery the �shing mortality is zero, whereas the natural mortality might
be the same as for the same age group during the winter period, because
the di�erence in availability between two age groups presumably is caused
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by a di�erence in the length of the periods they are buried in the sediment.
Introducing the catchability and separability into (6.5) one obtains:

dN (t) = �(q(t)E(t) + �fdw
f (t) + ~m(t)�mdw

~m(t))a(t)N (t) �
( �m�mwdw �m(t))(1 � a(t))N (t)dt (6.9)

where a(t) denotes the availability, which may be estimated from the age
composition analyses. ~m is the natural mortality of that part of the stock
that is available to the �shery, and �m is the natural mortality of the part of
the stock that is assumed to be hiding in the sediment. w ~m(t) and w �m(t)
are the uncertaintes associated with the natural mortalities described by a
Wiener process.

The equations above all refer to a single cohort only. When they are ex-
tended to cover several cohorts common structures may be utilised, e.g. the
catchability and the natural mortality could be age and time dependent
only. However, it is not certain if an approximation such as a separability
assumption may be utilised, as there has been indications that the �shery
might be directed towards speci�c cohorts (Kvist et al., 1999a) (Appendix
B).

6.1 Estimation

The stochastic di�erential equations have seldom analytical solutions. One
exception is the case where the noise is proportional to the state variable,
N (t), e.g. the solution of (6.5) is, assuming constant mortalities, f and m:

N (t) = N (0) exp�(ft + �fef (t) +mt + �mem(t) +
�2f + �2m + 2�f�m

2
t)

(6.10)

where e(t) =
R
0 tdw(t

0), i.e. normally distributed, which means that N (t)
is log-normal distributed (i.e. logN (t) is normally distributed). However
the equation for the accumulated catch (6.6) does not have an analytical
solution:
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C(t) =

Z t

0

(fN (t0)dt0 + �fN (t0)dw(t0)) (6.11)

Instead numerical methods have to be applied. As an example of a pro-
gram for estimation of stochastic di�erential equations one could mention
CTLSM (Madsen and Melgaard, 1991). CTLSM is a program for maximum
likelihood estimation in stochastic, continuous time dynamical models. The
program has been compared to other software in a system identi�cation
competion, where it proved to be the best tool for estimation of stochastic
di�erential equations (Madsen et al., 1996).

However, a program such as CTLSM cannot be applied directly to the data
associated with �sh stock assessments. An investigation of the possible use
of CTLSM for estimation of the parameters in the stochastic model (6.9)
for a �sh stock with several cohorts, showed that certain minor changes
of CTLSM are needed. The observations might be the catch at age for
a period as described by equation (6.7), or the accumulated catch at age,
O�

tj :

O�

tj = C(tj) + �tj (6.12)

where �tj , j = 1; : : : ; k, is the accumulated uncertainty of the catch at age
data. The covariance matrix of the observations may be estimated outside
the model (refer to Kvist et al. (1999b) Appendix C). The technical prob-
lem is that the program CTLSM was built to handle constant covariance
matrix. This is not a realistic assumption for the accumulated catches
(equation 6.12), but possibly for the observations described by equation
(6.7). However, the latter case requires that the accumulated catch at the
previous measurement time, tj�1, is available in the estimation routine,
which is not possible in the current version of CTLSM.

Another problem is that of handling cohorts. The natural approach is to
let one state variable, N (t), correspond to one cohort. All state variables
in the system have to be present in the description of the system from the
beginning. Thus, the state variable may not be entered at the time the
cohort is born. A practical solution to this problem could be to keep the
�shing mortality and natural mortality at zero for the cohort until birth,
and then at the time of birth assign a recruitment population.
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It might also be relevant to include CPUE data, which provide information
on the catch per unit of e�ort, i.e. a more detailed information on the catch
per time unit, where the vessel size is included as an explanatory variable.

However, these problems only seem to be minor technical problems. When
these problems have been solved, the approach might provide an alterna-
tive to current stock assessment models with the advantage that variations
of mortalities and availability through the year may be more realistically
modelled.
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Chapter 7

Conclusion

In this thesis uncertainty associated with stock assessment has been con-
sidered, especially uncertainties associated with the input data. The thesis
provides new approaches to analyse the sources of variation and their mag-
nitude in the input data, and an alternative approach for modelling the
dynamics of a �sh population is suggested.

The main results of the thesis are that the combination of continuation-
ratio logits and the generalized linear mixed models is a powerful tool
for analysing sources of variation and their magnitude in age composition
data. By combining the continuation-ratio logits and the generalized linear
mixed models, the ordinal and multinomial characteristics of the response
may be taken into account at the same time as �xed as well as random
e�ects may be analysed. The analysis provides improved estimates of the
age composition and the associated variances and covariances, information
which is important in the assessment of the stock abundance and mortalities
and their uncertainties. Knowledge of the sources of variation may also be
utilised to improve the e�ciency of the sampling. In addition valuable
information on the stock dynamics are obtained, which may be utilised to
improve models describing the stock dynamics of sandeel.

The method was used to quantify the importance of the various sources of
variation in the age composition of sandeel landings from the North Sea
caught in the years 1984-1993. The main conclusions were that larger �sh
presumably emerge from the sediment later in the season and re-enters
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the sediment earlier. This implies that the variation of the availability of
sandeel through the year depends on the age, a circumstance important to
consider in the modelling of the population dynamics of the sandeel stock.
Other information of importance for the structure of such a model is that
data seemed to indicate that the �shery has been attracted to 1-year-old
�sh in years where they were abundant. If this is correct, the often used sep-
arability assumption of the �shing mortality in the stock assessment model
is not valid. Data suggested that the age proportion of a cohort might
depend on the age proportion of the cohort in the previous year. This
dependency might be utilised for prediction of age composition of catches.
The in
uence of gear and mesh size was found to be negligible and therefore
stratifying the sampling e�ort by gear and mesh size is unlikely to result
in a lower overall variation. The e�ect of the laboratory performing the
age determinations was found to be signi�cant and suggests that perhaps
intercalibration of the age readings should have been performed more fre-
quently. It was also found that there is considerable variation in the age
composition even within small areas. Three geographical strati�cations of
the North Sea were compared. The age composition data supports a strat-
i�cation based on the distribution of the �shery, rather than strati�cations
based on biological reasoning, although such reasoning is believed to better
re
ect the sub-structure of the North Sea sandeel population. The analysis
also indicated that there are considerable undetected sources of variation
resulting in a large and signi�cant overdispersion.

A model resulting from combining the model for the continuation-ratio
logits and the adjacent-ratio logits with the often used deterministic di�er-
ential equation to describe the population dynamics, has been discussed. It
was shown that the mortalities may be estimated from the age composition
data alone.

Catch at age numbers and the associated uncertainties have been esti-
mated, by separating the statistical analysis into analyses of the separate
data sources. The results were combined into estimates of the catch at age
numbers and the associated uncertainties for the sandeel landings from the
North Sea in 1989 and 1991. Besides uncertainty of the age composition,
catch at age numbers also is in
uenced by uncertainty of the catch per
area and the species composition of the catches, and uncertainties associ-
ated with the transformation of the unit of measurement of the size of the
catch from tonnes to numbers. By establishing the signi�cance of factors
that might in
uence the catch composition, common structures may be
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recognised and utilised, and when e.g. geographical or temporal di�erences
in the catch compositions are of importance, they may be taken into ac-
count in the model. Thereby improved estimates of the catch composition
and the associated uncertainty may be obtained. In addition, the identi�-
cation of the common structures has the advantage that quali�ed estimates
may be provided if some data are missing. Also more reliable predictions
may be performed.

The major source of uncertainty in the catch at age is caused by uncertain-
ties in the estimation of the age composition. The estimation is particularly
di�cult because of large variations in the age composition between small
areas. The species composition was estimated using a compound distribu-
tion to account as well for the inaccurate de�nition of the sandeel �shery
as for by-catches. The analysis of the species composition of the landings
showed that the most important factor to explain misclassi�cations within
the sandeel �shery is the mesh size, an information not utilised today.

For the case where the age composition data was strati�ed on length groups,
a method for analysing sources of variation and their magnitude was pre-
sented. However, the method has the drawback that di�erences in growth
may in
uence the analysis and that information on the shape of the length
distribution is not utilised in the analysis to resolve the length distribution
into separate length distributions for the age groups.

Finally, modelling the stock dynamics of sandeel by means of stochastic
di�erential equations has been discussed. The approach extends the clas-
sical dynamical modelling by means of deterministic di�erential equations
that is believed to describe the main dynamics of the stock. The discussion
indicates that it may be possible to estimate quantities such as �shing mor-
talities and stock abundances by means of contemporary statistical meth-
ods, thereby modelling the variation of availability and �shing mortalities
through the year.



70



71

Appendix A

Using Continuation-ratio

Logits to Analyse the

Variation of the

Age-composition of Fish

Catches

Trine Kvist, Henrik Gislason, Poul Thyregod

Keywords: generalised linear mixed models, continuation-ratio logits

Abstract

Major sources of information for the estimation of the size of the �sh
stocks and the rate of their exploitation are samples from which the age-
composition of catches may be determined. However, the age-composition
in the catches often varies as a result of several factors. Strati�cation of
the sampling is desirable because it leads to better estimates of the age-
composition and the corresponding variances and covariances. The analysis
is impeded by the fact that the response is ordered categorical. The paper
introduces an easily applicable method to analyse such data. The method
combines continuation-ratio logits and the theory for generalised linear
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mixed models. Continuation-ratio logits are designed for ordered multino-
mial response and have the feature that the associated likelihood splits into
separate terms for each category level. Thus, the continuation-ratio logits
may be modelled as if they were associated binomial distributions which
were independent of each other. Thus, generalised linear mixed models can
be applied separately to each level of the logits. The method is illustrated
by the analysis of age-composition data collected from the Danish sandeel
�shery in the North Sea in 1993. The signi�cance of possible sources of
variations is evaluated and formulae for estimating the proportions of each
age group, and their variance-covariance matrix, are derived.

A.1 Introduction

Most of the methods used to assess the size of �sh stocks and the rate of
their exploitation are based on regular estimates of the age composition
of the catch. These estimates are derived from samples taken at random
from the catch or by a strati�ed random sampling scheme. The catch
samples are sorted into species, the numbers of individuals of each species
are counted and the individuals are measured and their age determined by
counting the number of growth rings in hard parts such as otoliths. The
age-composition will vary from sample to sample. This variation can be
caused by a multitude of factors, including spatial or temporal di�erences
in catch composition and errors in the age-determination itself. Modelling
the age proportions by means of the explanatory variables improves the
estimates of the age proportions and reduces the uncertainty associated
with the estimation. Another advantage is that such a model of the age-
composition and the sources and magnitude of sampling variation can be
used to optimise the sampling scheme under strati�ed sampling.

The data collected for determining the age-composition may be considered
as an ordered categorical response, consisting of the number of individuals
in each age group. In the rare case where only two age groups are present,
the response is binary. In this case, the proportion of the �sh in each
age group can be transformed by a logit transformation and the sources of
variation analysed by standard tools such as generalised linear models (Mc-
Cullagh and Nelder, 1989) or by extended generalised linear mixed models
(Breslow and Clayton, 1993, Wol�nger and O'Connel, 1993). However,
with more than two age groups present, the response is multinomial. In
this case, a standard logit transformation cannot be used.
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In this paper, we show how continuation-ratio logits (Agresti, 1990) can be
utilised to analyse the variation of multinomial age-composition samples.
In the multinomial case, a response probability is described by several log-
its. Continuation-ratio logits have the particular feature that the di�erent
logits for a response can be regarded as logits for independent binomially
distributed data. Each of the logits can then be analysed separately by
means of a generalised linear mixed model.

The generalised linear mixed models described by Breslow and Clayton
(1993) and Wol�nger and O'Connel (1993) assume the random e�ect to
be normally distributed on the transformed scale. Thus, in the case of
binomially distributed data, and using a logit link, the random e�ect is
normally distributed on the logit scale.

In order to illustrate the method, we apply it to age-composition data
collected from the Danish sandeel �shery in the North Sea in 1993. The
signi�cance of possible sources of variations is evaluated and formulae for
estimating the proportions of each age group, and their variance-covariance
matrix, are derived.

A.2 Model

The response variable is the number of �sh of the species of interest in
each age group observed in the sample, Xs = (XRs; : : : ; XAs), where s de-
notes the sample number, R denotes the youngest age group represented in
the catches and A the oldest. An age group is comprised of �sh spawned
in the same year, except for age group A which often consists of �sh of
age A and older. Assuming that a sample is representative of the age-
composition in the catch, and that the species composition does not in
u-
ence the age-composition of a particular species, the number of individuals
of that species in each age group in a sample, Xs, is distributed according
to a multinomial distribution:

Xs 2Mult(ns; pRs; : : : ; pAs) (A.1)

where ns denotes the sample size and pj denotes the proportion of individ-
uals in the catch classi�ed as belonging to age group j, j = R; : : : ; A. A�R
probabilities are necessary to describe the distribution, since

PA
j=R pj = 1.
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The pj 's describe the age-composition of the catches if the age-determination
is unbiased. If such a bias exists, the proportion pj describes the proportion
of �sh in the catch classi�ed into age group j.

A set of explanatory variables is associated with each sample. An explana-
tory variable could be the position of the �shery, the time of �shery or
information on the age-determination, such as the laboratory technician or
laboratory performing the analyses.

The age-composition in the samples is modelled by means of continuation-
ratio logits. The number of continuation-ratio logits necessary to describe
the distribution of Xs is equal to the number of probabilities, A� R. The
�rst logit describes the odds of age R of a sampled �sh given that the age
is at least R. The second logit describes the odds of age R+1 of a sampled
�sh, given that the age is at least R + 1, etc..

The de�nition is (Agresti, 1990):

Lj = log

�
�j

1� �j

�
(A.2)

where j = R; : : : ; A� 1. j denotes the age group and �j is the conditional
probability of age j given that the age is at least j:

�j =
pj

pj + : : :+ pA
(A.3)

The continuation-ratio logit can also be described as the log of the ratio
between the probability of age j of a sampled �sh and the probability of
an older age: (A.2) can also be expressed as:

Lj = log

�
pj

pj+1 + : : :+ pA

�
(A.4)

By analogy with the theory for generalised linear mixed models (Breslow
and Clayton, 1993, Wol�nger and O'Connel, 1993), the logits were modelled
as a linear function of explanatory variables:

Lj = bj�j + Zjuj (A.5)
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where b denotes the explanatory variables associated with the �xed pa-
rameters � and Z the explanatory variables associated with the random
parameters u. The random parameters are assumed to be normally dis-
tributed. If the random parameters are omitted, the model is a generalised
linear model, as described in McCullagh and Nelder (1989).

