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Chapter 1

Introduction

‘Nonlinear dynamical systems with discrete and continuous elements’
is a very broad formulation which covers a variety of different physical
systems.

Two such physical systems form the base of this thesis and the ph.d.
project behind it: The dynamics of a train running on a bridge and
the dynamical interactions between a pantograph and an overhead
line system.

Both of these systems have great actuality for the infrastructure
situation in Denmark right now.

1.1 Train bridge interactions

Train bridge interactions (and interactions between a moving mass
and a continous beam in general) have been subject of investigations
for more than a century. For a general introduction to the subject of
train bridge interaction see [9], [8], or [10]. The railway runnability
on long future suspension bridges have been treated, [40], [11], [12],
or [5].
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Large Bridges for road and rail traffic have been built and are be-
ing built at Great Belt between Zealand and Fune, and at @resund
between Denmark and Sweden, and a connection over Fehmern Belt
between Denmark and Germany is under dawning political consider-
ations. Besides that there are of course a number of minor bridges,
for which the desire for an increase of the train speeds puts focus on
the train bridge interactions.

Train bridge considerations have two different viewpoints: that of the
bridge concerning bridge loads, internal stresses, dynamical amplifi-
cation factors, etc.; and that of the train concerning train passenger
comfort and ride quality, derailment risks, wear, etc.

The tendency of bridge design goes towards lighter and more flexible
constructions. With the rapid improvements of railway technology
and the increasing train speeds, the impact from a train on a bridge
and vice versa will increase in the future. Our angle of the investiga-
tions differs from other investigations by the inclusion of nonlinear-
ities in the train models. In other areas of railway dynamics, these
nonlinearities are crucial.

1.2 Pantograph catenary system interactions

Pantograph/catenary interactions have been the subject of a number
of investigations in the last decades. Scott and Rothman describe
their early suite of computer programs for such investigations, [38].
Hobbs and Ghostling describe their lumped mass approach for mod-
elling of the cables and show very convincing comparisons with test
results, [25] and [20]. Cook compares different catenary system-
pantograph combinations and lists data for the mathematical mod-
els, [7]. Kiessling et.al. describes the newest German overhead line
system, the Re 330, [30]. Harprecht et.al.describes the circumstances
at the test that lead to the german short lasting world speed record
on rail of 406.9 km/h, [22]. [23]. Becker et.al. compares differ-
ences when the cables are modelled as strings respectively beams, [4].
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Jensen et.al. treats wave propagation and nonlinearities in the mod-
elling of overhead line systems, [26]. Eppinger et.al. points out the
from the modelling point of view important difference between a
symmetric and an asymmetric pantograph, [13]. Lesser et.al. points
out the importance of not just modelling the pantograph as planar,
[32]. A huge amount of effort has been put in developing overhead
line systems and inventing pantographs with improved dynamical
behaviour, for example [3]. Pantographs with some sort of active
control have been considered, [18] and [36], but so far all existing
pantographs are purely passive devices. Zhai and Cai consider the
effect on the catenary pantograph dynamics from the vibrations of
the locomotive, [46]. Poetsch et.al. has a very nice state of the art
paper on pantograph/catenary dynamics as of 1997 in [36].

Obviously, pantograph catenary system interactions are more vio-
lent the higher the train speeds are. With the recent increase of
the maximal train operation speed in Denmark to 180 km/h, pan-
tograph catenary dynamics has greater actuality in Denmark than
ever before.

The danish state railways have had great success after the open-
ing of the Great Belt connection for trains. From this has followed
an expansion of the traffic load, and one way of achieving such an
expansion is by using longer train sets, with increased number of
pantographs. The dynamical pantograph overhead line system in-
teractions worsen for trailing pantographs because the contact cable
has already been excited by the pantograph(s) in front. Thus, also
this puts focus on the subject of pantograph overhead line system
interactions.

Finally the dawning international liberalisation of the railways rises
a lot of new questions that will have to be addressed.

Fortunately the danish overhead line systems have been designed
with a possible increase of the maximal train operation speed in
mind. 180 km/h ought not be a problem by itself. However, increas-
ing at the same time the number of pantographs in the train sets
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means that the systems are pushed closer to the performance limits.

The subject of overhead line system designs is very complex and hard
to survey. Different concepts have developed in different national
railway companies — and the different leading railway companies all
claim that they have the best system. Denmark is not among the
frontier countries in railway technology. When the first railway lines
in Denmark were electrified, a presumingly thorough tested standard
system design was bought for the purpose. This was the right choice
at the time. The disadvantage of that approach is that later it is
difficult to consider different design details or design changes, etc.,
without directing any such questions to those the system design was
bought from. This would of course lead to additional costs and the
result is that the original design concept is never seriously taken
up to a renewed consideration. Ome of the purposes of this ph.d.
project has exactly been to take (some of) the design parameters of
the danish overhead line system up to renewed considerations.

Another aim of the project has been to investigate the importance of
nonlinearities in overhead line systems. The only nonlinearity that
is normally included in the modelling of such systems is the slacken-
ing effect of the droppers. This slackening is considered undesirable
because the droppers are exposed to large stresses when they again
become tensioned and there is a substantial risk that they will break.

Our investigations differ from other investigations in this field in
that we consider the very weak nonlinearities of the cable motions
and compare the importance of these with the importance of the
bending stiffness of the cables in the overhead line systems, which is
normally considered to be important, even though it is small.

1.3 Outline of the thesis

When writing this thesis it has been the intension that the chapters
can be read separately.
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Our reason for this is, that even though the train bridge system and
the pantograph catenary system are rather similar from a mathemat-
ical point of view, they are in the ‘real world’ very different systems.
Those readers interested in one of the subjects will typically have
very little interest in the other subject. It is of course also the in-
tension and the hope that the results of the project will be applied
by the relevant engineers and decision makers — and these persons
may not have too much interest in some of the theoretical consid-
erations in the thesis. Finally it is our hope that other researchers
in these fields will take notice of our results — in our opinion they
should. The thesis therefore also contains investigation results that
presently are only of theoretical interest, and readers only interested
in the practical applications of the project here and now may find
these investigations irrelevant.

In chapter 2 we make some considerations on the treatment of nonlin-
ear systems with discrete and continuous elements in general based
on our experiences from this project. Thus this chapter is also sort
of introductory.

In chapter 3 we treat train bridge interactions. We give an account
of the achievement of the system equations, some theoretical back-
ground, and some investigation results.

In chapter 4 we treat pantograph overhead line system dynamics.
This is the main subject of the thesis. The chapter is divided into
a section on pulse propagation on cables, sections on the design of
overhead line systems and their equations of motion, sections on
pantograph modelling and coupling of the pantograph and the cate-
nary system, and a section containing results from our numerical
investigations.

Finally the appendices contain different stuff that we think should
not be omitted but that on the other hand is a little off track from
the rest of the thesis.
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Chapter 1. Introduction
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Chapter 2

Nonlinear dynamical
systems with discrete and
continuous elements:
General considerations
and preferable tools

In this chapter we shall reflect on the title of the entire ph.d. project:
Nonlinear dynamical systems with discrete and continuous elements.

First let us point out that the rather subtle ‘systems with discrete
and continuous elements’ just indicates that we treat systems con-
sisting of elements (or subsystems) with different timescales and very
different spatial properties interacting with each other. The interest
for precisely these types of systems is due to their frequent appear-
ance — the difficulties are due to the coupling of the two (or more)
physically and mathematically fundamentally different systems. Ex-
amples of such systems are: The wave flow around a small island,
the wind flow around a flexible rod, a ball rolling on an elastic mem-
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Figure 2.1: String sprung mass system.

brane, a moving sprung mass on a beam, etc. The most important
examples with respect to this thesis are: A moving train interacting
with a bridge, and the interaction between a pantograph on the roof
of a moving electrical train and the overhead line system supplying
the energy to the train. These two dynamical problems have been
the main subjects of the ph.d. project and the most of this thesis is
concerned with considerations and investigations on these systems.