A model for LR describes the ratio between the proportion of R-year-olds
and the proportion of older �sh in the catches by means of the explanatory
variables. By analysing the estimated e�ects, signi�cant sources of variation
in the relative number of recruits can be identi�ed. For instance, time
periods and geographical areas with similar relative recruitment may be
identi�ed and the magnitude of variation between geographical areas or
time periods that have di�erent relative recruitment may be estimated
(provided appropriate explanatory variables). As regards possible errors in
the age-determination, only errors in the distinction between recruits and
older �sh in
uence the model for the �rst logit.

A model for Lj , j = R+ 1; : : : ; A� 1, describes the ratio between the pro-
portion of j-year-olds and the proportion of older �sh. A model for Lj only
concerns �sh of age j and above and is thus una�ected by the proportion
of younger �sh. Analogous to the logit of the �rst age level, the signi�-
cance of e�ects can be evaluated and geographical areas and time periods
with similar ratio between proportions of age group j and older age groups
and the magnitude of important sources of variation can be determined.
Regarding age-determination errors, only errors in distinguishing between
j-year-olds and younger �sh and j-year-olds and older �sh in
uence the
model for logit Lj .

Logits of di�erent age levels might have di�erent sources of variation and
common sources of variation might be of di�erent magnitude. A hypothet-
ical situation where this could occur could be where the age-determination
of younger ages is easy to perform and only seldomly subject to error, but,
as the �sh get older, the age-determination gets more uncertain, di�cult
and subjective. In this case, the laboratory or laboratory technician ef-
fects may be insigni�cant for LR and increase as the age level of the logit
increase. Similarly, if the recruits are inhomogenously geographically dis-
tributed, but more homogenously distributed as they grow older because
of migration, the geographical variation will decrease as the age level of the
logit increases.

The continuation-ratio logits are estimated independently of each other.
The logits can be considered as logits of probabilities connected to A � R
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independent binomially distributed variables:

XjjXR = xR; : : : ; Xj�1 = xj�1 2 Bin(nj ; �j) (A.6)

where j = R; : : : ; A�1, �R; : : : ; �A�1 are de�ned in (A.3) and nR; : : : ; nA�1
are:

nj = xj + : : :+ xA (A.7)

j = R; : : : ; A� 1.

The factorisation of the likelihood can be proved by showing that the si-
multaneous frequency distribution for XR; : : : ; XA�1 can be written as a
product of the frequency distribution of each of the conditioned variables
in (A.6):

f(xR; : : : ; xA) =

f(XA�1 = xA�1jXA�2 = xA�2; : : : ; XR = xR)

� : : :�
f(XR+1 = xR+1jXR = xR)�
f(XR = xR) (A.8)

The factorisation does not apply if dependency between the parameters
�R; : : : ; �A�1 is imposed upon them through the model speci�cation, eg.
by a common parameter.

The factorisation is very useful in model �tting and testing. As long as
the parameters in the models for di�erent levels of categories are distinct
from each other, the models can be �tted separately using methods for
binomially distributed variables, e.g. generalised linear mixed models.

The estimates of the unconditioned probabilities, pR; : : : ; pA, can be ob-
tained from �R; : : : ; �A, and the variances and covariances can be obtained
by considering the Taylor approximation of bpj = f(b�R; : : : ; b�j).
The application of continuation-ratio logits to age-composition data is il-
lustrated by applying the model to age-composition data for sandeels in
the North Sea.
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A.3 Example

A.3.1 Background

The lesser sandeel(Ammodytes marinus Raitt) is one of the most abundant
�sh species in the North Sea (Sparholt, 1990). It is a small slender �sh with
a maximum length of approximately 25 cm, and constitutes an important
prey for many species of �sh, seabirds and marine mammals (Daan et al.,
1990) and (Wright, 1996). In addition, it forms the main target of the
Danish industrial �shery (Gislason and Kirkegaard, 1998). From 1977 on-
wards, the annual landings of sandeels from the North Sea have 
uctuated
between 0.5 and one million tonnes. The landings are processed as �shmeal
and oil or used directly as an animal foodstu�.

The sustainability of the sandeel �shery has been subject to intense debate
and discussion. On one hand, the present assessment of the impact of
the �shery suggests that the �shery is sustainable (ICES, 1996). On the
other hand, environmental organisations argue that the uncertainties in
the assessment are so large that it is reasonable to fear that the �shery
could lead inadvertently to a stock collapse. However, so far, nobody has
estimated these uncertainties.

The size of the sandeel stock and the impact of the �shery are assessed
regularly by the International Council of Exploration of the Sea (e.g. ICES,
1996). The assessment relies heavily on the estimated age-composition of
the landings. Preliminary investigations by Lewy (1995), suggested that
the coe�cient of variation of the estimated numbers caught at age is low,
but his analysis did not include estimates of the variation between samples.
It is therefore interesting to use continuation-ratio logits to investigate the
magnitude of variation and its possible sources.

A.3.2 Data

The age-composition of the sandeel landings is estimated from samples
collected by the Danish �sheries inspection. Samples are taken at random
from the landings by lowering a 10-litre pail into the hold of the vessel.
Some of these samples are analysed at the Danish Institute for Fisheries
Research where the age-composition of the sandeels is determined from age



78 Appendix A. Using Continuation ratio Logits...

reading of otoliths (Lewy, 1995). Data are available for several years. We
have restricted ourselves to an analysis of the data collected in 1993.

Several factors may in
uence the age-composition in the samples (Gisla-
son and Kirkegaard, 1998). The distribution of the sandeel �shery in the
North Sea is patchy. Adult sandeels bury themselves in the sediment at
night and during winter and are therefore mostly found in areas of coarse
well-oxygenated sand. Presumably there is little migration of adult sandeels
between the various sandeel grounds in the North Sea, and regional di�er-
ences in age-composition can therefore be expected. The �shery is highly
seasonal. In general, it peaks during spring and early summer. Because
of the burrowing behaviour of the adults, the catch rates vary between
di�erent age groups, with season and during the day (Reeves, 1994). In
addition, the catch rates will be in
uenced by changes in tide and weather.

Insu�cient information is available to investigate all of these potential
sources of variation. The date and the approximate position of the catch
is recorded by 30*30 square nautical miles rectangles, but no informa-
tion about time of day, sediment type and position of individual hauls
is available. The primary explanatory variables selected in this analysis
were therefore month, MON, and rectangle, SQ. To investigate di�erences
in age-composition between larger geographical areas, the rectangles were
assigned to seven sandeel areas, AR, and into the northern and southern
North Sea, NS. The size and location of the sandeel areas were based on
the overall distribution of the �shery. Months with similar age-composition
were furthermore grouped into periods, PER, based on the results of the
analysis.

In all, the data used in the analysis consist of 70 samples, representing 36
rectangles and the 11 months from February to November. The following
number of samples were collected in each month:

Feb Mar Apr May June July Aug Sep Oct Nov Dec
1 7 9 13 9 14 7 3 2 3 2

The geographical distribution of the samples is shown in �gure A.1. The
number of sandeels in each sample generally varies between 80 and 1000.

A.3.3 Model

The sandeels in the sample have been grouped into �ve age groups,
0; : : : ; 4+, where group 4+ includes sandeels classi�ed as being four years
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Figure A.1: The geographical distribution of samples into the seven areas.
The number in the shaded squares indicates the number of samples from
the square included in the analysis.



80 Appendix A. Using Continuation ratio Logits...

old or older. It is desirable that the samples provide an unbiased picture
of the age-composition of the sandeel in the catch. The collection of a
�xed volume of sandeels, rather than a �xed number, might introduce a
bias, i.e. an expected age-composition in the sample di�ering from that
in the catch (see Schae�er, 1969). This bias could occur if the volume of
one sandeel was large relative to the sampling volume. However, because
the volume of one sandeel is small relative to the total sample volume, we
do not expect such a bias to in
uence our results. Similarly, the amount
of other species in the sandeel catches is small and we do not expect that
the species composition of the sample will in
uence the age-composition of
the sandeel population in the catch. Age-determination errors may result
in biases, but the current dataset does not allow for this problem to be
addressed. Therefore, it is assumed that the proportions p0;s; : : : ; p4+;s,
represent the age-composition in the catch.

The continuation-ratio logits for the response are:

L0s = log
p0s

p1s + : : :+ p4+s
(A.9)

L1s = log
p1s

p2s + : : :+ p4+s
(A.10)

L2s = log
p2s

p3s + p4+s
(A.11)

L3s = log
p3s
p4+s

(A.12)

(A.13)

The models for each age level are analysed separately by means of gen-
eralised linear mixed models. The explanatory variables are NS, AR, SQ,
PER and MON, as described above in section A.3.2.

The full models for the logits are:

Lijklmo = �i + PERij + NSik +MON(PER)il(j) + AR(NS)im(k) +

SQ(AR � NS)io(mk) + PER � NSijk + PER � AR(NS)ijm(k) +

PER � SQ(AR � NS)ijo(mk) +MON � NS(PER)ilk(j) +
MON � AR(PER � NS)ilm(jk) +

MON � SQ(AR � NS �PER)ilo(mkj) (A.14)
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where

i = 0; : : : ; 4+ age level of logit
j = 1; : : : ; ei number of period
ei number of periods for age level i
k = 1; 2 part of the North Sea
l = 2; : : : ; 12 number of month
m = 1; : : : ; 7 number of area
o = 1; : : : ; fm square number within area m
fm number of squares in area m

The e�ects might be interpreted as:

�i Overall mean of the logit.
PERij;MON(PER)il(j) Period and month e�ect describing how the age-

composition at the same geographical position may vary through the
year.

NSik The e�ect of di�erences in the overall age-composition between the
northern and southern part of the North Sea.

AR(NS)im(k) The e�ect of di�erences in the overall age composition be-
tween areas within the northern and the southern part of the North
Sea. AR is nested within NS.

SQ(AR � NS)io(mk) The e�ect of di�erences in the overall age-composition
between squares within areas. SQ is nested within AR.

PER � NSijk;PER � AR(NS)ijm(k);PER � SQ(AR � NS)ijo(mk) Interactions
between period of the year and geographical parts of the North Sea.
The interaction e�ects indicate that the period e�ects may vary be-
tween geographical positions.

MON � NS(PER)ilk(j);MON � AR(PER � NS)ilm(jk);

MON � SQ(AR � NS � PER)ilo(mkj) Interactions between months within pe-
riod and geographical parts of the North Sea. The interpretation of
these interaction e�ects is analogous to the interactions described
above.

The model is heavily parameterised. The variation between squares is
assumed to be random, because a model with one or more parameters
per square will contain too many parameters to be of any practical use.
Therefore, the square parameters and parameters describing interactions
with the square e�ect are modelled as being normally distributed whenever
they are found to be signi�cant.
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SQ(AR � NS)in(mk) 2 NID(0; �2SQ;i)

PER � SQ(AR � NS)ijo(mk) 2 NID(0; �2PER�SQ;i)

MON � SQ(AR � NS � PER)ilo(mkj) 2 NID(0; �2MON�SQ;i)

where the indices are de�ned as in (A.14).

Besides the explanatory variables, a dispersion parameter, �, is included
in the model to account for the variance that cannot be attributed to the
binomial variance or the explanatory variables. The dispersion parameter
enters as a simple multiplicative parameter on the binomial variance, and
hence it must be greater than zero. � = 1 indicates that the variance is
in accordance with the assumed distribution. � < 1 indicates that there
is underdispersion and � > 1 indicates overdispersion. The dispersion
parameter has been described, e.g. in McCullagh, 1989.

The mixed models were �tted using restricted pseudo-likelihood, REPL
(Wol�nger and O'Connel, 1993). The procedure is implemented in a SAS
version 6.12 macro called GLIMMIX described by Littell. et al. (1996).
The signi�cance of e�ects are tested by approximate F-tests based on the
Wald statistics, described by Littell et al. (1996), p. 437. The signi�cance
level is chosen to be 5%.

A.3.4 Results

The approximate F-test for the various e�ects indicated that the period
e�ect, PER, is signi�cant for all age levels. However, the periods are de�ned
di�erently for di�erent age levels with di�erent parameter estimates. The
northern-southern e�ect, NS, is signi�cant for age levels zero and one, but
not for ages two and three. As for the period e�ect, the parameter estimates
are di�erent for di�erent age levels. The square e�ect, SQ(NS), for age
level zero and one, and SQ for age level two and three is signi�cant. These
random e�ects are modelled by normal distributions. For age levels zero
and one, the square parameters from the northern and the southern part
are normally distributed with mean zero (and the overall levels in the two
parts are modelled by the �xed e�ects) and the same variance for the
northern and southern part, �2

SQ(NS)i. i denotes the age level. For age
level two and three, which have the same overall level for the whole North
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Sea, the square e�ect is modelled by a normal distribution with zero mean
applied to the whole North Sea. None of the area e�ect, AR, or interaction
e�ects between temporal e�ects and geographical e�ects is signi�cant. As
an example of the signi�cance of the di�erent e�ects, the approximate F-
tests for age level two are shown (table 1). Insigni�cant e�ects have been
removed from below and upwards. E�ects above the square e�ect have
been tested in a model where the square e�ect is assumed to be random.
Reading the table, it becomes apparent that the square e�ect is by far the
most signi�cant e�ect.