However, in this chapter we will make some considerations, based on
personal experience and correspondence with other researchers, on
how to deal with systems with discrete and continuous elements in a
general sense. We shall treat some aspects and difficulties that arise
when treating such systems and we shall make some conclusions on
choices of solution methods when dealing with such systems.

As an example we will analyse a system consisting of a string and
a sprung mass. This is precisely an example of the type of systems
we consider. The string is a continuous object with a certain spatial
distribution, the mass is a discrete, localised object. See figure 2.1.
Say v = v(x,t) is a variable describing the vertical deflection of the
string at position z and time £. Then the motion of the string can
be described mathematically by a partial differential equation in the
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variable v(z,t). If we assume that the motion of the string can
be linearised around the static equilibrium configuration, it has the
equation of motion:

vy = Pyvgy — FC(S(Z‘ - xm)a (2'1)

where u and F are the mass per length and the pretension force of
the string, respectively. F. is the coupling force between the string
and the sprung mass. z,, is the position of the coupling to the
sprung mass; &, may be time dependent in which case we have a
systemn with a continuous element and a moving discrete element.
The boundary conditions of the string have to be posed as well; we
set v(0,t) = v(L,t) = 0.

Say y = y(t) describes the vertical motion of the mass. Then the
vertical motion of the mass can be described mathematically by an
ordinary differential equation in the variable y(%):

miyy = —mg + F.. (2.2)

The continuous element is described mathematically by a partial
differential equation whereas the discrete element is described by an
ordinary differential equation. To couple the systems numerically,
the partial differential equation has to be transformed to a system
of ordinary differential equations — the partial differential equation
has to be discretised.

We shall now consider different ways of discretising the partial differ-
ential equations and study the resulting approaches for investigating
the string sprung mass system. In our examples we set the physical
parameters to u = 1 kg/m, Py = 1000 N, m =1 kg and L = 100 m.

2.1 The Finite Difference Method

First we choose to perform the spatial discretisation of the string
equation using a finite difference method with uniform step size A
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such that v is approximated by w: w(i,t) = v(i h,t). The finite dif-
ference method is chosen since this is a very flexible method. Small
changes in the system equations only cause small changes in the
discretised equations. Systems with higher order derivatives, nonlin-
earities, etc. are easily handled. Finally, a finite difference method
for the spatial discretisation gives the possibility to use an explicit
time integration scheme. This is easy to implement and if the system
is so called nonstiff (roughly, if there is low damping) it makes the
time integrations cheap in terms of cpu-time.

2.1.1 Statics of linear system

If we assume that the coupling can be described by a linear spring:
Fe(t) = =k (y(t) —v(z = zm, 1)), (2.3)

we have the case of a linear system with discrete and continuous
elements. (In the examples we set £ = 10000 N/m.) Let us assume
that z,, is fixed and study the statics of the system. It turns out
that this can be handled rather straight forward. The equations are
(before discretisation):

0= wvge + %(y—v(wzxm))é(x—xm)
0= -mg—k(y—v(z=2m)).
The position of the coupling to the sprung mass is assumed to coin-

cide with one of the discretisation points, say the middle one. The
finite difference discretised model is illustrated in figure 2.2.

The finite difference method yields:

wit1 —2wi+w;—1

Vg (1 h) = o

0r —zm) = %ﬂ
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Figure 2.2: The discretised static string sprung mass system.

All together, solving the statical linear problem reduces to solving a
linear system of equations on the form:

1 wyo

w3

k k
-2 - P_oh P_oh Wy
Wn—3

1 -2 1 Wp_2
1 -2 Wn -1

[en R e B en Bl an B an I an B an N an B en B e oo ]

kh? —kh? Y

3

Q
=
(&

which is a very easy task.

2.1.2 Statics of nonlinear system

Now let us assume that the system is no longer purely linear. For
example the coupling spring could have a nonlinear characteristic:

Fo(t) = =k (y(t) — v(@m, 1)) — e (y(t) — v(zm, 1))’ . (2.4)
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Then we have the case of a nonlinear system with discrete and con-
tinuous elements. Let us again assume that z,, is fixed and study
the statics of the system. We use the same technique as in the linear
case and solving the nonlinear statical problem reduces to solving a
nonlinear system of equations:

wo =0
—2w + wo =0

wy — 2wy + w3 =0
Wm—1 — 2Wm, + Wpt1 + P%h(y —wm) + 5 (y —wp)® =0

Wp—3 — 2Wp—2 + Wp—1 =0

Wp—2 — 2Wp_1 =0
W, =0
kh2wy, + eh?w?, — kh%y — eh?y3 = —mgh?

This is of course a harder task than the corresponding linear prob-
lem. But it is still relatively simple. A method for solving nonlinear
equations, for example the well-known Newton-Raphson method or
a modification of this, is a good suggestion for solving the nonlinear
equation.

2.1.3 dynamical system

Until now we have concluded that handling the statics of the linear
or the nonlinear system with continuous and discrete elements can
be reduced to handling a linear or nonlinear equation respectively,
if a finite difference method is used for the spatial discretisation.
The statics do not pose serious trouble. Note that to come to this
conclusion we have assumed that the discreteness in the system, the
position of the coupling to the sprung mass, is located at one of the
discretisation points. If the position of the coupling to the sprung
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Figure 2.3: Deflection of the nodes of the discretised string excited
with a concentrated force in one time step: 1) (x) force at node; 2)
(o) force between two nodes.

mass is not coinciding with one of the discretisation points, the cou-
pling has to be distributed to the adjacent discretisation points in
the discretised equations. For the statics this does not pose serious
trouble either. The numerical method converges and we can just
refine the discretisation grid until there is a satisfactory preciseness
in the numerical solution.

We shall now proceed to consider the dynamical string sprung mass
system. We shall find that now all our trouble starts.

First let us consider the situation where z,, is fixed and let Fc¢ be
a constant force which means that the continuous and the discrete
systems are decoupled. We can then solve the partial differential
equation that describes the motion of the string. We compare the
two situations

1. the location of the concentrated force coincides with a discreti-
sation point

2. the location of the concentrated force is between two discreti-
sation points.

The initial condition of the string is v(z,0) = 0. Figure 2.3 shows the
deflection of the string around the concentrated force after a single
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time step. The crosses indicate the positions of the discretisation
points in situation 1 whereas the circles indicate the positions of the
discretisation points in situation 2. We note that the result looks
plausible and is the best thing we could expect with a finite difference
method. We can also show that the method converges spatially and
we find that the solutions from situation 1 and 2 approach each
other as we take more time steps. However, in situation 2, how
shall we represent the deflection of the string at the position of the
concentrated force? It is obvious that linear interpolation gives a
wrong result. So do different higher order polynomial interpolations
and spline approximations. We realise that we will have to modify
our discretisation of the dirac delta function — the discreteness — to
make any of the interpolations work. This already sounds like trouble
since we would then use different spatial discretisations of the dirac
delta function in the statical and dynamical systems respectively.
Alternatively and much better, we can discretise using a nonuniform
grid and force a grid point at the position of the concentrated force.

The problematic representation of the deflection of the string at the
position of the concentrated force, if the force is located between two
nodes, turns out to be crucial when the continuous system is coupled
with the moving discrete system. Because now the contact force is
no longer just a constant. It depends on the deflection of the string
at the position of the concentrated force. We can not just make the
grid nonuniform either, since the concentrated force is moving. The
problem with representing the string deflection between grid points
is then transferred directly to the evaluation of the concentrated
force. For a very stiff spring, the spring force signal will contain
large, purely numerical oscillations related to this problem. Lets
illustrate it with our string sprung mass system. We now let the
mass move horizontally z,,(t) = ¢-¢. (In all the following examples
we set ¢ = 20 m/s.) In figure 2.4 we illustrate the force in the spring,
coupling the continuous and the discrete systems, as a function of
the travelled distance. The horizontal position of the discretisation
points is illustrated by the grid in the figure. The deflection of the



2.1 The Finite Difference Method 25

Fc [N]

I | Ele g
10 | (0 A U R T o L 8 P A A O O 0 T 15 T P :
|

c*t [m]

Figure 2.4: FDM, h = 0.5 m. The contact force when: 1) (—) the
string deflection is estimated with linear interpolation; 2) (--) the
string deflection is estimated with cubic spline interpolation.

string is estimated by linear interpolation (full line) and cubic spline
interpolation (broken line). It is seen that large oscillations clearly
connected to the spatial discretisation step size appear in the contact
force signal. The problem can be solved by refining the discretisation
grid drastically. This is illustrated in figure 2.5 in which we see the
contact force signal for 4 different levels of discretisation fineness.
The grids in the figure indicate the spatial step sizes. The string has
been discretised with 201 grid points in the upper graph, 401 grid
points in the next graph, 801 in the third graph and 1601 grid points
in the bottom graph. Linear interpolation was used to represent
the string deflection between grid points. It is seen that the signal
converges but that the convergence is slow. For achieving numerical
stability in the time integration, a constraint is put on the maximal
time step size. Since this constraint is proportional to the spatial step
size this obviously limits the refinement of the discretisation grid. In
practice a sufficient discretisation fineness is often not attainable,
both in terms of computer memory and in terms of cpu-time for the
time integrations.

We conclude that often the finite difference method is not sufficiently
convergent for this type of problem, the dynamical problem. This has
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Figure 2.5: FDM, contact force signal as function of travelled dis-
tance with 4 different spatial step sizes: h = 0.5 m, h = 0.25 m,
h =0.125 m, h = 0.0625 m.
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great relevance for pantograph overhead line system investigations
such as those described later in this thesis. Some other research
teams use the finite difference and similar methods to investigate the
dynamics of pantograph overhead line systems ( [35], [36], [37]). And
they do obtain time series of the contact force from their simulations
containing non-physical high frequent oscillations similar to the ones
illustrated in figure 2.4. To get rid of the oscillations the contact
force time series are filtered. The resulting low frequent time series
for the contact force look plausible and the researcher teams claim
they are in good agreement with reality. We must admit that we
feel inconvenient with this approach. Filtering of an output signal
can be a good and relevant idea if there is a reasonable proportion
between the energy contained in the final (filtered) signal and the
original (unfiltered) signal. But filtering an output signal to make a
nonconverged numerical result converge is very unconvincing. And
if the vast majority of the energy in some signal is contained at
frequencies such that it for output purposes is discarded by filtering,
but for feedback purposes within the simulation it is remained, the
whole numerical procedure is discussable. Additionally it is not clear
that there are no longtime misrepresentations of the contact force
due to the difficulties with the representation of the cable deflection
at the position of the pantograph. We find that the finite difference
method is very ill suited to investigate the dynamics of systems with
continuous and moving discrete elements, if the continuous system is
a relatively flexible structure and the coupling is stiff — such as it is
in the case of pantograph overhead line systems. For those reasons
we choose to skip the finite difference method in my investigations.

2.2 Spectral Methods

Another discretisation method for partial differential equations is the
so called spectral and pseudo-spectral methods. (Basically a spectral
method is a method which changes variable: The unknown variable is
approximated by a sum of known smooth functions. The coefficients
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of these functions are then the new variables. A system of ordinary
differential equations for the spectral coefficients has to be solved and
the result transformed back to physical space. The pseudo-spectral
methods exploit some of the properties of the spectral methods, but
stay in the physical space.) For smooth systems with smooth dy-
namics a, very satisfactory preciseness can be obtained with relatively
low computer memory demands when using these methods. Spec-
tral and pseudo-spectral methods are also quite good suited for han-
dling nonlinear systems. However, these methods are not very well
suited for nonsmooth systems with nonsmooth dynamics. In systems
with discontinuities a phenomenon called Gibbs phenomenon can be
very disturbing when using spectral and pseudo-spectral methods.
(Basically Gibbs phenomenon is a result of nonuniform convergence
around a discontinuity). As is almost implicitly understood from
the title of the ph.d. project, some sort of discontinuities are likely
to be present in systems with discrete an continuous elements. The
extent and order of the discontinuities will of course depend on the
exact system and the physical parameters. Gibbs phenomenon will
make the coupling procedure very difficult and unreliable. We have
assessed that it was not worth the effort trying out a spectral or
pseudo-spectral method to the investigations in this thesis.

2.3 Modal Analysis — Separation of Variables

A useful tool for investigating linear structural dynamics is modal
analysis. And for linear systems with discrete and continuous ele-
ments modal analysis is a very strong approach. The coupling be-
tween the discrete and the continuous systems is easily handled as
we will see in a moment. It is a drawback that the modal shapes and
frequencies of the structure in consideration have to be calculated in
advance. It makes the method more inflexible. But often these have
already been calculated for other purposes and they are then easily
accessible. This is for example often the case for bridges where modal
shapes and frequencies are important design characteristics and thus
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have to be computed for this reason. With certain assumptions the
case with a moving excitation on the bridge can advantageously be
handled using a modal approach.

We will illustrate the method with the linear string sprung mass
model given by (2.1), (2.2) and (2.3). The deflection of the string is

discretised as: . .
. (iTx
v(z,t) = Z A;(t) sin (T) .
=1
Note that in the test example we are able to write the modal shapes
on closed form. For more complex systems the modal shapes may
have to be computed numerically. The expansion gives

e T X, i2q? T
vy = ZXZ; A;sin (T) and vy, = — Z FAi sin (T) .
Hence the partial differential equation (2.1) is rewritten as

Z( 0A> (?) :—%5(17—17,”).

We now use the orthogonallity of the mode shapes. We multiply
with sin (’”Tw) and integrate over the length of the string (Galerkins
method):

foL i=1 (A + sz A)Sln (“];w) sin (]m) dr =
— ()L%J(x—xm)sm(”w) dz

which yields the differential equations for the coefficients of the modal

shapes:
. 252, L F, T
Aj+7—24;) 2 = —"Ssi ( ’”)
( + uL? ]> 9 u sin 7

The differential equations show that in case of a moving force, z,, =
Zm(t), in principle all modes are excited. In numerical simulations
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Figure 2.6: The contact force in modal approach simulations with
the first 200, 400, 800 and 1600 modes of the string included.

the expansion will of course have to be cut off at some point and
it is not clear how many modes should be included in the model.
The more flexible the continuous system is compared to the discrete
system, the more modes will have to be included. Some preliminary
experiments will have to be performed to decide the number of modes
that have to be included. In figure 2.6 we have used the modal
approach to perform a simulation of the string sprung mass system
corresponding to figure 2.5 (which was based on the finite difference
method). We see that the convergence of the contact force signal is
much faster than in figure 2.5.