Table 1. Approximate F-tests for age level two.
E�ect NDF DDF Type III F p-value
PER 1 37 4.83 0.03
NS 1 22 0.47 0.50
NS � PER 1 41 3.34 0.08
AR(NS) 5 14 0.98 0.46
AR � PER(NS) 4 30 2.19 0.09
M(PER) 4 10 2.17 0.15
M � NS1(TID) 2 9 1.43 0.29
S(A1 � NS1) 18 10 7.68 0.00
S � TID(A1 � NS1) . . . .
M � A1(NS1 � TID) . . . .
M � S(AR � NS � PER) 1 8 3.28 0.11

The �nal models for the logits suggested by the test are:

L0jko = PER0j + NS0k + SQ(NS)0o(k) (A.15)

L1jko = PER1j + NS1k + SQ(NS)1o(k) (A.16)

L2jo = PER2j + SQo (A.17)

L3jo = PER3j + SQo (A.18)

where
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i = 0; : : : ; 3 age level
k = 1; 2 1: Northern part, 2: Southern part
o = 1; : : : ; 18 square number for i = 0 and k = 1
o = 1; : : : ; 18 square number for i = 0 and k = 2
o = 1; : : : ; 14 square number for i = 1 and k = 1
o = 1; : : : ; 17 square number for i = 1 and k = 2
o = 1; : : : ; 26 square number for i = 2
o = 1; : : : ; 23 square number for i = 3

PER01 : Months 2, . . . , 5
PER02 : Month 6
PER03 : Months 7, . . . , 12
PER11 : Month 2, 3
PER12 : Months 4, . . . , 12
PER21 : Months 3, . . . , 6
PER22 : Months 7, . . . , 12
PER31 : Month 2, 3, 4
PER32 : Months 5, 6
PER33 : Months 7, . . . , 12

and

SQ(NS)io(k) 2 N(0; �2SQ(NS)i) i = 0; 1

SQio 2 N(0; �2SQi) i = 2; 3

Parameter estimates of the �xed e�ects including standard errors are shown
in table 2, using the standard parameterising method as the default for
procedure GLM, Mixed in SAS (SAS, 1996). The method solves the often
occuring problem of overparameterising by selecting one of the levels of an
e�ect as a reference level.
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Table 2. Estimates of �xed e�ect parameters, including std
(in parantheses).
Age Level Intercept N.-S. E�ect Period E�ect

Northern Southern 1 2 3
0 -1.32 5.02 0 �1 -3.59 0

(0.95) (1.23) (.) (.) 1.32 (.)
1 -1.80 2.43 0 4.91 0 -

(0.57) 0.86 (.) (1.63) (.) -
2 0.15 - - 0.89 0 -

(0.41) - - (0.40) (.) -
3 0.48 - - -1.22 2.06 0

(0.43) - - (0.43) (0.47) (.)

The estimate of the �rst period of the proportion of 0-year-olds is set to
�1 because this age group does not occur in the catches at this early
period of the year.

The estimates of the dispersion parameter and the variance components
are shown in table 3.

Table 3. Estimates of variance component
and dispersion parameter.
Age Level Var. Comp. Disp. Par

0 5.6 15
1 3.6 26
2 1.4 4
3 2.1 0.2

A.3.5 Discussion of results

The signi�cance of the period e�ect, PER, indicates that the age-composi-
tion of the catches does in fact vary through the year. Months with similar
e�ects could be identi�ed, but the similarities identi�ed for one age group
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did not apply to other age groups. The classi�cation into periods with
similar e�ects for the various age groups is illustrated in �gure A.2.

DecAge Level

0

1

2

3

Feb Mar Apr May June July Aug Sep Oct Nov

Figure A.2: Amalgamation of the months into periods with similar e�ects.

The estimates of the �xed e�ect parameters, including 95% con�dence in-
tervals, are shown in �gure A.3. Here, the changes of the conditional pro-
portions on the logit scale are illustrated for the di�erent age levels. The
proportion of 0-year-olds is zero until late summer and autumn when it
increases (the parameter estimates for the �rst period of the year are �1,
because there are no occurrences of 0-year-olds in the catches in this pe-
riod). The conditional proportions of 1- and 2-year-olds decrease as the
proportion of older sandeels increases through the year. The relative pro-
portion of 3-year-olds compared to older sandeels seems to be somewhat
more complicated to interpret. The model indicates that the relative pro-
portion of 3-year-olds during the year increases and then decreases again.

The northern-southern e�ect, NS, is signi�cant for age level 0 and 1, but
not for age level 2 and 3, a result which indicates that there are di�erences
between the northern and southern parts of the North Sea regarding the
proportions of young sandeels, but not regarding older sandeels. The con-
ditional proportions are larger for the northern part than the southern part
(refer to �gure A.3).

The insigni�cance of the area e�ect, AR, indicates that there are no substan-
tial di�erences between areas within neither the northern nor the southern
parts of the North Sea for either of the age levels.

There are di�erences between squares for all age levels. The square e�ect,
SQ=SQ(NS), is modelled as random, following a normal distribution on the
logit scale. The estimates of the variance components for the di�erent age
levels are shown in �gure A.4, together with the dispersion parameter, �.
The variance component tends to decrease as the age level increases. Thus,
there is a tendency towards larger variation between squares the smaller
the age level. The same tendency is seen for the dispersion parameter,
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Figure A.3: 95% con�dence interval for the �xed e�ects on the logit scale.
'N' denotes the Northern Part, 'S' denotes the Southern part and 'NS'
denotes both parts. Subsequent periods are joined by a line.
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�. The dispersion parameter gives an indication of the variation which
cannot be explained by the binomial sampling variance and the explanatory
variables available. Thus, there are additional factors that in
uence the
age-composition of the catches. Possible factors could be those mentioned
in section A.3.2, such as uncertainties in age-determination, di�erences
between the age-compositions on the di�erent �shing grounds within a
square, �shery on di�erent times of the day, tide and weather.

R

R

R

R

S
S

S S

Figure A.4: Covariance parameters. 'S' denotes Square e�ect. 'R' denotes
dispersion parameter.

A.3.6 Estimation of proportions of each age group

Although it has been advantageous to perform the assessment of the im-
portance of the various e�ects on the continuation ratio logit logit-scale,
the quantities of practical interest are the proportions of the catch in the
various age groups and the uncertainties associated with these estimated
proportions.
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Thus, the linear mixed model for the continuation ratio logits L0; L1; L2
and L3 has to be translated to the resulting model for the proportions
p0; p1; p2; p3 and p4+ in the various age groups.

First, the continuation-ratio logits are transformed to the conditional pro-
portions �0; �1; �2, and �3. The approximate mean and variance of
�0; : : : ; �3 are:

Efb�ig � exp(bLi)
1 + exp(bLi) (A.19)

and

Vfb�ig � exp(2bLi)
(1 + exp(bLi))4VfbLig (A.20)

It should be noted that, although the logit transformation is non-linear, the
e�ect from the random parameters does not a�ect the �rst order approxi-
mation to the mean value of the �'s, but only the �rst order approximation
to the variance of the �'s, viz. Furthermore, the di�erent b�i's are indepen-
dent of each other, as long as they do not have any parameters in common
(shown in (A.8)).

The transformation from the conditioned probabilities, �0; : : : ; �3 to pro-
portions in age groups is given by the following relations:

p0 = �0

p1 = �1(1� p0)

p2 = �2(1� (p0 + p1))

p3 = �3(1� (p0 + p1 + p2))

p4+ = 1� p0 � p1 � p2 � p3 (A.21)

The variances and covariances are estimated by using the Taylor approxi-
mation for a product of independent variables:

Vf
nY
i=1

b�ig � nX
i=1

2
4Vfb�ig i�1Y

j=1

b�2j nY
k=i+1

b�2k
3
5 (A.22)
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The proportions of each age group for the di�erent periods of the year and
parts of the North Sea and the variances and covariances can be estimated
by using (A.21) and (A.22). The procedure is illustrated for the �rst few
variances and covariances.

Vfbp0g = Vfb�0g (A.23)

Vfbp1g � (1� bp0)2Vfb�1g+ b�21Vf bp0g (A.24)

Covfbp0; bp1g � �b�1Vfb�0g (A.25)

Vfbp2g � (1� bp0 � bp1)2Vfb�2g+ (A.26)b�22(Vfbp0g+ Vfbp1g+ 2Covfbp0; bp1g) (A.27)

Covfbp0; bp2g � �b�2(Vfbp0g+ Covfbp0; bp1g) (A.28)

Covfbp1; bp2g � �b�2(Vfbp1g+ Covfbp0; bp1g) (A.29)

The estimated age-compositions of the catches through the year for the
northern and southern parts are shown in �gure A.5 and A.6.

As an example, the estimated proportions and the prediction error vari-
ances, covariances and correlations for the southern part of the North Sea
in May are shown:

bpMay;Southern =

0
BBBB@

0:00
0:14
0:63
0:21
0:02

1
CCCCA (A.30)

b�May;Southern =

0
BBBB@

0
0 0:06
0 �0:04 0:07
0 �0:01 �0:03 0:04
0 �0:001 �0:002 0:002 0:00

1
CCCCA (A.31)

b�May;Southern =

0
BBBB@

1
0 1
0 �0:66 1
0 �0:29 �0:52 1
0 �0:17 �0:30 0:47 1

1
CCCCA (A.32)
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Figure A.5: Estimated Age-Composition of the catch from the Northern
part. The proportion each age group constitutes of the catch is represented
by an area. The numbers indicate the age groups.
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Figure A.6: Estimated Age-Composition of the catch from the Southern
part. The proportion each age group constitutes of the catch is represented
by an area. The numbers indicate the age groups.
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The covariance matrix re
ects the covariance matrix for multinomial data.
The uncertainty is largest for age groups represented in proportions close to
0.50. The uncertainty decreases towards zero for the 4+-year olds that are
represented in a proportion close to zero. It should, however, be noted that
despite the fact that the estimated proportions in age groups 1 and 3 are far
less than the proportion in age group 2, the uncertainties in the middle age
groups vary more smoothly than suggested by a crude multinomial model.

The overall feature of the correlation matrix indicates the usual negative
correlations between multinomially distributed variables imposed by the
constraint that the proportions shall add to 1. Thus, if the proportion
in one of the age groups 1, .., 4+ happens to be overestimated, then the
proportions in the other age groups will tend to be underestimated. The
only exception is for the 3- and 4+ year olds. The estimates for these two
age groups are positively correlated. This result may be explained by the
fact that 3- and 4+ year olds tend to occur at the same time in the catches.

A.4 Summary and discussion

The size of the �sh stocks and the rate of their exploitation are issues of
great importance and concern, and therefore the estimates of those quanti-
ties and their uncertainties are constantly undergoing attempts at improve-
ment. A major source of information utilised in the estimation is samples
from catches to determine the age-composition, their variances and covari-
ances. The age-composition often varies considerably because of a number
of factors and an explanation of the variation by means of those factors
is desirable to achieve better estimates of the age-composition. However,
the strati�cation is subject to certain di�culties, because the quantities to
be estimated are the proportions of each age group and the response the
number of individuals in each age group. It is well-known that utilising or-
dinary linear predictors for rates and proportions may lead to predictions
outside the natural parameter space. Moreover, the usual least squares
predictors do not account for the fact that the variance depends on the
proportion being modelled (the mean value). Generalised linear models for
binomial data take those properties into account by utilising a link func-
tion and a method of estimation that incorporates the dependency of the
variance upon the mean. However, in most cases of age-composition data,
the response is not binomial but multinomial. Because the proportions
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are correlated, it is not valid to model each of the proportions separately,
using their corresponding ordinary logits. Instead, continuation-ratio log-
its are more practical, because the associated likelihood splits into separate
terms for each category level, and hence the continuation-ratio logits can be
modelled separately by means of generalised linear models. Furthermore,
the continuation-ratio logits have the appealing feature that a logit for an
age group only concerns �sh of that age and above, and thus systematic
features for younger age groups do not enter into the model for that age
group.

If some of the e�ects are random by nature, or require a level of detail that
is not practical to handle, they may be modelled by utilising the extended
generalised linear mixed models. Modelling those e�ects as random makes
it possible to obtain a model of practical use, and to test the signi�cance
of higher level e�ects.

Another strategy of modelling the random e�ect could be by using the con-
jugated prior (Consonni and Veronese, 1992). In the binomial case, this
corresponds to modelling the proportion by means of a beta-distribution.
Use of the conjugated prior has the advantage that the proportion is mod-
elled by a well-known distribution on the response scale itself and hence
its parameters may be more easily interpreted. The approach of modelling
the e�ect by a normal distribution on a relevant scale has the advantage of
often being more 
exible, and the methods for estimation and testing are
implemented in commonly used software.

The variation of the age-composition of catches from the Danish sandeel
�shery in the North Sea in 1993 has been analysed in order to illustrate
the applicability of the method. The signi�cance of possible temporal and
geographical sources of variations has been evaluated on the basis of a
generalised linear mixed model. The proportion of each age group and
the corresponding variance-covariance matrix have been estimated. It was
estiblished that the variance-covariance matrix was di�erent from that of
a multinomial distribution: the variance and covariance were not directly
determined by the size of the proportion. In fact, a positive correlation
even occurred between two age groups (age group 3 and 4+) which would
never have been the case for the multinomial distribution.

Estimation of the age-composition is often based upon an age-length key.
In those cases, the suggested method can still be used. The length or a
function of the length then enters as a regression variable. However, if the
length distributions for the di�erent age groups exhibit large overlaps, the
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estimation of the age-length relation becomes complicated. In those cases,
methods based on suggestions by Kimura and Chikuni (1987), might be
more practical.
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Abstract

A new method of analysing age composition data is applied to the lesser
Sandeel �shery in the North Sea. The method provides improved estimates
of the age composition and the associated uncertainty. The estimates may
be utilised in common statistical stock assessment methods and thereby
improve the assessments. Furthermore, valuable information concerning
the stock dynamics may be obtained by careful analysis of the data, as the
age composition of the catches provides information of the age composition
of the part of the stock that is available to the �shery. The analyses show
that the proportion of older sandeel in the catches is signi�cantly lower in
the start and end of the �shing season and that the age composition di�er
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between laboratories. There is considerable variation in the age composi-
tion within small areas, as well as important undetected sources of variation
resulting in a large and signi�cant overdispersion.

B.1 Introduction

Catch in numbers at age constitutes the primary input to age-structured
assessment models (Megrey, 1989). Sampling errors are known to in
uence
estimates of catch and hence of stock size and �shing mortalities (Rivard,
1989). However, the sources and magnitude of errors in the age compo-
sition data have seldomly been studied and quanti�ed. This may partly
be due to a lack of suitable methods. The distribution of the number of
individuals in di�erent age groups in a sample may be described by a multi-
nomial distribution and no standard methods are available for evaluating
the signi�cance of factors in
uencing the distribution.