The major drawbacks with the modal approach in my case is its lack
of suitability to handle systems with discrete and continuous ele-
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ments if the continuous elements contain nonlinearities. The method
is very ill-suited for handling nonlinearities. It is not impossible to
handle nonlinear systems using a modal approach but it is tedious
and awkward and in addition leaves a very expensive time integration
in means of computer power.

2.4 Finite Element Methods

Using the finite element or the finite difference methods for spatially
discretisation of partial differential equations are rather similar pro-
cesses. The discretised equations are similar. Both methods are
flexible so that small changes in the system equations only cause
small changes in the discretised equations. Higher order derivatives,
nonlinearities etc. are most easily handled with the finite difference
method. There is more preparatory work connected with the finite
element method. And the finite element method leaves a so called
implicit scheme for the time integrations which means that a sys-
tem of equations has to be solved in each time step. In systems
with discrete and continuous elements this is often a disadvantage:
The discrete and the continuous subsystems often have different time
scales and the possibility of using rather large time steps in the time
integrations, allowed by the implicit integration scheme, is not fully
exploited due to time step constraints from the discrete system. Dif-
ferent time steps for the discrete and the continuous system is then
a possibility. It is rather awkward, though.

However, for systems with discrete and continuous elements, the fi-
nite element method is much preferable due to the straight forward
coupling of the two subsystems. The coupling is handled analyti-
cally in the discretisation process. We will illustrate that with the
string sprung mass model given by (2.1), (2.2) and (2.3). For that
purpose (2.1) is rewritten in its weak form:

L L L
/ popW dz + / Pyv, W dz = —/ F.5(x — xp)W dk (2.5)
0 0 0
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where W is the test function and has to obey certain differentiability
and boundary conditions.

2.4.1 Piecewise linear basis functions

The order of the partial differential equation is decisive for the choice
of basis functions in the discretisation. Since the weak formulation of
the partial differential equation for the string model contains deriva-
tives of first order, all we must demand of the basis functions is that
they are continuous. The simplest choice is to use piecewise linear
functions as basis functions. Thus, the string is divided into elements
of equal length h, and v(z,t) is approximated by

(z—z)+1 |, i1 <z <z

0 , otherwise.

The near orthogonality of the basis functions is exploited. We let the
test function W successively be 81,09, . ..,0,_1 and perform the inte-
grations, which then yield a system of ordinary differential equations
for the coefficients b;. The 7’th equation reads:

%bi—1 + QhT'ubi + %ubi-i—l - %bi—l + %bi - %biﬂ = Fe0i(zm)-
Note that as a contrast to the finite difference method there is not
a problem with representing the string deflection. The string de-
flection at the position of the concentrated force is simply given as
V(Zm,t0) = Dopg bi(t0)0i(zy,). In figure 2.7 we show the results of
simulations with the string divided into 200, 400, 800 and 1600 el-
ements respectively, corresponding to the discretisation fineness in
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Figure 2.7: FEM, piecewise linear basis functions.
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figure 2.5 obtained with the finite difference method. Note that
even though the process of coupling of the discrete with the con-
tinuous systems is much better and clearer with the finite element
method than with the finite difference method, only slightly better
convergence is obtained. The problems with the computer power
limnitations remain.

2.4.2 Piecewise cubic basis functions

We will therefore try to discretise with basis functions of higher or-
der. We now demand of our basis functions that they are continuous
and that their first derivatives are also continuous. (This is obtained
by developing with two sets of basis functions as will be illustrated
in a moment.) Note that in case of the string the last demand
would normally be considered as a redundancy; mathematically it
is not strictly nescessary that the basis functions have continuous
first derivatives, so why do the extra work? We will find that the
extra smoothness of the basis functions speeds up the convergence
in the case of the coupling of the string and the sprung mass.

Two sets of constants are needed to secure continuity of both v and
vg. Thus v(z,t) is approximated by

o(z,t) =Y (bi(t)pi(z) + ci(t)i(=)),
i=0

where the simplest choice of the ¢ and 1 functions are the piecewise
cubic functions:

_}12_3($_$i)3_ (z—2)?+1 , zi1<z<ug

0 , otherwise
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and
@ -z + 2z —z)?+(@—z) , zia<z<um
Pi(z) =4 qe@—2)®—E@—m)’+ (e —m) , i<z <zip
0 , otherwise.

By then letting W run through ¢, ¢o, ..., ¢n_1,%0,%1,...,1%, and
perform the integrations, we obtain a system of ordinary differential
equations for the coefficients b;(t) and ¢;(¢). The ¢’th equation for
1<i<n-—1is:

Ohuj . 4 26h 9h, 13h%y - 13h%4 -

o bict + Zgthi + b + e — St -

6P 12P 6P, P P _

SR bi b — Fbit1 — gci-1 + Bcit1 = —Fedi(zm)

and the 7’th equation for n <7 < 2n:

1342 13h%u7 h3u W3y -
420sz 1= 420Mbi+1 T40 gCi-1+ 10“0Z 14gci+1+
P hP, 4hP, hP,
0bi 0bz+1 30 Cz—l + 15oci OCZ—I—I = Fc¢z($m)

In figure 2.8 we show the results of simulations with the string divided
into 100, 200, 400 and 800 elements respectively, corresponding to
the discretisation orders in figures 2.5 and 2.7 obtained with the
finite difference method and the finite element method with piecewise
linear basis functions respectively. It is seen that the convergence is
faster due to the extra smoothness in basis functions. Even faster
convergence would probably be obtained by increasing the order of
the basis functions further. However, we have not tried it out since
there is quite some work connected with the discretisation itself.
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Figure 2.8: FEM, piecewise cubic basis functions. Contact force
signal as function of travelled distance with 4 different element sizes:
h=1m, h=05m, h=025m, h=0.125 m.
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2.5 My preferable tools for the spatial dis-
cretisation of nonlinear systems with dis-
crete and continuous elements

We have gone through some of the considerations made during the
time of the ph.d.study. We have considered different approaches for
the spatial discretisation of the continuous part of the nonlinear sys-
tems with discrete and continuous elements. In the test example we
found that since there is no ambiguisy in the coupling process of the
discrete and continuous subsystems — the deflection of the string is
defined everywhere — discretising the string with a finite element
method with piecewise cubic basis functions is preferable to discreti-
sation with for example the finite difference method. This is also my
experience from the investigations of the pantograph overhead line
systems.

We have found the finite element method with piecewise cubic basis
functions to be the overall most convenient approach. In special
cases, e.g.if the continuous element is linear and/or only few modes
are needed for a satisfactory description, and the two subsystems
couple quasistatically, then the modal approach may be a strong
alternative.

Later in this thesis we shall see that we have used the modal approach
for the train bridge system and the finite element approach for the
pantograph overhead line system.
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Chapter 3

Train bridge interaction

In this chapter we shall consider one of the two main examples of
‘dynamical systems with continuous and discrete elements’, the train
bridge system. A bridge obviously is a continuous system with a
spatial distribution. In this thesis we will only consider the trains as
discrete systems. By this we mean that we will only consider multi
body motion of the trains. We neglect effects connected to elastic
deformations of bogies, wheel sets, car bodies, etc. Our train models
will of course have a spatial distribution: A disturbance (for example
a displacement) at the front end of the train can propagate along the
train according to the dynamics of the multi body system. However,
in the coupling of the train and bridge models, the excitation on the
bridge from the train will appear at discrete points — namely given
by the positions of the wheel sets.

We shall also assume that the rails follow the bridge closely and
neglect the substructure between the bridge and the rails.

These are of course approximations — some would say crude ap-
proximations — of physical trains and bridges interacting. It has
had to be this way to limit the level of complexity. Besides, the
effect of introducing these approximations may be assessed and it
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will be found, that in most cases they are justified. For a general
introduction to the subject of train bridge interaction see [9] and [8].