In this paper a new method for analysing age composition samples is applied
to catch at age data for the lesser sandeel (Ammodytes marinus Raitt) in
the North Sea. The lesser sandeel is one of the most abundant �sh species
in this area (Sparholt, 1990). It constitutes an important prey for many
species of �sh, seabirds and marine mammals (Daan et al., 1990) and forms
the main target of the Danish industrial �shery. The sustainability of this
�shery has been subject to intense debate and discussions (Wright, 1996;
Gislason and Kirkegaard 1998). On one hand, the present assessment of
the sandeel stock suggests that the �shery is sustainable (ICES, 1996). On
the other hand, environmental organisations argue that the uncertainty in
the assessment is so large that the �shery inadvertently could lead to a
collapse of the stock. So far the uncertainty has not been quanti�ed.

The method combines the so-called generalised linear mixed models (Bres-
low and Clayton, 1993; Wol�nger and O'Connel, 1993) with the theory for
ordered categorical responses (Agresti, 1990). It transforms the probabil-
ity of the multinomial response into a product of binomial probabilities for
which generalised linear mixed models can be directly applied to study the
possible sources of variation. It is particularly suitable for age composition
data because it allows individual cohorts to be followed and compared over
time. We use the model to evaluate the signi�cance of spatial and temporal
di�erences in the age composition of the sandeel samples as well as to study
the importance of di�erences in age readings between laboratories.
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B.2 Methods

The analysis of age composition data is impeded by the categorical struc-
ture of the response, which is the number of sandeels classi�ed as belonging
to each age group, Xs = (X0s; : : : ; X4s). s denotes the sample number and
the age groups are 0; : : : ; 4, where group 4 includes ages 4 and above. If
we assume that the age composition of the sandeel in a particular sample
does not depend on the occurence of other species in the sample and that
the samples are representative for the age composition in the catch then
the response can be modelled by a multinomial distribution:

Xs 2 Mult(ns; p0s; : : : ; p4s) (B.1)

where ns denotes the sample size and pjs denotes the proportion of indi-
viduals in the catch classi�ed as belonging to age group j, j = 0; : : : ; 4.
With �ve age groups presents four probabilities will be needed to describe
the distribution. The pjs's describe the real age composition of the catches
if the age determination is unbiased. If a bias exists, the proportion pjs
describes the proportion of �sh in the catch that would be classi�ed into
age group j.

A new method for analysing the in
uence of various factors on age compo-
sition data has been presented by Kvist et al. (1998, submitted). The idea
is to split the probability of the multidimensional response into binomial
probabilities. This is done by considering the conditional distributions of
X0s; : : : ; X3s, where the distribution ofXjs is conditioned on the event that
the age is j or higher.

Xjsjxjs + : : :+ x4s 2 Bin(Xjs + : : :+X4s; �js) (B.2)

where j = 0; : : : ; 3, Xjs is the number of j-year-olds and �js is the proba-
bility of age j given that the age is at least j:

�js =
pjs

pjs + : : :+ p4s
(B.3)

The continuation-ratio logits for Xs are the ordinary logits for the condi-
tional distribution of the variables X0s; : : : ; X3s, i.e.
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Ljs = log
�js

1� �js
= log

pjs
p(j+1)s + : : :+ p4s

(B.4)

Thus by a logit transformation the interval [0,1] of a probability is con-
veniently transformed to the interval ] � 1;1[, which is more practical
during estimation. The �rst logit describes the odds of age 0 of a sampled
�sh. The second logit describes the odds of age 1 of a sampled �sh, given
that the age is at least 1, etc..

Because the continuation-ratio logits may be estimated independent of each
other as long as they do not have any parameters in common they can be
modelled separately by means of generalised linear mixed models (Breslow
and Clayton, 1993; Wol�nger and O'Connel, 1993). Thus Xs is modelled
by four continuation-ratio logits of the form:

Lj = bj�j + Zjuj (B.5)

where j = 0; : : : ; 3, bj denotes the explanatory variables associated with
the �xed parameters �j and Zj the explanatory variables associated with
the random parameters uj. The random parameters are assumed to be nor-
mally distributed on the logit scale. If the random parameters are omitted
the model is a generalised linear model, described in McCullagh and Nelder
(1989).

We also included a dispersion parameter, �, to account for the variance
that could not be attributed to the binomial variance or the explanatory
variables. The dispersion parameter enters as a simple multiplicative factor
on the binomial variance, and must therefore be greater than zero. � = 1
indicates that the variance of the response is in accordance with the nominal
binomial variance. � < 1 indicates that the data is underdispersed, and
that the variance of the response is less than the nominal binomial variance.
� > 1 indicates overdispersion, where the variance of the responce exceeds
the nominal binomial variance. Introducing a dispersion parameter means
that the conditional distributions are no longer exactly binomial:

Xjsjxjs + : : :+ x4s 2gBin(Xjs + : : :+X4s; �js; �js) (B.6)

The dispersion parameter has been described in more detail in e.g. McCul-
lagh and Nelder (1989).
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The random variation of the model is thus modelled partly by a dispersion
parameter and partly by variance components (from random e�ects). A
variance component describes variation between observations with di�er-
ent probabilities and the dispersion parameter describes variation between
observations with the same probabilites. The magnitudes of the two are
di�cult to compare as they are measured on di�erent scales, but the inter-
pretation of the dispersion parameter and the variance components can be
illustrated further by considering the following simple example.

Assume X is binomially distributed with an associated dispersion param-
eter, �:

X 2gBin(n; p; �) (B.7)

where E[p] = p0, l = log(p=(1� p)), and V[l] = �2.

The variance of the observation X=n can then approximately be expressed
as:

V

�
X

n

�
� p0(1� p0)

�
p0(1� p0)�

2 +
�

n

�
1� p0(1 � p0)�

2
��

(B.8)

The �rst factor of the expression describes the basic binomial variance
structure. The �rst term within the square brackets describes the variation
between observations with di�erent p's (transformed from the logit scale
to the probability scale), and the last term describes the average variation
between observations with the same p (because of the convexity of p(1�p)
this average variation will be less than �p0(1�p0)). Note that if the variance
component is zero the variance reduces to the variance, p0(1 � p0)�=n,
corresponding to a binomial distribution with a dispersion parameter. Note
also that according to (B.8), an increase of the sample size will reduce the
contribution from the dispersion parameter, but not the contribution from
the random e�ect.

B.3 Materials

The Danish �sheries inspection collects samples from the sandeel landings
in the major landing ports. Samples are taken at random by lowering a
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10-litre pail into the hold of the vessels. The samples are sorted into species
and the age composition of sandeel determined by reading the age of the
otoliths. At present the method requires that a random subsample of �sh
are aged. This was the case before 1993. After 1993 the procedure changed
and from then on only a �xed limited number of �sh from each length group
was aged. The analysis was therefore restricted to samples from the period
between 1984 and 1993. In this period a total of 700 samples were collected
from the �shery, each sample containing between 30 and 400 sandeels. Most
of the samples were taken during the main �shing season in spring and
early summer, �gure B.1. The number of samples collected decreased over
the years, �gure B.2, and as very few samples were collected in 1990 this
year was excluded from the analyses. The geographical distribution of the
samples re
ects the distribution of the �shery with most samples being
collected in the eastern and southern North Sea, �gure B.3.

Figure B.1: Number of samples distributed on months.

Several factors are likely to in
uence the age composition of the samples
(Gislason and Kirkegaard, 1998). Adult sandeels bury themselves in the
sediment at night and outside the �shing season and are mostly found in
areas of coarse well-oxygenated sand. Due to the burrowing behaviour the
catch rates vary between di�erent age groups, with season and during the



B.3 Materials 105

Figure B.2: Number of samples collected per year.

day (Reeves, 1994). Di�erences in the time of emergence of small and large
sandeels will in
uence the age composition. It has thus been proposed that
the larger and older individuals will emerge from the sediment later in the
season than the younger and smaller individuals, and that they will re-
enter the sediment earlier at the end of the season. A special relationship
applies for the 0-year-olds. This age group does not appear in the samples
from the �rst half of the year. Presumably there is little migration of
adult sandeel between the various sandeel grounds in the North Sea, and
regional di�erences in age-composition can therefore be expected. Further
variation will be added by di�erences in trawl design and mesh size used
by individual vessels as well as by errors in the reading of the otoliths.

There is insu�cient information to investigate all of these potential sources
of variation. Information about the laboratory, L, performing the age read-
ing, the type of �shing gear used, G, and its mesh size, E, has been recorded.
The date and the approximate position where the catch was taken on an
ICES rectangle (30*30 square nautical miles) basis is also available, but
information about time of day, sediment type and position of individual
hauls is not available. The primary temporal and geographical variables in
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Figure B.3: Number of years for which samples are available for a particular
square in the period from 1984 to 1993.
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the analysis were therefore year, Y, month, M and rectangle, S.

The age determination took place in laboratories in the main �shing har-
bors. Di�erences between the age determinations performed by individual
laboratories can be used to estimate the likely bias caused by age determi-
nation errors. Di�erences in age composition between larger geographical
areas can be studied by subdividing the North Sea into sub-areas, A. Three
di�erent subdivisions were considered, �gure B.4. Area strati�cation 1 has
been utilised in previous assessments and is based upon the overall distri-
bution of the �shery (Lewy, 1995). Area strati�cation 2 was proposed by
EU project 94/071 (Wright et al., 1998) based on tracking sandeel larvae in
a two-dimensional sea circulation model (Proctor et al., 1998). Area strat-
i�cation 3 is a modi�cation of the latter based on an overall evaluation of
the present data (Pedersen et al., 1998). In addition to the sub-areas a
variable, R, was used to characterise samples from the northern and south-
ern part of the North Sea. Because a distinct set of squares constitutes an
area and a distinct set of areas constitutes the northern or southern part
of the North Sea, S is nested within A, which again is subordinate to R.

The variation between squares within areas was modelled as random, thus
assuming that the e�ects of squares within the same area vary around the
same mean. An estimate of the age composition for a square is a compro-
mise between the speci�c samples from that square and the samples from
the whole area. The more imprecise an estimate of the age composition
in the square, the more weight on the average for the whole area and the
more variation between squares, the more weight on the samples from the
individual squares. Besides utilising information from samples taken from
squares with e�ects of roughly the same size, reducing the variance, the
e�ect in a square without samples may be estimated, simply by assuming
it to be the average e�ect in the area. Furthermore, modelling an e�ect as
random also has the advantage that the signi�cance of the e�ect that it is
nested within may be tested, i.e. the area e�ect A(R). If the area e�ect is
found to be non-signi�cant the partition of the North Sea into a Northern
and Southern part, R, may be tested.

If the older sandeel becomes available to the �shery later in the season than
the younger a decrease in the continuation ratio logit in spring or early sum-
mer will be followed by an increase in late summer or early autumn. These
changes in availability were accounted for by introducing a polynomial of
second degree. The polynomial allowed availability to increase, decrease or
remain unchanged over the season. However, the 0-year-olds are not caught
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Figure B.4: Di�erent area strati�cations. The bold line in the �gures shows
the border between the northern and southern areas.
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in the �shery in the �rst half of the year, and for this age group the logit
was set to �1 in the �rst half of the year.

B.4 Results

The full model, with main e�ects and interactions all present, was too
heavily parametrised for the estimation proces to converge. It was therefore
necessary to reduce it, by using separate screening models for each year
to identify e�ects that were never or only seldom signi�cant. The initial
screening models were (Wilkinson-Rogers notation):

Layr = M+A+S(A)+L+E+T+M � A+M � S(A)+M � L+A � L+M � A � L
(B.9)

where a = 0; : : : ; 3 denotes the age group, y=1984,. . . ,1989,1991.. . ,1993
denotes the year and r = 1; 2; 3 denotes the area strati�cation. In these
preliminary models the month e�ect, M, was modelled as a class e�ect. A
possible assignment of the areas to a northern and southern part (variable
R) was not considered in these preliminary models. Interactions involving
gear, G, mesh size, E, or the interaction between laboratory and square,
L�S(A), were not considered relevant and were therefore omitted. All tests
were performed on a 5%-level.

The E;G;M � A;M � S(A);M � L;A � L;M � A � L e�ects were never or rarely
signi�cant in the screening models and were therefore excluded from the
model covering to all years. The rest of the e�ects, M, A, S(A) and L were
included.

The initial overall models with all years included were:

Lar = Y+R+Y � R+A(R)+Y � A(R)+M+MM+L+Y � L+Y � S(A) (B.10)

where a and r were de�ned as before and where M and MM are regression
variables. The value of M is the number of the month and the value of MM
the corresponding square. Inclusion of the interaction e�ects Y � M and
Y �MM was not practical due to the patchy data. The highly signi�cant
square e�ect was chosen to be modelled as a random e�ect, Y*S(A). Thus
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each square has di�erent levels in di�erent years, but the parameters are
normally distributed with the same variance, �2, and the mean determined
by the �xed e�ects.

An overview of signi�cant e�ects is given for all age groups and area strat-
i�cations in table 1. In addition, the estimates of the variance component
and dispersion parameter are shown in table 2. Note that the observations,
particularly for age group 1, are highly overdispersed, suggesting that ad-
ditional sources of variation remain to be included in the model.

Comparison of the results for the various age groups show that the age
composition can be described by a relative simple model with six �xed
main e�ects and one two-factor interaction e�ect, a random e�ect and a
dispersion parameter. The dispersion parameters and variance components
are similar to each other for the three di�erent area strati�cations consid-
ered. The area e�ect, A(R), for strati�cation 1 is signi�cant for all age
groups except for 2-year-olds (only signi�cant on a 6% level for age group
3). Strati�cation 2 is not signi�cant for any age group and strati�cation
3 is signi�cant for age group 1 only. There are only small di�erences be-
tween the dispersion parameters and the variance components for the three
strati�cations. Since strati�cation 1 results in signi�cant area e�ects, this
strati�cation is chosen in the further presentation. The most relevant pa-
rameter estimates of the �xed e�ects are shown in �gures B.5 to B.10. The
principle by which the model has been parametrised is the standard prin-
ciple used in GLM, Mixed in SAS (SAS Institute Inc. 1996). The method
solves the often occuring problem of overparametrisation by selecting one
of the levels of an e�ect as a reference level.

In the following each e�ect will be interpreted. A summary of the most
important conclusions are given subsequently.
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Table 1. Signi�cant �xed e�ects in the
model described by (B.10).

Original �xed e�ects:

Y R Y*R A(R) Y*A(R) M MM L Y*L

Age
Area
Strat.

Signi�cant �xed e�ects

1 Y R A(R) M

0 2 Y R M

3 Y R M

1 Y R Y*R A(R) M MM L

1 2 Y R M MM L

3 Y R A(R) M MM L

1 Y R Y*R L

2 2 Y R Y*R L

3 Y R Y*R L

1 Y R A(R) L

3 2 Y

3 Y
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Table 2. Random components in the
model described by (B.10).

Random components:

� Y � S(A)

Age
Area
Strat.

b� c�2
1 12.8 5.2

0 2 12.2 6.4

3 11.9 6.2

1 31.1 1.0

1 2 30.5 1.5

3 30.2 1.2

1 7.3 0.9

2 2 7.1 1.2

3 7.1 1.0

1 2.3 1.4

3 2 2.3 1.5

3 2.3 1.5
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B.4.1 Importance of year, Y

The year e�ect is signi�cant for all age groups. The parameter estimates
for age group 1 are shown in �gure B.5. The graph provides an indication
of the relative year class strength of the cohorts.

1

1

1

1

1

1

1
1

1

Figure B.5: Estimated parameters for age group 1 for Y.

In �gure B.6, each cohort is followed through time and the proportion of
a particular cohort compared to the proportion of the same cohorts the
following year. For 0-year-olds a large year e�ect in one year is followed
by a relatively large e�ect for the same cohort the following year. For
older ages the tendency is the opposite. A relatively big catch of a cohort
is followed by a realatively small catch of the same cohort the following
year. This pattern for the 1- to 3-year-olds has formally been evaluated
by an approximate test and found signi�cant. The change in the logits,
Da;y = para+1;y+1 � para;y, where para;y denotes the parameter estimate
of the year e�ect for age group a and year y, was modelled by a general
linear model (Wilkinson-Rogers notation):
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Figure B.6: Estimated parameters for Y for subsequent ages. Estimates for
the same cohorts are joined by a line.
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Da;y = Age + Startlevel + Age � Startlevel (B.11)

Age denotes the age and Startlevel indicates if the proportion was high
(> 0:5) or low (� 0:5). Da;y is tabulated in table 3 together with its
variance which was utilised as weights in the �tting and testing. The two
main e�ects were signi�cant on a 5% level, but not the interaction e�ect.
The estimated changes are shown in table 4. The change is largest for
the 1-year-olds. Years where 1-year-old sandeel consitutes a large part
of the catch are followed by years where 2-year-olds constitutes a smaller
part. Another relationship exists between 0-year-olds and 1-year-olds; the
proportion of 1-year-olds can be predicted by the proportion of 0-year-olds
the year before by merely adding a constant.

Table 3. Change in parameter estimates between subsequent years.
Year, y Age, a Startlevel Change, Day Variance
1985 2 low 2.7 0.48
1985 1 high -1.2 0.42
1986 2 high 0.2 1.70
1986 1 low 0.4 0.55
1987 2 high -0.3 0.64
1987 1 high -0.8 0.56
1988 2 high -1.5 0.50
1988 1 low -1.9 0.53
1989 2 low 0.0 0.58
1989 1 low 1.0 0.92
1992 2 high -1.0 0.65
1992 1 high -2.1 0.55
1993 2 high -0.4 0.19
1993 1 high -2.8 0.24



116 Appendix B. Sources of Variation...

Table 4. Estimated changes in the proportion of a cohort
compared to older cohorts for 1- and 2- year-olds.

Age Startlevel
Estimated Change

on logit scale
1 Low -0.20
1 High -2.04
2 Low 1.26
2 High -0.58

B.4.2 Importance of geographical di�erences in the
catches, A(R), R, Y*A(R), Y*R and Y*S(A)

The area e�ect is signi�cant for all age groups except for age group 2 (only
signi�cant on a 6% level for age group 3). The interaction e�ect between
year and area, Y*A(R), is not signi�cant for any of the age groups, i.e. the
same parameter estimate for the area e�ect applies to an area through all
years.

The R e�ect has been included for all age groups, either because it was
signi�cant, or because the nested e�ect A(R) is signi�cant. The interaction
e�ect between year and region, Y*R, was signi�cant for age groups 1 and 2.
This result shows that there are di�erences between the age composition
in northern and southern part of the North Sea, and that the magnitude
of this di�erence varies from year to year. The signi�cance of A(R) and
the insigni�cance of Y*A(R), indicates that there are consistent di�erences
between the age compositions in areas within the northern and the southern
North Sea, but the relative compositions in the two regions vary through
the years.

The annual levels for the two regions are shown in �gure B.7 as the sum
of the parameters for the Y, R and Y*R e�ects. For age groups 0 and
3, Y*R is insigni�cant and the two lines are parallel. For 1-year-olds the
pattern of changes in the two regions di�er a little, but for the 2-year-
olds the two parts of the North Sea are completely di�erent. There are
large di�erences between the average levels in the two regions for the 0
and 1-year-old sandeel, but not for older �sh. The proportion of 0-year-
olds among all and the proportion of 1-year-olds in the 1+ group is much
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higher in the Northern than in the Southern part.

There is large variation between squares within areas indicated by Y*S(A).
For age groups 1 to 3, the variation is approximately the same. For age
group 0 the variation is �ve times larger.

B.4.3 Importance of laboratory, L and Y*L

Although the laboratories to some extent cover di�erent geographical areas,
there is su�cient overlap to allow an evaluation of possible di�erences in age
determinations. The laboratory e�ect, L, is signi�cant for all age groups
except age group 0, �gure B.8. Di�erences in the interpretation of the
otoliths seem therefore to have biased the age determinations. It is probably
easier to determine the age of �sh in the 0 group, because they only appear
in the second half of the year and because their length distribution usually
is well separated from that of the older �sh. The interaction e�ect between
year and laboratory, Y*L is not signi�cant for any age group. This means
that the laboratory e�ect does not change over the years.

B.4.4 Importance of variation through the year, M and
MM

If the larger sandeel remained buried for a longer time period than the
smaller the logits for age group 1 to 3 would be expected to decrease in the
beginning of the year and increase in the end of the year. This pattern was
signi�cant for age group 1 only. For age groups 2 and 3 the month e�ects
were insigni�cant, �gure B.9.

For 0-year-olds the variation through the second half of the year may be
described by a straight line on the logit scale, indicating an increase of
the proportion of 0-year-olds caught. Thus the pattern for 0-year-olds also
supports the hypothesis that larger sandeel remain buried for a longer time
period than the smaller.

B.4.5 Comparison of the importance of the sources

To illustrate the importance of the di�erent sources of variation the param-
eter estimates for each e�ect are plotted in �gure B.10. The magnitude of
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Figure B.7: Estimated parameters for Y+R+Y*R progress of the logit
through the years for the di�erent age groups.
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Figure B.8: Estimates of parameters of the laboratory e�ect, L. The number
indicates the age group. Estimates of the same age group are joined.
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the di�erent sources appears to be of approximately same size. It is note-
worthy that the variation between squares within areas (e�ect Y*S(A)) is
as great as the variation between years (e�ect Y) and that the variation
caused by the laboratory e�ect, L, is approximately half as large.

In order to evaluate the bene�ts of further investigations of the unknown
sources, the magnitude of the uncertainty caused by � is compared to the
other random e�ect, Y � S(A). It is di�cult to compare those two sources
because they are measured on di�erent scales and because their in
uence
on the variance is di�erent for di�erent probabilities and sample sizes (refer
to equation B.8). In table 5, we have shown the approximate percentage of
the total variation that is caused by the variance between squares (Y*S(A)
e�ect), �2, for various probabilities and typical sample sizes for the age
groups. The equation for the percentage is:

f�2 � (p0(1� p0))
2
�2

p0(1� p0)
h
p0(1� p0)�2 +

�
n (1� p0(1� p0)�2)

i (B.12)

Table 5. Percentage of the total variation that is caused
by the variance between squares in model (B.10).

Age group 0 1 2 3

b� 12.8 31.1 7.3 2.3

b�2 = 5:2 5.2 1.0 0.9 1.3

Sample size 140 130 60 20

E[p]=0.1 or 0.9 91% 29% 42% 54%

E[p]=0.5 100% 58% 70% 81%

For age group 0, the variation between squares are the dominant source
of variation. For the other age groups both sources are of approximately
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equal important.

B.5 Discussion

We have used the model to quantify the importance of the various sources
of variation in the age composition of sandeel landings in the North Sea.
Knowing the sources and magnitude of variation it is furthermore possible
to improve the sampling strategy. For instance, if samples from di�erent
months indicate the same age composition in the catch they may be pooled
without loss of information, but with a smaller variance as a result. At last,
valuable information concerning the stock dynamics may be obtained by
careful analysis of the data, as the age composition of the catches provides
information of the age composition of the part of the stock that is available
to the �shery.

Our results show that variation between squares is considerable and there-
fore e�orts to obtain samples from all relevant squares should be encour-
aged. The use of area strati�cation 1, which is based on the distribution
of the �shery, does lead to signi�cant area e�ects, while strati�cation 2
and 3, do not lead to signi�cant reductions in unexplained variance. This
is somewhat surprising as the latter strati�cations are based on biological
reasoning and believed better to re
ect the sub-structure of the North Sea
sandeel population. Using area strati�cation 1, the analysis shows that
there are consistent di�erences in the age composition between and within
the northern and southern North Sea over the years. However, except for
age group 2, the changes occur in parallel, suggesting that relative year
class strength changes little within the North Sea.

The changes in the logits over the year show that the older �sh are available
to the �shery for a shorter time period than the 1-year-olds, probably
because they emerge from the sediment later in the season and re-enters
the sediment earlier. The in
uence of gear and mesh size is negligible
and suggests that stratifying the sampling e�ort by gear and mesh size
is unlikely to result in a lower overall variation. The laboratory e�ect is
signi�cant and suggests perhaps that comparative age readings should have
been performed more frequently.

The model was also used to study the link between the age composition
in subsequent years. Our analyses showed that the proportion of 1-year-
olds can be predicted from the proportion of 0-year-olds by merely adding a
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constant to the logit and apparetly, the �shery for 0-year-olds at the present
�shing intensity does not in
uence the �shing possibilities of 1-year-olds the
year after. However, this pattern does not apply to older �sh; years with
a large proportion of 1-year-olds in the catch, are followed by years where
the proportion of the same cohort has decreased. This might indicate that
the �shery has been attracted to 1-year-old �sh in years where they were
abundant. This dependency may be utilised to generate predictions of
future age compositions. However, the pattern for the 1 and 2-year-olds
might also be caused by bias due to age determination errors (see Fournier
and Archibald 1982; Rivard, 1989; Kimura and Lyons, 1991).

The overdispersion might be caused by di�erences in age composition be-
tween adjacent sandeel grounds within the same square, by time of day
and by weather. Although one source of variation probably caused by age
determination errors has been detected, viz. the laboratory performing
the age determination, several sources might exist, such as the di�erences
between laboratory technicians or dependency between age determinations
from the same samples. If the age readings of the otoliths have not been
performed independently but rather by a common analysis, an overdisper-
sion may arise due to the correlation indicating that the e�ective number
of observations are smaller than the sample size. Another possibility is that
the samples are labelled incorrectly. The samples are taken at port while
the vessel is unloading the �sh. If the �sherman has trawled in several
squares, part of the unexplained variation should probably be attributed
to variation between squares within areas. Evaluation of the magnitude of
those unknown sources should be done cautiously, since the model of those
probably is not valid. By modelling the unknown sources by a dispersion
parameter; one supposes that each individual has a di�erent level of the
unknown sources.

The estimates of the uncertainty of the age composition di�ers from results
previously presented by taking into account the binomial variance structure
of the proportions, e.g. Cochran (1977), Schweigert and Sibert (1983) and
Horppila and Peltonen (1992) calculate empirical variances and thus ignore
the relation between the variance of a proportion and its expected value.

The estimated uncertainty of the age composition may be utilised to esti-
mate the uncertainty of the catch at age data. This estimate can be directly
utilised by statistical stock assessment methods to improve the estimates
of uncertainty about the current situation. For instance the information
may be used to provide an informative prior distributions in Bayesian stock
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assessment models (McAllister and Ianelli, 1997), or as a known variance
of the observations used in Time Series Models (e.g. Gudmundsson, 1994
and Schnute, 1994;). At present external estimates of observation error are
not fully utilised. Most often catch at age data is aggregated into aver-
age numbers per year and geographical unit before it is entered into the
assessment model.

In the models presented here a rough spatial correlation is introduced
through the random e�ect Y*S(A); age compositions for squares within
the same area are more correlated than squares from di�erent areas. An-
other approach of modelling the age composition is to make a more de-
tailed structure of the spatial correlation such as modelling the correlation
between age compositions of two squares as a function of the distance be-
tween them. However, preliminary analyses in terms of variograms (Isaaks,
1989) of the parameters of squares within the same area do not indicate
that such a correlation structure exist. In a more detailed spatial model
it would also be relevant to evaluate factors describing the environmental
conditions such as temperature, oxygen content and bottom conditions.

A drawback of the method presented is that the method requires age de-
termination of all sandeels in a sample or of a random subsample. For this
reason only data from 1984-1993 were considered. The method needs to be
extended to cases where only a proportion of the sandeels in each length
group is age determined.
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Figure B.9: The estimated progress of the logit through the year for age
group 1.



B.5 Discussion 125

Figure B.10: Estimates on the logit scale for the signi�cant e�ects. Note
that the scale for age group 0 is di�erent from the others.
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Appendix C

Uncertainty of Catch at

Age Data for Sandeel

T. Kvist, H. Gislason and P. Thyregod

Keywords: catch at age data, generalized linear mixed models, contin-
uation-ratio logits, compound distribution

Abstract

The uncertainties associated with catch at age data for sandeel landings
in the North Sea have been assessed. The uncertainties may be associated
with the estimated age composition, the catch �gures per area, the esti-
mated species composition of the catches, and the transformation of the
unit of measurement of the magnitude of the catch from tonnes to numbers.
The various sources of uncertainty were analysed separately and thereafter
combined into estimates of the catch at age data. Continuation-ratio logits
and generalised linear mixed models were utilised for estimation of the age
composition and the associated uncertainties. A novel approach based on
a compound distribution for analysing the species composition was used.
The results showed that the uncertainties associated with the catch at age
data are huge; occasionaly the coe�cient of variation is larger than 50%,
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and that the uncertainties associated with the age composition data are
the most dominating.