The complexity of the train bridge model comes from the inclusion
of the geometrical and the frictional nonlinearities in the wheel rail
contact surface. The wheels and rails are modelled with realistic
profiles. Investigations of train models including such nonlinearities
have shed light on a number of dynamical features for trains: Hunt-
ing of bogies, linear and nonlinear critical speeds, chaotic motion of
the bogies, etc. See [28] and [41] for a thorough description of many
of these subjects.

The aims of the train bridge investigations in this project have been

e to develop a program for train bridge simulations for industrial
use, with a relatively complex train model.

e 'To investigate if there are any special dynamical effects con-
nected to the combination of the nonlinear train model and the
flexible superstructure.

First we will follow the methodology of setting up the equations for
the train bridge interaction investigations as it has been done in
this project. We shall then study a few results from some of the
simulations.

3.1 Modelling the Dynamics of the Bridge

We have been interested in global effects of the dynamical interaction
between the flexible bridge model and the nonlinear train model.
A bridge is designed such that the bridge deck only exhibits small
deflections when excited. This means that for global investigations
the bridge can be assumed to behave in a linear way. For local effects
near expansion joints, etc. this is not necessarily true. However, this
is not the subject of the train bridge investigations in this thesis. See
for instance [15].
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Since we only consider global effects, and since the characteristic
time scales for the motion of a bridge and the motion of a train
respectively most often are very different for realistic train speeds,
the bridge dynamics and the train dynamics can be considered sep-
arately. The bridge model and the train model can be discretized in
time separately and then coupled also between the time steps. As
described in chapter 2 the modal approach is then a good suggestion
for numerical investigations of the system.

We will now describe the modal analysis of a bridge model and set
up the equations of motion of the bridge excited by time dependent
concentrated forces.

3.1.1 Modal Description of the Bridge Motion

One of the strong points of adopting a modal description of the mo-
tion of a bridge is, that often the huge work load connected with mak-
ing the exact modelling of the bridge has already been carried out
for other purposes. For instance the modal frequencies and shapes
of a bridge are computed in the design stadium to prevent the so-
called flutter problems, to asses wind induced forces, the impact of
earthquakes, simple load amplification factors, etc. Thus, the modal
frequencies and shapes of the bridge may be already available for
the investigations of the dynamics of the bridge excited by a moving
train.

The program developed during this ph.d. study has been used for
commercial train-bridge interaction investigations [16], where the
modelled bridges were projected for the future bridges connecting
Denmark and Sweden. The modal frequencies and modal shapes
of the bridges were computed with the commercial finite element
program, ALGOR [1].

In this section I will set up a simple bridge model and compute the
modal shapes and frequencies and I will then derive the equations
of motion for the modal coefficients. Such a simple bridge model is
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A3 2333 3 3y

Figure 3.1: Simple bridge model: Simply supported beam with in-
termediate supports modelling the piers.

convenient (and necessary) for investigations of the bridge param-
eter dependence on the train bridge interactions. A finite element
model of a real bridge may have thousands of degrees of freedom,
and a computation of even the first few modes can be a very cpu-
expensive task. For the simple bridge model in this section, however,
the computation of the modal shapes and frequencies is no big deal.

The simple bridge model is illustrated in figure 3.1. It consists of a
beam, simply supported at the ends and supported intermediately
by springs. By making the springs very stiff they will in the limit
model the piers. The eigenmodes and eigenshapes can not be cal-
culated analytically for this bridge model. We estimate them using
the Rayleigh-Ritz method, [42]. We let the deflection of the beam be
described by the variable v(z,t). The motion of the unforced beam
is described by the partial differential equation

p
vy = —Elvgge, — Z k U(iL‘T, t) (31)
r=1

where y is the mass per length and ET is the bending stiffness of the
beam, p is the number of intermediate supports, &k is the value of the
spring constants, and z, is the position of spring number r.

We search for harmonic motion solutions of the beam:

v(z,t) = fi(z)sin(w;t)

where wj is the I'th cyclic modal frequency and f; is the associated
modal shape. We write fi(x) as a linear combination of N functions

N
(@) = anidi(z)
)
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where ¢1, @9, ..., ¢n are fixed and linearly independent.

By energy considerations, choosing the linearly independent func-
tions as ¢; = sin(ZZ) and exploiting their orthogonality, approxima-
tions to the squared cyclic frequencies can be found as the eigenvalues
of the system:

(4-wiB) g (3.2)

where a; = (a1, a1, - --,a;,n)", the components in A, are given by

EIr P T JTTy
= P i (775 i (72
213 = L L

and B is the diagonal matrix given by the components

The accuracy of the highest order approximated modal frequencies
decreases with the order. Therefore the number of linearly indepen-
dent functions N should be much larger than the number of modal
frequencies N,,,, which we want to approximate. A rule of thumb
says N > 3Ng,.

In figure 3.2 we have illustrated the first 4 mode shapes of the
bridge model illustrated in figure 3.1. The mode shapes have been
computed with the parameters set as y = 40000 kg/m, EI =
7.2 - 102 Nm?, k = 10 N/m and the positions of the springs
are the grid points in the figure.

3.1.2 Equations of motion for the excited bridge

Now we consider the motion of the bridge as it is excited with a time
dependent load. We consider the piers as inflexible; this gives extra
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mode 1
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Figure 3.2: The first 4 mode shapes of the simple bridge model. The
corresponding modal frequencies are f; = 1.52 Hz, fo = 1.69 Hz,
f3=1.94 Hz, and f4. = 2.25 Hz.
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boundary conditions and the modal shapes are as found above for
k — oo. Thus the motion of the bridge is given as

Ny,
i=1

where f; is a set of orthonormal functions, normalized by (3.5). The
equation of motion is

pvy + Elvgge, = Q(z,t) (3.4)
where @ is the load. Inserting (3.3) in (3.4) yields

Nm

> (ulifi + BITif]") = Q(z, ).

i=1
From the modal development we have that
BIf{" = pwifi

and assuming we have normalised the modal shapes with the mass
per length as weight:

L
/0 fi(@)u(@) f;(z) dz = 6. (3.5)

A Galerkin procedure leads to the equation of motion for the 7’th
modal coefficient:

. L
P, + 2T, = / Q f: de. (3.6)
0

We now assume that the time dependent excitation is a sum of ny
time dependent concentrated forces (for instance at the positions of
the wheel sets), Q(z,t) = Z;Zl F;(t)6(z — z;(t)). By also including
a term for the modal damping, the equation of motion of the ¢'th
modal coefficient finally becomes

ng
L + 0l + wiT; = > Fj fi(w;(t)). (3.7)
j=1
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3.2 Obtaining the equations of motion for the
train model

We will now proceed to the modelling of the train. We have used
two different train models in our investigations. The first one is
the so-called cooperrider bogie with inclusion of realistic wheel and
rail profiles, vertical motion, and an additional mass modelling half
a car body. Only the dynamics of the suspended bogie and half
the car body mass is modelled. The rest of the train appears as
constant forces exciting the bridge motion, located at the positions
of the wheels. The assumed location of the cooperrider bogie is in
the rear end of the train where the most violent impact from the
bridge dynamics is expected. A description of the cooperrider bogie
can be found in [27].

The second train model is a 3 dimensional multi body model of the
danish intercity train, the Adtranz IC3 train. This train is a so-
called flexliner, which means that the train is designed so that units
with a length of 3 cars are easily coupled and decoupled and the
design can easily be modified for use as EMUs, DMUs, Intercity or
regional trains. In this way the train capacity can be adjusted along
the route and the separate units can go in different directions after
uncoupling. We only adopt a single IC3 unit in the train model.