C.1 Introduction

Most cohort based stock assessment methods, such as Virtual Population
Analysis (VPA) (Gulland, 1965 and Pope, 1972) and similar methods rely
heavily on catch at age data and the data has great in
uence on the result-
ing quantities such as population sizes (Lai and Gunderson (1987), Tyler
et al. (1989), Fournier and Archibald (1982), Pelletier (1990) and Bradford
(1991)). Therefore estimation of the uncertainty of catch at age data is
necessary for estimation of the uncertainties of those quantities. Various
statistical models have been developed with the purpose of assessing the
uncertainties, e.g. those presented in Fournier and Archibald (1982), De-
riso et al. (1985), Gudmundsson (1994), McAllister and Ianelli (1997) and
Punt and Hilborn (1997), Fargo and Richards (1998). Such models might
be improved by incorporating explicit estimates of the uncertainties of the
catch at age data.

The uncertainty of catch at age data can be estimated by utilising the
information from the biological samples taken from the landings. There
are several possible sources of uncertainty in the catch at age data. Those
might be selectivity and age determination errors, temporal and geographi-
cal variations in the age composition of the part of the stock that is available
to the �shery, the species composition in the sea and growth.

Age determination errors may arise due to systematic or random errors.
However, both sources will cause bias in the ageing due to the trunca-
tion of the age distribution. In general, ageing error makes strong year
classes appear weaker and weak year classes appear stronger (Fournier and
Archibald 1982, Rivard 1989, Kimura and Lyons, 1991). Richards et al.
(1992) presents statistical models for the analysis of ageing error. How-
ever, those methods require multiple independent age readings, and can
therefore not be applied to historical sample data which do not contain
multiple age readings.

Many authors have addressed the problem of estimating the uncertainty
of catch at age data, e.g. Gavaris and Gavaris (1983), Rivard (1983),
Schweigert and Sibert (1983), Pelletier and Gros (1991), Lewy (1995). How-
ever, recent development of the theory of Generalised linear mixed models
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(McCullagh and Nelder (1989), Breslow and Clayton (1993) and Wol�nger
and O'Connel (1993)) and computer facilities makes it possible to take into
account as well the special characteristics of the variance of a proportion
as various sources of random variation. Pelletier and Gros (1991) attempts
to avoid the problem of dependency between a proportion and its variance
by choosing the number of individuals in an age group in a sample as the
variable of interest, rather than the proportion. However, this approach
requires that the samples consist of a �xed number of individuals and even
then the variance of the number of individuals in an age group is not con-
stant; the variance is smallest for small and large numbers of individuals
in an age group analogous to the characteristics of proportions. Recently,
Crone and Sampson (1998) have investigated the stochastic properties of
catch at age data from �ve ground�sh species commersially landed at Ore-
gon ports. Crone and Sampson (1998) reached the conclusion that a multi-
nomial probability error structure, included in models that are based on
maximum likelihood estimation, more closely follows the variability associ-
ated with the sampled landing data than does a log-normal error structure
used in models based on least squares estimation, and thus support the
modelling approach of age composition data applied here.

Another important issue has not been addressed in papers concerning the
estimation of catch at age data and its uncertainties, viz. an evaluation
of factors which may have importance for the age composition. Such a
method has been presented in Kvist et al. (1998).

The aim of this paper is twofold: to utilise the beni�ts of the new method
(Kvist et al. (1998) and Kvist et al. (1999)) in the estimation of the
uncertainty of the catch at age data for the sandeel �shery in the North
Sea and to present a novel approach in estimation of the species composition
and its uncertainty. The lesser sandeel(Ammodytes marinus Raitt) is one of
the most abundant �sh species in the North Sea (Sparholt, 1990) and it is
the main target of the Danish industrial �shery. The �shery is characterized
by not having information on the actual weight of the catch of sandeel, as
only the weight of the total industrial �shery is recorded. Therefore the
biological samples from the landings are utilised also for estimation of the
species composition. This characteristic may also apply for other �sheries
where the catches are composed of several species and where the catch by
species is not recorded, e.g. for certain �sheries in the tropics (Sparre and
Venema, 1992). Therefore the novel approach for estimation of the species
composition may be relevant for other �sheries as well.
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C.2 Materials

The materials used for estimation of catch at age data for sandeel consist of
information on the total industrial catch together with biological samples
taken from the landings with the purpose of determining species composi-
tion, age composition and weight. The analyses presented here are based
on data from 1984 to 1991.

The information on the appr. catch by ICES rectangle comes from �sh-
ermens logbooks and covers nearly all the industrial �shery in the North
Sea, namely vessels with an overall length of 17 m or more. The logbooks
contain information on the species, the appr. amount caught, the date of
�shery, appr. position in terms of the ICES rectangle, and information on
the vessel size and gear. This information is combined with information
from the �rst hand buyers who are obliged to report for each landing, the
quantity of industrial species and in which ICES Division the landing was
taken. The information from the logbook database is utilised to estimate
the relative industrial catch in each month and ICES rectangle, whereas the
more accurate information from the �rst hand buyer on the actual weight
of the catch is utilised to get an estimation of the absolute industrial catch
in every ICES rectangle and month. Since the logbooks cover almost all
industrial �shery and the information from the �rst hand buyers covers all
industrial landings, the contrinution of uncertainty from sampling errors is
assumed to be negligible. However, the information recorded in the log-
books may be prone to errors, due either to human mistakes, or to attempts
to cover up illegal �shing. The magnitude of these errors could possibly be
evaluated by comparing the control samples taken by the Danish Fisheries
Inspection with the logbook data. However, such an evaluation would only
disclose some of the errors, such as the species caught. Other errors such
as the position of the �shery cannot be checked. In addition, interpretation
of the results of such an evaluation, as eg. the proportion of errors would
be impeded by the sampling procedure because the samples are not taken
at random but directed towards vessels under suspicion. In the present
analyses it was assumed that the uncertainty in the estimate of the total
weight of the industrial landings caught in every ICES rectangle and month
could be neglected. This assumption is partly supported by the fact that
the sandeel �shery was subject to few regulations in the period from which
the samples were obtained.

The biological samples are taken from the landings in the harbours by low-
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ering a 10-litre pail into the hold and taking out a random sample (Lewy,
1995). It is assumed that the samples are collected randomly among �sh,
i.e. that every �sh is equally likely to be sampled. However, the docu-
mentation of the sampling design for the period studied is incomplete and
therefore it is uncertain whether or not the assumption holds. If the sam-
ples are taken at random among vessels in stead of among �sh, the samples
should be weighed with the size of the landing. The samples are sorted into
species and the species composition by weight is determined. A random
subsample is collected for determining the length and age composition of
each species. The length and age of the individuals and the weight of each
length group are recorded. The age determination is performed mainly by
counting the number of growth rings in the otoliths. For each sample the
date of �shery, ICES rectangle, vessel size, gear and mesh size are recorded
as well.

The collection of a �xed volume of sandeel, rather than a �xed number,
might introduce a bias, i.e. an expected age-composition in the sample
di�ering from that in the catch (Schea�er, 1969, Buslik, 1950). This could
happen if the volume of one sandeel was large relative to the sampling vol-
ume. However, because the volume of one sandeel is small relative to the
total sample volume we do not expect this to in
uence our results. Simi-
larly, the by-catch in the sandeel �shery is small and we do not expect that
the species composition of the sample will in
uence the age-composition of
sandeel.

C.3 Methods

The various sources of information utilised in the estimation of catch at
age data are analysed separately and thereafter combined into estimates
of the catch at age data. At �rst, the information on the weight of the
industrial catch is combined with estimates of the species composition in
weight giving the catch weight of sandeel (Lewy, 1995). Secondly, the mean
weight of sandeels is utilised to transform the weight of the catch into the
number of sandeel caught. At last the age composition of the catches is
utilised to get estimates of the number of sandeel caught from each age
group. The various analyses are presented in the sections below.
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C.4 Species composition

Estimation of the weight-proportion of sandeel in the industrial �shery is
done on the basis of the biological samples described above. An overview of
those samples is given in �gure C.1, where the weight-proportion of sandeel
in the samples is shown. The �gure shows that there is a clear strati�cation
of the samples; those which are dominated by sandeel with generally more
than 75 weight-percentage sandeel and those which hardly contain any
sandeel. The two types of samples are utilized to categorize the catches
into sandeel catches and other catches. A catch is de�ned as a sandeel
catch if the sample contains more than 50 weight-percentage sandeel and
as an other catch otherwise.

Figure C.1: Histogram of the % of sandeel (in weight) in samples collected
from 1984 to 1991.

A classi�cation of �shery into sandeel �shery and remaining �shery (other
�shery) based on gear, mesh size, period of �shing and position of �shing
has been described by Lewy (1995). Thus, the classi�cation distinguishes
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between sandeel �shery and remaining industrial �shery, in the following
referred to as other �shery. Because the de�nition is based on information
available from the logbook database, which contains information on almost
every trip, the sandeel �shery may be de�ned with very high accuracy
provided the uncertainty caused by errors in the logbooks is considered
negligible.

The distribution of the weight-percentage of sandeel in samples from the
two types of �shery (sandeel/other) is shown in �gure C.2.

The plots show, that the classi�cation results in only a few misclassi�cations
of sandeel catches into other �shery, whereas the misclassi�cations of other
catches into sandeel �shery are more comprehensive. As a result of this
the misclassi�cation of sandeel catches into other catches are considered
negligible and thus ignored, whereas the misclassi�cation of other catches
into sandeel catches is taken into account in the estimation. The objective
of estimating the weight-proportion of sandeel in the industrial catches has
thus been reduced to estimating the weight-proportion of sandeel in the
sandeel �shery, �, and its variance ��.

As can be seen from the plot, there are two major sources of variation in
the weight-proportion of sandeel in the sandeel �shery. Firstly, there is
a classi�cation error resulting from errors in the de�nition of the sandeel
�shery; probably there is catches included in the sandeel �shery where the
target �sh was not sandeel. Secondly, there is by-catches occuring in some
of the sandeel catches, indicated by weight-percentages of sandeel a little
smaller than 100. By-catches in the other �shery is very small and assumed
negligible. Thus, the distribution of the weight-proportion of sandeel is
compounded by a distribution describing misclassi�cation of other catches
and a distribution which describes by-catches in sandeel catches. The two
sources of variation is analysed separately and then combined into estimates
of the weight-proportions of sandeel and their variances and covariances.

C.4.1 Classi�cation of catches within sandeel �shery

The de�nition of the sandeel �shery based on the gear, mesh size, time
of year and position of �shery gives an overall selection of sandeel catches,
but as mentioned above misclassi�cationsmay occur. The classi�cation of a
catch may be described by a Bernoulli distribution; either the classi�cation
is correct or it is false. It is considered correct if the catch is a sandeel
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Figure C.2: Histogram of the weight-% of sandeel in samples collected from
1984 to 1991.
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catch, i.e. if there is more than 50 weight-percentage of sandeel in the
sample. Let � indicate whether the catch is a sandeel catch or not:

� =

�
1 Sandeel catch
0 Other catch

(C.1)

then � is Bernoulli distributed:

� 2 Ber(�) (C.2)

where � is the proportion of correctly classi�ed samples.

Since the response is Bernoulli distributed, the proportion of correctly clas-
si�ed samples may be analysed by means of a generalised linear model
(McCullagh and Nelder, 1989). By this method factors which may be of
signi�cance for the proportion of misclassi�cations may be evaluated. Such
factors could be temporal, geographical or describing characteristics of the
vessels or equipment. The year and month e�ect describe di�erences in
the proportion of misclassi�cations between and within the years and the
area e�ect geographical di�erences (refer to �gure C.3 for the de�nition
of areas). Signi�cance of total catch might indicate that the general level
of the catch capacities for vessels in the sandeel �shery is di�erent from
that of other industrial �sheries. Analogously, signi�cance of the mesh size
might indicate that there is more information in the mesh size concerning
the target species than that already utilized to distinguish between sandeel
�shery and other �shery.

The analysis results in estimates of the proportion of correctly classi�ed
samples within the sandeel �shery for each ICES rectangle and month, b�,
and of the variance and covariance matrix, b��.
C.4.2 By-catches in sandeel catches

In this section we will address the problem of estimation of the by-catches
in the sandeel catches within the sandeel �shery, i.e. the weight-proportion
of sandeel given that the catch is a sandeel catch, �j� = 1. The weight-
proportion is modelled by a beta-distribution because the beta distribution
is a 
exible distribution especially useful for describing proportions (Lewy,
1996). It has not been attempted to model di�erent by-catch distributions
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Figure C.3: The seven sandeel areas.
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for di�erent explanatory variables, because the by-catch is rather small,
and thus bias and uncertainty due to inadequate modelling of by-catches
are considered negligible. The estimated beta-distribution is here described
by its estimated mean, �1, and the variance of this estimate, �21.

C.4.3 Combining the distributions into estimates of
species composition

In order to obtain estimates of the mean weight-proportion of sandeel in the
sandeel �shery, b� and its variance, b��, the two distributions are combined.

The weight-proportion, �, for each ICES rectangle and month is estimated
by:

b� = b�b�1 (C.3)

and the variance and covariance matrix, �� of b� is estimated by:

b�� = b�� � b�21 + b�21 � b�� b�` (C.4)

using �rst order Taylor approximation.

C.5 Estimation of the mean weight of sand-

eels

The mean weight of sandeels is needed in order to transform the weight of
the sandeel catch into a number of sandeel.

It is anticipated that the mean weight will be di�erent for di�erent parts
of the North Sea and di�erent time periods due to di�erences in age com-
position and growth. The variation of the age composition of sandeel has
been analysed and the results are presented in Kvist et al. (1999). The
variation of growth of the sandeel has been illustrated by Petersen et al.
(1999).

The particular aim of the present analysis is the mean weight and its vari-
ance only. From the analyses above we know that factors of signi�cance
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could be: year, Y, month, M, area A and ICES rectangle, S(A). Assuming
that the weight of sandeels may be approximated by a normal distribu-
tion, the variation in the weight can be analysed by an ordinary analysis
of variance.

C.6 Estimation of age composition

The age composition is estimated on the basis of biological samples as
in the determined species composition. However, the number of samples
is smaller because it is more time consuming and resource demanding to
determine the age.

It is desirable to detect which factors that in
uence the age composition
so that they can be taken into account in the estimation and thus reduce
the variation. And factors that do not in
uence the age composition may
be ignored. For instance if samples from di�erent months have the same
age composition they can be pooled without loss of information, but with
a smaller variance as a result. The analysis is impeded by the fact that
the response is ordered categorical. An easily applicable method to analyse
such data has been presented in Kvist et al. (1998). The idea is to split
the probability of the multidimensional response into binomial probabili-
ties. This is done by comparing each age group to the union of older age
groups. The age composition data utilised here has already been analysed
(Kvist et al., 1999). The results of that analysis is utilised to choose a
relevant model. The factors that were found to be of signi�cance for the
age composition are year, Y, area, A, ICES rectangle, S, month,M, and the
laboratory, L, which has performed the age determination (refer to Kvist et
al. (1999)). Furthermore there is interaction between ICES rectangle and
year. Because of the strong indication of large geographical di�erencies in
the age composition separate parameters are estimated for each area and
ICES rectangle every year. They are, however, modelled as random with
the e�ect that the estimates in a certain ICES rectangle or area to be a
compromise between the data in that particular position and the mean of
the superior geographical unit, e.g. the estimate for an ICES rectangle is a
compromise between its own data and the mean of the data in the area it
belongs to (Robinson, 1991). Furthermore, a quali�ed estimate of the level
in an ICES rectangle or area without observations may be provided. A
month e�ect common for all years is estimated for age groups 0 and 1 and
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likewise a laboratory e�ect covering all years is estimated for age groups 1
to 3 in accordance with the results presented in Kvist et al. (1999).

The e�ects included in the models for the age groups are presented in table
1.

Table 1. E�ects included in the age composition models.

Age Group Fixed e�ects Random e�ects

0 Y M0 Y �A Y � S(A)

1 Y M1 Y �A Y � S(A) L

2 Y Y �A Y � S(A) L

3 Y Y �A Y � S(A) L

For age group 0, the proportion is assumed to be 0 between January and
May, and 1 between October and December. The month e�ect is modelled
as a class e�ect, each month representing a separate level. For 1-year-
olds, the month e�ect is also modelled as a class e�ect, letting each month
represent a separate level. However, the months April to June are assumed
to have the same level (in accordance with data).

The approach to estimate the proportions of each age group, pa1 , and the
variance/covariance matrix of the estimate of age a1 and a2, �p;a1;a2 has
been presented in Kvist et al. (1998). a1 and a2 denote age groups.

C.7 Combining all sources into an estimate

of catch at age data

Catch at age data and their variances and covariances are estimated by
combining the estimates provided by the analyses given above. Those
are estimates of the weight of the catch in the sandeel �shery, bwSF, the
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weight-proportion of sandeel, b�, the mean weight of sandeels, bv, and the
proportion of each age group, bp0; : : : ; bp4, and their variance and covariance
matrices, b��; b�v; b�p;0;0; b�p;0;1; : : : ; b�p;4;4. The vector and matrices con-
tain estimates for each combination of year, month and ICES rectangle.
The estimates of catch at age data are obtained in successive steps. First
the weight of sandeel caught, wS, is estimated by:

bwS = diag(bwSF)� b� (C.5)

where diag(:) transforms the argument, which must be a vector, into a
diagonal matrix.

The estimate of the variance and covariance matrix is:

b�wS
= diag(bwSF) � b�� � diag(bwSF) (C.6)

bwSF is treated as a constant because it is considered to have negligible
uncertainty.

Secondly, the number of sandeel caught, s, is estimated by dividing the
weight of the sandeel catch by the mean weight of sandeels:

bs = bwS � [diag(bv)]�1 (C.7)

Using �rst order Taylor approximation it is found that the appr. corre-
sponding variance and covariance matrix is:

b�s = [diag(bv)]�2�b�wS
+[diag(bv)]�2�diag(bwS)�b�v�[diag(bv)]�2�diag(bwS)

(C.8)

Thirdly, the number of sandeel caught in a given rectangle and time period
is allocated to the various age groups by multiplying with the estimated
proportions in each age group. The number of sandeel caught per year,
month, ICES rectangle and age group a is:

baa = diag(bs)� bpa
and the appr. variance/covariance matrix between age groups a1 and a2
is:
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b�a;a1;a2 = diag(bs)� b�p;a1;a2 � diag(bs) + diag(bpa1)� b�s � diag(bpa2).
Again Taylor approximation has been used.

At last, the estimates for each year, month and ICES rectangle are added
into the number of sandeel per age group and year, i.e. the catch at age
data:

bCa = baa � 1 (C.9)

where the matrix symbolised by 1 contains one column for each year with
the �gure 1 in each position corresponding to the year the column repre-
sents, and the �gure 0 in the other positions.

The variance and covariance matrix of the catch at age data is estimated
by:b�C;a1;a2 = 1� b�a;a1;a2 � 1`

C.8 Results

The results of the subanalyses are presented in the sections below. The
results are hereafter utilised to estimate the catch at age data and its un-
certainty for the sandeel �shery in the sandeel areas for the years 1989 and
1991.

C.8.1 Species Composition

Classi�cation of catches within the sandeel �shery

All the potential explanatory variables are included in a model of the pro-
portion of correctly classi�ed catches:

� = Y +M + A+ T+ME (C.10)

where � is

� = log
�

1� �
(C.11)
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and the symbols Y, M, A, T and ME correspond to the e�ects year, month,
area, total catch and mesh size. The model is based on data from samples
taken in the period 1984-1996.

The model has been analysed by means of PROC GENMOD in SAS (SAS
Institute Inc., Cary, NC, USA. Release 6.12). Unfortunately convergence
problems occur when interactions are included and therefore only main
e�ects have been tested. The likelihood ratio statistics are shown in table
2.

Table 2. Likelihood ratio statistics for type 3 analysis of model C.10.

E�ect DF ChiSquare Chisquare/DF Pr>Chi

M 5 50 10 0.0001

ME 2 403 201 0.0001

Y 12 97 8 0.0001

A 6 11 2 0.0808

T 3 8 3 0.0551

Although all factors were signi�cant, it is obvious that the overall domi-
nating e�ect is the mesh size. The month e�ect and year e�ect explain
only a fraction of what the mesh size e�ect explain. The area e�ect and
e�ect from the size of the total catch is even smaller. Those two e�ects are
removed from the model.

Thus the �nal model becomes:

� = Y+M +ME (C.12)

Thus to estimate the species composition of the catches, information on
year, month and mesh size from the �shermens logbooks is desirable. At
present, a di�erent strati�cation is applied, viz. a strati�cation on year,
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area and month. Thus information on mesh size is not utilised. Unfortu-
nately the information about mesh size was missing in the available dataset
on information from the �shermens logbooks and the �rst hand buyers.
Therefore this source of information was omitted from the present analy-
sis.

The estimated weight-proportions of sandeel is shown in �gure C.4.

Figure C.4: Estimated proportion of sandeel through the year for the years
1984-1991. The dashed line represents the years 1986-1989, the other the
years 1984, 1985 and 1989.

By-catches in sandeel catches

The proportion of sandeel in sandeel catches within the sandeel �shery
(refer to �gure C.2) is modelled by a beta-distribution. In �gure C.5
the weight-percentage of sandeel is shown, together with the �tted beta-
distribution. The mean proportion, �1:
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�1 = Ef�j� = 1g (C.13)

is estimated to 0.982, and the standard deviation of this estimate, �1:

�1 =
p
Vfc�1g (C.14)

is estimated to 0.0014. The estimates are based on 732 samples taken from
sandeel catches.

Figure C.5: Estimated and �tted distribution of by-catches in sandeel
catches based on samples collected from 1984 to 1991.

The estimates of the proportion of correctly classi�ed samples, b�, and the
weight-proportion of sandeel in the sandeel catches, b�1, are combined into
estimates of the weight-proportion of sandeel for the whole of sandeel �sh-
ery, b�, and its variance and covariance matrix, b��.
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C.8.2 Mean weight of sandeels

The mean weight of sandeels regardless of its age is analysed by an analysis
of variance assuming that the distribution of the weight of a sandeel may
be approximated by the normal distribution. The approximation is rather
crude because the distribution is likely to be multi-modaldue to the mixture
of age groups. However, the estimate needed is the mean value and its
variance and therefore utilising the argument of the central limit theorem,
the approximation is considered to be satisfactory.

Unfortunately all e�ects are highly signi�cant in the full model including
all combinations of the e�ects Y;M;A and S(A). This might be caused
by a very large number of DF of the residual, 91 000. With such a large
number of DF small discrepancies from the normal distribution or weak
confounding with latent variables may cause signi�cance. Therefore, in-
stead of choosing a signi�cance level, the relative sizes of the type 3 test
statistics are compared. The aim is to end up with a model which consists
of only a few e�ects which explain a great part of the variation.

The �nal model was chosen to:

v = Y +M + A (C.15)

The test statistics for the �nal model are shown in table 3.

Table 3. Test statistics for �xed e�ects in model C.15.

Source NDF DDF Type III F Pr > F

M 7 91E3 2172.60 0.0001

Y 6 91E3 1097.97 0.0001

A1 6 91E3 338.32 0.0001

Residual 20.81
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Comparing the test statistics one can see that the month and year e�ect
accounts for the main part of the variation, whereas the permanent geo-
graphical di�erences accounts for a relatively small part of the variation.

C.8.3 Combining the results of the subanalyses into
estimates of catch at age and its variance

Unfortunately the industrial catch is not recorded with information on the
factors that are needed for dividing the industrial �shery into the sandeel
�shery and other �shery in the data available at present. Therefore previous
estimates for the weight of the sandeel catch is used instead. The previous
estimates and the estimates resulting from the method presented here are
expected to be of the same magnitude and therefore the uncertainty esti-
mates will only be slightly di�erent. The weight of the catch within the
sandeel �shery utilised in the estimation of the variance is estimated by

bwSF = diag(b�)�1 � bwS (C.16)

The estimated catch at age data in the sandeel areas and the coe�cients
of variation for these estimates for 1989 and 1991 are shown in table 4 and
the correlation matrix in table 5.

Table 4. Estimated number of sandeel of each
age group (in '000). Coe�cient of variation
in % is shown in paranthesis.

Age group 1989 1991

0 16 818 (27) 11 252 (76)

1 89 811 (5) 49 855 (16)

2 7 349 (42) 16 619 (29)

3 2 319 (58) 2 383 (46)

4+ 2 786 (49) 462 (69)
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One can see that the uncertainty is considerable. There is also great cor-
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relation between the estimates of the number of sandeel in the various
age groups between years. This is due to the utilisation of the common
structures in the data.

In order to investigate the origin of the large uncertainties the results on
the intermediate stages are calculated. The estimated total sandeel catch
in 1000 tons are 818 for 1989 and 699 for 1991. The coe�cients of variation
(std/mean) are 3% and 5% respectively. Thus the uncertainty of the species
composition causes only little uncertainty of the estimated catch in weight.
The estimated number of sandeel i millions are 119 for 1989 and 81 for
1991. The coe�cients of variation are 11% and 6% respectively. Thus the
contribution from the uncertainty of the mean weight of sandeels is small.
The conclusions are that the uncertainty of the age composition contributes
the most to the uncertainty.

The causes of variation in the age composition data for sandeel has been
analysed in Kvist et al. (1999). Unfortunately, the estimated variances of
the estimates of the age compositions of the rectangles do not stand up to
scrutiny, because they are prone to bias and underestimation (Kuk (1995),
Lin and Breslow (1996), Breslow and Lin (1995) and Booth and Hobert
(1998)). Figure C.6 illustrates that the estimates of the variances of the
estimates of the age compositions in the rectangles, called BLUPs (Best
Linear Unbiased Predictors, (there is some disagreement in the literature
on whether they should be called predictors or estimators, see Robinson
(1991))) are inconsistent under basic sensible assumptions, such as that
the information is greater and thus the variance smaller of an estimate for
a rectangle with samples collected compared to a rectangle without samples
collected.

It clearly shows that estimates for rectangles where samples have been
collected have greater standard deviation than rectangles without samples
taken. This is of course not reasonable for a model designed with the pur-
pose of estimating the variance of estimates and evaluate the signi�cance
of collecting samples from each rectangle. The discrepancy is caused by an
approximation of the variance that is too crude (Booth and Hobert (1998)).
Booth and Hobert (1998) suggest an improved estimate of the variance, us-
ing a bootstrap estimate of the bias. However, there the implementation
is time-consuming and has therefore not been attempted. The overall esti-
mates of the uncertainties of the catch at age data are used merely as an
indication of the order of magnitude.
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Figure C.6: Std of BLUPs for rectangles in area 1, July 1991.



152 Appendix C. Uncertainty of Catch at Age Data for Sandeel

C.9 Discussion

Despite the recent interest in quantifying risk and uncertainty in �sh stock
assessment (e.g. Smith et al., 1993; Francis and Shotton, 1997; Flaaten et
al., 1998) surprisingly little e�ort has been spent on quantifying the un-
certainty and error structure in the basic assessment data. However, in
stochastic �sh stock assessment models, a realistic observation error struc-
ture is necessary to avoid biased parameter estimates (Virtala et al., 1998;
Chen and Andrew, 1998; Chen and Paloheimo, 1998). Furthermore, know-
ing observation error will greatly enhance the possibilities for estimating
process error (Schnute, 1987). Estimates of the catch at age data and their
uncertainties are more reliable when the total variation is resolved into its
components. Knowing the sources of variation sampling schemes can be im-
proved. We found that presently some insigni�cant factors were utilised for
strati�cation, whereas factors containing important information were over-
looked. By establishing the signi�cance of factors that might in
uence the
catch composition, common structures can be recognised and utilised, and
when for instance geographical or temporal di�erences in the catch compo-
sitions are of importance, they can be taken into account. Improving the
strati�cation makes the estimates less prone to errors in data and reduces
their variation. In addition, the identi�cation of the common structures
has the advantage that quali�ed estimates can be provided if observations
are missing. Also more reliable predictions can be performed.