The modelling of the IC3 train can be divided into two parts: Mod-
elling of the multi-body dynamics (remember that we neglect the
effects of structural flexibility etc.) and modelling of the contact dy-
namics. As to the last part, we have adopted the railway contact
mechanics subroutines developed by Jens Christian Jensen, [28]. We
will now outline the procedure for setting up the equations for the
multi-body dynamics of the IC3 train. Afterwards we shall describe
the basic principles for the contact mechanics.



3.2 Obtaining the equations of motion for the train model 47

Figure 3.3: The IC3 model consists of 15 rigid bodies: 3 car bodies,
4 bogie frames and 8 wheel sets.

3.2.1 Multi-body Modelling of the IC3 train

Modelling multi body dynamics by hand is not difficult in principle.
It is, however, a tedious and tiresome task, and there is a severe
risk of making errors when the equations are formulated and when
they are implemented in a computer program. Instead I have chosen
to use the commercial multi-body dynamics program AUTOSIM for
the modelling of the multi-body dynamics part of the train model.
See [43].

The train model consists of 3 car bodies supported by 4 bogies. The
bogies at the ends of the train that only attach to one car body
(each) are called end bogies. The mid bogies that are suspended to
two car bodies (each) are called Jacobs bogies. Each bogie consists
of a frame and 2 wheel sets. All together we end up with a multi
body system of 15 rigid bodies. See figure 3.3.

In a moving coordinate frame the car bodies and bogie frames have
5 degrees of freedom: Displacement in vertical and lateral directions
and rotation around 3 axes. The wheel sets have 4 degrees of free-
dom: displacements in vertical and lateral directions and rotations
around the longitudinal and the vertical axes. This all adds up to
67 degrees of freedom for the IC3 train.

Modelling the bogies is the key to modelling the whole multi body-
system. The wheels and the car bodies interact via the bogies and
all the suspensions are contained in the bogies. All the suspensions
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are assumed to have linear characteristics. In figure 3.4 we illustrate
our model of one of the Jacobs bogies.

Once the physical parameters for the rigid bodies and the suspen-
sions are determined — spring and damper constants, masses and
moments of inertia, centre of gravity for each body, geometrical data
for dimensions and attachment points — all these informations have
to be plugged into AUTOSIM. A global reference coordinate system
and local coordinate systems for each body are defined. The at-
tachment points are defined within each local coordinate system and
named (globally). This is illustrated in figure 3.5 where the centre of
gravity plus all the enumerated defined points within each rigid body
are seen. The points on the wheel sets defining the attack points of
the forces from the rails are fixed to their static equilibrium posi-
tions. For a real wheel set the positions of the contact points on the
wheels are dependent of the displacement of the wheel set. See [28].

Finally a force relation is defined for each suspension element, in-
cluding the informations about which points the force relates to.
The wheel rail contact forces are stated as undefined.

AUTOSIM can be told to deliver the output results for the dynamics
of the multi-body system as FORTRAN subroutines as well as MAT-
LAB functions. Thus the difficult job of implementing the equations
of motion of the system is already taken care of.

After AUTOSIM is done, the wheel rail contact forces have to be
applied to the multi body system.

3.2.2 Wheel Rail Contact Mechanics

Modelling the wheel rail contact for realistic wheel and rail profiles
is by no means a trivial task. It involves a kinematic, geometric
problem, and a contact mechanical problem. The execution of this
modelling procedure entails a considerable time consumption. In his
ph.d. work, Jens Christian Jensen modelled and analysed the wheel
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Figure 3.4: The model of a Jacobs bogie.
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car bodies 1 and 3

(¢

Figure 3.5: Definition of attachment points in each rigid body.
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and rail contact problem, in connection with vehicle dynamics inves-
tigations, [28]. With his permission I have adapted the subroutines
he developed and modified them for my model. In this section a very
short introduction to the subject of wheel rail contact will be given.
For a more thorough description of the subject we refer to [28] or [29].

The wheel-rail contact is responsible for making the whole train
bridge system nonlinear. The nonlinearities stem from the geom-
etry of the bodies in contact (the wheelsets and the rails), as well
as from the frictional forces between wheels and rails, the so called
creep forces.

The kinematic contact problem can be handled by describing the mo-
tions of the two bodies with differential algebraic equations, which
express the constraints for the bodies in contact. We use an alter-
native approach, namely the more realistic flexible method which
permits deformation of the two bodies, describing their finite elas-
ticity. (The flexibility is described by allowing the bodies in the
model to penetrate eachother.) The motions of the two bodies are
now described by coupled ordinary differential equations. The flex-
ible approach is preferable for the rail-wheel contact problem, since
the handling of multiple point contact situations is easier.

In figure 3.6 the contact point determination is illustrated for the
single point and the multiple point situations. The geometries of
the rails and the wheels are approximated from large tables with
cubic spline interpolations. For some positions of the wheel set in
contact with the rails, the positions of the contact points are com-
puted (possibly for multiple contacts on each wheel). Given these,
the ‘penetration’ of the bodies, and a number of other variables are
computed: rolling radii, geometrical parameters of the contact points
such as curvatures, contact angles, etc. The stiffness between wheel
and rail is then defined as being perpendicular to the contact plane,
see figure 3.7.

Note that we have until now used the phrase ‘contact points’. This
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Figure 3.6: Sectional view of a rail and a wheel. Determination of
the contact point; single point contact and multiple point contact.
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Figure 3.7: Sectional view of a rail and a wheel. The stiffness between
wheel and rail is defined as being perpendicular to the contact plane.

is of course a simplification. Let us consider the situation where an
infinitely stiff ball performs pure rolling (no sliding) on the surface of
an infinitely stiff body. The ball and the body will only touch each
other in a point (or in points) and the contact force will thus be a
point force (or be point forces). A similar description is not sufficient
for modelling the wheel rail contact mechanics. It must be modified.
If the assumption of infinite stiffnesses is weakened, the ball and the
body will touch each other in a finite area (or in finite areas for
multiple ‘point’ contacts). Hertz studied the static contact problem
of two bodies forced together, [24]. Under certain assumptions, he
found analytically that the shape of the contact area is elliptical, and
that the semi axes are determined by the normal force between the
bodies and their curvatures at the ‘point of contact’. Hertz’s solution
can be used to approximate the contact area of a railway wheel on
a rail.

However, in contrast to Hertz’s problem, the contact problem of a
railway wheel and rail is not static. To study the contact forces,
a nonlinear three dimensional contact theory is necessary. A lot
of effort has been given to this subject. Kalker [29] succeeded in
formulating such a theory. It is the general opinion that his contact
theory is very good. Unfortunately it would be too complicated to
use in dynamic computer simulations. We use an approximation of
the theory by Shen, Hedrick and Elkins [39], which we shall now
survey. Basically the Shen, Hedrick, Elkins approach modifies the
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direction
of
travel

——

Figure 3.8: The contact area is divided into a slip and a stick region.

linearisation of Kalker’s theory by a cubic function such that the
resulting frictional force never exceeds the coulomb friction force,
uN, where p is the coefficient of adhesion and N is the normal force.

The contact ellipse is divided into a stick region at the front end with
respect to the direction of travel, and a slip region at the rear end
with respect to the direction of travel. See figure 3.8. In the stick
region the relative velocity between the rail and the wheel is zero; in
the slip region there is a finite relative velocity between them. The
creepage, defined as the relative velocity between the wheel and the
rail, normalised with the speed of travel, is introduced. The creepage
gives rise to a frictional force, the so called creep force. The creep
forces are very important for railway dynamics.

Thus we define the longitudinal, the lateral, and the spin creepages,
€2, &y and {sp. The spin creepage is the projection of the rotation of
the wheel on the contact plane, normalised with the speed of travel.
The linear creep forces in longitudinal and lateral directions, 7, and
Ty, and the creep torque around the normal of the contact plane,
M, are then given by the linearisation of Kalker’s theory as

Ty Cn 0 0 iw
Ty | =-Ge | 0 Co2 ¢ Ca3 & |- (3.8)
M, 0 ¢Csx 053 Esp
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G is the shear modulus; ¢ is the geometrical average of the semi axes
of the contact ellipse, and Ci1, Ca9, Co3, C39 and Cs3 are parameter
dependent coefficients from Kalker’s contact theory. The resulting
linear creep force is given as

TR = /T2 + T2

and the resulting nonlinear creep force, Tg, is found by modifying
with a cubic function:

Tp

u—%u2+%u3 for u < 3 TR
N u=—" (3.9)

1 foru23’ N

Hence, the nonlinear longitudinal and lateral creep forces are given
as:

T,=2Tp and T,=_LTk
TR TR

These creep forces as well as the normal forces, calculated from the
penetrations, are plugged into the equations of the train model. Note
that the creep force depends on the normal force. The bridge dy-
namics enter in the calculation of the normal forces. The vertical
deflection of the bridge is taken into account in a straight forward
way when the geometrical problem is solved. This, the easiness of
including the variation of the track altitude in the model, is another
advantage of the flexible model of the wheel-rail contact geometry.

3.3 Train bridge investigation results

3.3.1 Comfort investigations

As mentioned above, one of the aims of the development of the train
bridge interaction simulation program in this work, is to use the
program for commercial applications. The program has been used
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@) O

Figure 3.9: The 6 degrees of freedom IC3 car model for comparison
with the full 3 dimensional nonlinear IC3 train model.

for investigations of train passenger comfort in trains crossing the
future Qresund Link coast to coast connection, [16].

The technique for investigating train passenger comfort under influ-
ence of bridge dynamics is rather similar to the technique for investi-
gating train passenger comfort under influence of track irregularities.

For the latter, we have compared the comfort assessment of such in-
vestigations, carried out with the full 3 dimensional IC3 train model
from subsection 3.2.1 and the much simpler IC3 car model seen in
figure 3.9. The single IC3 car is modelled as a 6 degrees of freedom
rigid body system, where the 6 degrees of freedom are the vertical
displacements of the bogie frames and the car body, and the rota-
tions in the vertical longitudinal plane (pitch motion) of the bogie
frames and the car body. The couplings between the wheels and
the rails are assumed infinitely stiff — thus the inertia of the wheels
is not included in the model. In figures 3.10 and 3.11 comfort
simulations from the two approaches are compared. The vertical ac-
celerations of the three car bodies are shown in figure 3.10, and the
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pitch accelerations of the three car bodies are shown in figure 3.11.
The full lines correspond to the results from the investigations with
the relatively simple model from figure 3.9, whereas the stabled lines
correspond to the results from the investigations with the full 3 di-
mensional train model. The track irregularities were modelled with
a stochastic process represented by a Frohling spectrum with a rms
value of 0.0016 meters and a rms ratio of 2 for the band 40-80 meters
to the band 3-40 meters, [17], [16]. It is seen that there is very good
agreement between the results from the two different models. There
is a bit more discrepancy for car number 2 than for number 1 and
3, which can be explained by the fact that the dynamic characteris-
tics for this wagon differ from those of the simple train model. The
investigations showed that the horizontal track irregularities tend to
imply greater accelerations of the car bodies than vertical track ir-
regularities. Uncorrelated horizontal track irregularities gave larger
car body accelerations than correlated horizontal track irregularities.
For vertical track irregularities the picture was opposite: Correlated
vertical track irregularities gave larger car body accelerations than
uncorrelated vertical track irregularities. Thus the necessity of using
the full 3 dimensional IC3 train model instead of the much simpler
6 degrees of freedom model, depends on the objective of the investi-
gation. In our train bridge investigations, the track irregularities are
ignored. If only the vertical motion of the bridge deck is considered
(i.e. effects due to wind load, earthquakes, etc. on the bridge are not
considered), the conclusion of our investigations is that the train pas-
senger comfort investigations can be carried out with the relatively
simple train model in figure 3.9. It should be noted that this is an
empirical result — we have not proved this conclusion — it may not
be valid for higher train speeds, where the nonlinearities of the wheel
rail contact become more important. It is our impression, that the
discrepancies between the results from the simple and the complex
model have very little to do with the nonlinearities in the complex
model. We would also like to mention that even simpler train models
than the one in figure 3.9 have been used although with less satis-
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factory results. Finally we again mention that we have neglected the
flexibility of the car bodies in our investigations. The design of trains
goes towards lighter and more flexible car bodies, so we expect that
the flexibility must be included in future investigations.

3.3.2 Bridge flexibility and train nonlinearities

Another aim with the train bridge investigations has been to look for
phenomena connected to the flexibility of the bridge and the non-
linearities of the train. For this purpose we adopted the cooperrider
bogie with realistic rail and wheel profiles.

We have not found particularly interesting effects of the combina-
tion of flexibility and nonlinearities. It is our belief, though, that
more detailed investigations would reveal train speed and bridge pa-
rameter regimes where the bridge dynamics would lead to chaotic or
transient chaotic motion of the bogie. However investigations hereof
lies beyond the scope of this thesis.

In figure 3.12 we show an example of a comparison of the dynamics
of the cooperrider bogie when running on an ideal track and running
on a bridge. The graph illustrates the lateral displacement of the
rear wheel set as a function of the time. The speed of the simulation
is 60 m/s. The initial conditions and the speed is chosen such that
the vehiche is running in a hunting motion, a very undesireble state
above a certain critical speed of the train. The dashed line is the
result of the simulation with the train running on a straight track
and the full line is the result of the simulation with the train running
on the bridge. It is seen that there is a slight change of the dynamics
mainly consisting of a phase shift. However, the general picture of
the motion of the wheel set has not changed as an effect of the bridge
flexibility in this simulation.



3.3 'Train bridge investigation results 61

60 m/s, ... no bridge, ___ bridge
0.01 T T T T T

0.005 7

rear wheel, lateral [m]
o
T
Il

-0.005 q

_001 1 1 1 1 1 1 1 1 1
19 19.1 19.2 19.3 194 195 196 19.7 198 199 20

x[s]

Figure 3.12: Comparison of the lateral motion of the cooperrider bo-
gie: (- -) train running on an ideal straight track; (—) train running
on a bridge. It should be noted that the situation described in the
figure is the hypothetical and undesirable case of a bogie running in
a hunting motion (flutter type instability).
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Chapter 4

Pantograph catenary
dynamics

The topic of this chapter is the study of the dynamical interaction be-
tween pantographs and overhead line systems (or catenary systems).
This is by far the example of a ‘nonlinear system with discrete and
continuous elements’ that has taken most of the time and effort of
the phd. study during the last 3 years.

An overhead line system is the complex arrangement of cables with
support above a railway track, which supplies electrical energy to the
traction vehicles in electrical trains. The electrical energy is collected
via the pantographs, which are the mechanical devices placed on the
roofs of the traction vehicles.

It has become increasingly important to understand and predict the
behaviour of an electrical overhead line system interacting with one
or more pantographs on a moving train as the train speeds have
grown. The problems concerned with this interaction are among
the major limitations against further increase of the train speeds.
The appearance of contact losses between pantographs and catenary
systems is responsible for a considerable amount of wear on both
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the pantographs and the contact cables. Additionally, the contact
losses can result in traction problems, and they may cause electrical
disturbances interfering with the runability of other operating trains.