The statistical evaluation was separated into analyses of the separate data
sources and combined into estimates of the catch at age data for 1989
and 1991. The catch at age data for 1990 was not estimated because of
the low number of samples collected this year. The present model for the
age composition may be utilised to estimate the catch at age data and its
uncertainty in 1990. However, an estimate of the overall level of the year
e�ect for 1990 would be required.

The species composition was estimated using a compound distribution to
as well account for the inaccurate de�nition of the sandeel �shery as to
account for by-catches. We found that the most important factor to explain
misclassi�cations within the sandeel �shery is the mesh size, information
not utilised today. Lewy (1996) developed a delta-Dirichlet distribution for
�tting singularaties at 0 and 1. He applied it to Danish North Sea �shery
data for 1993, but found that the distribution did not �t the sandeel �shery.

The mean weight of sandeels was estimated by only utilising the information
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of the weight from the biological samples. Improved estimates will probably
be obtained if the combination of the estimated age composition and an
estimated relationship of the age and weight had been utilised, i.e. the
estimate of the mean weight of sandeels in a given rectangle and month, ~v,
is

~v =
4X

a=0

bpa~va (C.17)

where bpa is the estimated proportion of age group a and ~va is the esti-
mated mean weight of a-year-olds. In this case a dependency between the
two is present and thus the �rst order Taylor approximation of the vari-
ance/covariance matrix of the estimated number of sandeel caught per age

group, b�a;a1;a2 , encompasses the covariance between the estimate of the
mean weight and the age composition. A drawback of this approach is
however that age determination errors are introduced in the estimates of
the mean weight of sandeels. If such errors are of considerable magnitude,
the bene�ts of this approach is limited.

We found that the major source of uncertainty in the catch at age data
is caused by uncertainties in the estimation of the age composition. The
estimation is in particular di�cult because of large variations in the age
composition between small areas.

The estimates presented in this paper are based on separate age distribu-
tions for each 30*30 square nautical miles ICES rectangle, because previous
analyses have shown that there is large variations even between such small
areas (Kvist et al. 1999). The estimates provided for each rectangle utilise
both common structures of the age distribution and the speci�c observa-
tions in each rectangle. The model would however become much simpler
and especially from a sampling perspective more attractive if the same age
distribution could be assumed for the whole of a sandeel area. But as is
illustrated in the following, this would cause bias of about 10%.

Let bES denote the estimate of the number of sandeels for an age group in
an area, ar, within a particular month, mo, based on estimates for each
ICES rectangle. bES is thus:

bES;ar;mo =
karX
i=1

bpar;mo;i � bnar;mo;i (C.18)
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where par;mo;i is the proportion of sandeels of the age group of interest and
nar;mo;i is the number of sandeel caught. Both are stated on area ar, ICES
rectangle i and month mo. kar is the number of ICES rectangles.

If we instead used an overall estimate per sandeel area of the proportion
of that age group, par;mo , we would obtain the following estimate of the
number of sandeel in that age group:

bEA;ar;mo = bpar;mo � (

karX
i=1

bni;ar;mo) (C.19)

The bias of such an estimate is calculated as

biasar;mo =
j bES;ar;mo � bEA;ar;mojbES;ar;mo

(C.20)

The average bias in % resulting from such an approach for the 1989 and
1991 data is shown in table 6.

Table 6. Bias introduced as a consequence
of using area-speci�c age composition estimates
instead of rectangle-speci�c estimates.

Age group Mean bias (%)
Number of

estimated biases
Max. bias (%)

0 9 47 57

1 4 85 38

2 8 79 39

3 10 79 61

4+ 10 76 56

Although it has been documented that the variances of the BLUPs for
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the age composition are underestimated and biased, the uncertainties es-
timated for the catch at age data give an indication of the level of the
uncertainty. The method as such is under all circumstances recommend-
able, although detailed analyses require improved estimates which can be
obtained by e.g. using the corrections suggested by Booth and Hobert
(1998). Attempts are made at present to improve the methods of �tting
the generalised linear models. Booth and Hobert (1999) present two meth-
ods based on the Monte Carlo EM algorithm (Wei and Tanner, 1990) for
�nding exact maximum likelihood estimates. However, the methods break
down when the intractable integrals in the likelihood function are of high
dimension. Booth and Hobert (1998) suggest that approximate methods
such as those suggested by e.g. Wol�nger and O'Connel (1993) should be
used for model selection until the exact methods have been improved.



156 Appendix C. Uncertainty of Catch at Age Data for Sandeel

C.10 References

Booth, J.G. and Hobert, J.P., 1998. Standard errors of prediction in gen-
eralized linear mixed models. J. Am. Statist. Ass. 93, 262-272.

Booth, J.G. and Hobert, J.P., 1999. Maximizing generalized linear mixed
model likelihoods with an automated Monte Carlo EM algorithm. J. R.
Statist. Soc. B 61, Part 1, 265-285.

Bradford, M., 1991. E�ects of ageing errors on recruitment time series es-
timated from sequential population analysis. Can. J. Fish. Aquat. Sci.
48, 555-558.

Breslow, N.E. and Clayton, D.G., 1993. Approximate Inference in Gener-
alized Linear Mixed Models. JASA 88, 9-25.

Breslow, N.E. and Lin, X., 1995. Bias correction in generalized linear mixed
models with a single component of dispersion. Biometrika 82, 81-91.

Buslik, D., 1950. Mixing and sampling with special reference to multi-sized
granular material. ASTM Bull. 165, 166.

Chen, Y. and Andrew, N., 1998. Parameter estimation in modelling the
dynamics of �sh stock biomass: are current used observation-error estima-
tors reliable? Can. J. Fish. Aquat. Sci. 55, 749-760.

Chen, Y. and Paloheimo, J. E., 1998. Can a more realistic model error
structure improve the parameter estimation in modelling the dynamics of
�sh populations? Fisheries Research 38, 9-17.

Crone, P.R. and Sampson, D. B., 1998. Evaluation of assumed error struc-
ture in stock assessment models that use sample estimates of age compo-
sition. In: Funk, F., Quinn II, T.J., Heifetz, J., Ianelli, J.N., Powers, J.E.,
Schweigert, J.F., Sullivan, P.J., and Zhang., C.I. (Eds.), Fishery stock as-
sessment models, Alaska Sea Grant Program Report No. AK-SG-98-01,
University of Alaska Fairbanks.



C.10 References 157

Deriso, R.B., Quinn, T.J. II and Neal, P.R., 1985. Catch-age analysis with
auxiliary information. Can. J. Fish. Aquat. Sci. 42, 815-824.

Fargo, J. and Richards, L.J., 1998. A modern approach to catch-age anal-
ysis for Hecate Strait rock sole (Pleuronectes bilineatus). Journal of Sea
Research 39, 57-67.

Flaaten, O. Salvanes, A.G.V., Schweder, T. and Ulltang, �., 1998. Fish-
eries management under uncertainty - an overview. Fisheries Research 37,
1-6.

Fournier, D., and Archibald, C.P., 1982. A general theory for analyzing
catch at age data. Can. J. Fish. Aquat. Sci. 39, 1195-1207.

Francis, R.I.C.C. and Shotton, R., 1997. "Risk" in �sheries management:
a review. Can. J. Fish. Aquatic. Sci. 54, 1699-1715.

Gavaris, S. and Gavaris, C. A, 1983. Estimation of catch at age and its
variance for ground�sh stocks in the Newfoundland region, p. 178-182. In:
Doubleday, W.G. and Rivard, D. (Eds.), Sampling commercial catches of
marine �sh and invertebrates. Can. Spec. Publ. Fish. Aquat. Sci. 66.

Gudmundsson, G., 1994. Time series analysis of catch-at-age observations.
Appl. Stat. 43, 117-126.

Gulland, J.A., 1965. Estimation of mortality rates. Annex to Arctic Fish-
eries Working Group Report. ICES C.M. 1965. Doc. No. 3.

Kimura, D.K. and Lyons, J.J., 1991. Between-reader bias and variability
in the age-determination process. U.S. Fish. Bull. 89, 53-60.

Kuk, A.Y.C., 1995. Asymptotically unbiased estimation in generalized lin-
ear models with random e�ects. J. R. Statist. Soc. B 57, 395-407.

Kvist, T., Gislason, H. and Thyregod, P., 1998. Using continuation-ratio
logits to analyse the variation of the age-composition of �sh catches. Sub-



158 Appendix C. Uncertainty of Catch at Age Data for Sandeel

mitted for publication, 1998.

Kvist, T., Gislason, H. and Thyregod, P., 1999. Analysing age-composition
of sandeel landings by means of continuation-ratio logits. Submitted for
publication, 1999.

Lai, H.L. and Gunderson, D.R., 1987. E�ects of ageing error on estimates
of growth, mortality and yield per recruit for walleye pollock (Theragra
chalcogramma). Fish. Res. 5, 287-302.

Lewy, P., 1995. Sampling Methods and Errors in the Danish North Sea
Industrial Fishery. Dana 11, 39-64.

Lewy, P., 1996. A Generalized Dirichlet Distribution Accounting for Sin-
gularities of the Variables. Biometrics 52, 336-351.

Lin, X. and Breslow, N.E., 1996. Bias correction in generalized linear mixed
models with multiple components of dispersion. J. Am. Statist. Ass. 91,
1007-1016.

McAllister, M. and Ianelli, J.N., 1997. Bayesian stock assessment using
catch-age data and the sampling-importance resampling algorithm. Can.
J. Fish. Aquat. Sci. 54, 284-300.

McCullagh, P. and Nelder, J.A., 1989. Generalized Linear Models (second
edition). Chapman and Hall (London; New York).

Pelletier, D., 1990. Sensetivity and variance estimators for virtual popula-
tion analysis and the equilibrium yield per recruit model. Aquat. Living
Resour. 3, 1-12.

Pelletier, D. and Gros, P., 1991. Assessing the impact of sampling error
on model-based management advice: comparison of equilibrium yield per
recruit variance estimators. Can. J. Fish. Aquat. Sci. 48, 2129-2139.



C.10 References 159

Petersen, S.A., Lewy, P. and Wright, P., 1999. Assessments of the lesser
sandeel (Ammodytes marinus) in the North Sea based on revised stock di-
visions. Fisheries Research (in press).

Pope, J.G., 1972. An investigation of the accuracy of virtual population
analysis using cohort analysis. Int. Comm. Northwest Atl. Fish. Res.
Bull. 9, 65-74.

Punt, A.E. and Hilborn, R., 1997. Fisheries stock assessment and decision
analysis: the Bayesian approach. Reviews in Fish Biology and Fisheries 7,
35-63.

Richards, L. J., Schnute, J. T., Kronlund, A. R. and Beamish, R. J., 1992.
Statistical models for the analysis of ageing error. Can. J. Fish. Aquat.
Sci. 49, 1801-1815.

Rivard, D., 1983. E�ects of systematic, analytical, and sampling errors on
catch estimates: a sensitivity analysis, p. 114-129. In: Doubleday, W.G.
and Rivard, D. (Eds.), Sampling commercial catches of marine �sh and
invertebrates. Can. Spec. Publ. Fish. Aquat. Sci. 66.

Rivard, D., 1989. Overview of the systematic, structural, and sampling
errors in cohort analysis. Am. Fish. Soc. Symp. 6, 49-65.

Robinson, G. K., 1991. \That BLUP is a Good Thing: the estimation of
random e�ects". Statistical Science 6, 15-32.

Schea�er, R.L., 1969. Sampling mixtures of multi-sized particles: an ap-
plication of renewal theory. Technometrics 11, no. 2, 285-298.

Schnute, J. T., 1987. Data uncertainty, model ambiguity, and model iden-
ti�cation. Natural Resource Modelling, vol. 2(2), 159-212.

Schweigert, J.F. and Sibert, J.R., 1983. Optimizing survey design for de-
termining age structure of �sh stocks: an example from British Columbia



160

Paci�c herring (Clupea harengus pallasi). Can. J. Fish. Aquat. Sci. 40,
588-597.

Smith, S.J., Hunt, J.J., Rivard, D., 1993 (Eds.). Risk evaluation and Bio-
logical Reference Points for Fisheries Management. Canadian Special Pub-
lication of Fisheries and Aquatic Sciences 120: viii + 442 p.

Sparholt, H., 1990. An estimate of the total biomass of �sh in the North
Sea. J. Cons. int. Explor. Mer 46, 200-210.

Sparre, P. and Venema, S.C., 1992. Introduction to tropical �sh stock as-
sessment. Part 1. Manual.-FAO Fisheries technical paper no. 306.1. Rome,
FAO. 376 pp.

Tyler, A.V., Beamish, R.J. and McFarlane, G.A., 1989. Implications of age
determination errors to yield estimates. In: Beamish, R.J. and McFaralane,
G.A. (Eds.), E�ects of ocean variability on recruitment and an evaluation
of parameters used in stock assessment models. Can. Spec. Publ. Fish.
Aquat. Sci. 108, pp. 27-35.

Virtala, M., Kuikka, S. and Arja, E., 1998. Stochastic virtual population
analysis. ICES Journal of Marine Science 55, 892-904.

Wei, G. C. G. and Tanner, M. A., 1990. A Monte Carlo implementation of
the EM algorithm and the poor man's data augmentation algorithms. J.
Am. Statist. Ass. 85, 699-704.

Wol�nger, R. and O'Connel, M., 1993. Generalized Linear Mixed Mod-
els: A pseudo-likelihood approach. Journal of Statistical Computation and
Simulation 48, 233-243.



161

Appendix D

Length Distributions for

Age Groups



162 Appendix D. Length distributions for age groups

Figure D.1: Length distribution for 0-year-olds for the years 1984-1993. A
normal distribution is �tted to the data.
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Figure D.2: Length distribution for 1-year-olds for the years 1984-1993. A
normal distribution is �tted to the data.
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Figure D.3: Length distribution for 2-year-olds for the years 1984-1993. A
normal distribution is �tted to the data.
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Figure D.4: Length distribution for 3-year-olds for the years 1984-1993. A
normal distribution is �tted to the data.
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Figure D.5: Length distribution for 4-year-olds and older sandeel for the
years 1984-1993. A normal distribution is �tted to the data.
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