Traditionally, the overhead line systems and the pantographs are
designed jointly and are optimised for each other. Different railway
companies have had their own design. Concerning the overhead line
systems, there basically are the 3 mechanically different systems:
the so called simple configuration, the stitched configuration (or Y-
configuration), and the compound configuration. Electrically there
are the DC overhead line systems, typically with a 3 £V voltage; and
there are the AC overhead line systems, typically a 25 £V 50 Hz
system, or a 15 £V 16% Hz system. This scenario with the various
catenary system concepts has developed into the situation where the
railway companies have sometimes had an almost religious believe in
the superiority of precisely their system.

With the improvement of the high-speed line network internationally,
situations with pantographs optimised for one type of system but
operating on another type of system is no longer just of theoretical
interest. Now some trains have even had to be designed so that they
can operate on 4 electrically different overhead line systems.

The international linking up of railway lines, in particular high speed
lines, has increased the importance of being able to understand and
predict the dynamics of pantograph overhead line systemns.

In this thesis we will only consider the mechanics and the mechani-
cal, dynamical properties of pantograph catenary systems. We shall
first be concerned with different traditional modelling approaches
and derive our equations of motion of cables. We will study the
propagation of pulses in single cable models and compare the impor-
tance of the ‘small terms’ in the cable equations. We will then take
a closer look at the different choices of overhead line system configu-
rations and consider some of the design parameters. We will pin out
some design details that we find to be important — or that we find
not to be important after haven studied it. We will give an account
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of our discretisation of the equations of motion. Afterwards we shall
consider the modelling of the pantograph dynamics and the coupling
of the pantograph and the catenary system. Finally we will come to
the results from our simulations and the conclusions we draw from
them.

4.1 Cable equations

The cables in overhead line systems have traditionally been mod-
elled as strings, yielding the linear wave-equation as the equation of
motion:

UV = P()wa. (4.1)

(4.1) is solved by the so called D’Alembert solution

v(x,t)zf(x—\/gt>+g<x+\/gt>, (4.2)
7 7

if (f + g) fulfils the boundary and the initial conditions. (4.2)
describes waves travelling towards right and left without changing
shape, with propagation speed(s) ¢ = j:\/% . Hereafter we will re-
fer to this speed as the critical speed. When the train speed is well
below the critical speed, good results are achieved when modelling
the cables by the linear string model. For train speeds near and over
the critical speed, the string model is believed to give results in poor
agreement with reality.

In order to simulate pantograph overhead line dynamics for near-
critical and supercritical speeds, the usual approach has then been
to include the bending stiffness of the cables in the models, and thus
model the cables as Bernoulli-Euler beams. The equations of motion
of the cables are then 4th order partial differential equations:

UV = P()’wa - EIwaww (43)
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(Sometimes the cables are even modelled as Timoshenko beams,
which means that also shear deformations are included.) The re-
sults of the simulations with the beam model are in much better
agreement with field observations for train speeds approaching the
critical speed, [4].

By the nature of the equations of motion for the beam models, lon-
gitudinal and transversal motions are decoupled. Furthermore, due
to the strong prestress of the cables in overhead line systems, geo-
metrical nonlinearities are normally considered to be negligible.

However, the bending stiffness of a cable is very small. To our knowl-
edge, this is the only application of cable dynamics in which the
bending stiffness is not believed to be negligible. Remarkably, to our
knowledge it is also the only application of cable dynamics in which
the geometrical nonlinearities are not believed to be important to
include in the modelling.

We wanted to formulate a model that takes into account the very
weak nonlinearities in overhead line systems. Qur first approach was
to adopt a lumped mass approach for the modelling of the catenary
systems, inspired by Scott and Rothman, [38], and by Gostling and
Hobbs, [20], where we allowed the lumped masses to move in the
vertical plane instead of just vertically as in the above cited papers.
A close analysis shows that the continuous limit of the equations of
motion of one cable modelled this way is the system of nonlinear
equations of motion of a string in 2 dimensions.

However instead of this rather nasty course of action, we will de-
duce the equations with a Lagrange procedure. We will consider a
cable that is nearly horizontal, such that we can assume that the
independent spatial variable  and the arc length of the cable s are
close to being equal. Then let v(z,t) and u(x,t) be the variables
describing the vertical and the longitudinal deflections of the cable.
Let 4, Py, EI and EA be the mass per length, the prestress force,
the bending stiffness and the flexural stiffness of the cable, and let
the cable have length L. Let € and & be the strain and the curvature
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Figure 4.1: An infinitesimal piece of the cable.

of the cable. The potential energy of the cable can then be written

as
L EI L EA
U= / G +/ (Poe + —62) dzx. (4.4)
0o 2 0 2

The strain, €, of the cable is found from figure 4.1 as:

E(Z‘,t) _ \/(dw—l—u(w—l—dw,t)—u(w,t)ij(v(w—l—dw,t)—v(w,t))2—dw ~

Vg s () i 1 (8)°

and since the curvature can be approximated by

&%v
e

Oz?

we rewrite the potential energy as
L 2.\ 2 I 2
U=J B (%) dut f) Po (%ﬁ(ﬁ—;) ) dz+
2
LEA(ou_ 1({ov)?
0 T(_:"‘i(_;) ) d.

The kinetic energy is given as

e (@) (@) ) e w
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We define the lagrangian density as

u EI 1 EA 1,\?
o= (o) = Gt P (s 502) = 5 (s 02)
where we have changed the notation a little for the convenience.
Lagrange’s equations, see [21] or [19], state that we by variation can
get the equations of motion as the equations found by evaluating:
doL _ d oL _
& oo ~ dzove T da? Bogg — O

_doc _daL _g
dt dus dr Quy ~—

Doing this, our equations of motion for the cable becomes

MOt = POvgy — Elvgggy + EA (Uwuww + Vgp g + %U?vaw) (4 7)
puy = EAug, + EAv, vy, .

Please note that (4.7) differs from (4.3) by the inclusion of the lon-
gitudinal motion (the second equation in (4.7)), the terms for the
nonlinear coupling of the vertical motion to the longitudinal motion,
Vgplgy and vg,uy, and the geometrical nonlinearity term, %vfcvm.

Given the physical parameters and general behaviour of cables, con-
sidering only vertical excitation, and noting that, in the equation for
the longitudinal motion, the coupling term to the vertical motion is
UzUge, & qualified guess is that the longitudinal motion is of order
2 in the vertical motion, v = O(v?). However, since we are deal-
ing with differential equations with terms containing derivatives of
v and w, their mutual ratio is not quite clear. We shall reflect on this
in section 4.2.2, where we deal with the numerical pulse propagation
results.

If we assume that the longitudinal motion is of order 2 in the vertical
motion, we find that — apart for the inclusion of a term for the
bending stiffness — (4.7) is the Taylor expansion to third order of



4.2 Wave propagation investigations 69

the 2 dimensional nonlinear string equation, [34]. (4.7) will be our
basic equations for the cable motions.

Compared to the linear prestress term, Pyv,,, the bending term,
—FEIvgyzyy, the nonlinear coupling terms, EA(vztzy + Vgprty), and
the geometrical nonlinearity term %EA’U%’wa, are all small terms.
We will refer to these as the ‘small terms’ in the remainder of this
chapter.

4.2 'Wave propagation investigations

We want to study the influence on propagation of waves of the ‘small
terms’ in the cable equations (4.7), i.e. the influence of the bend-
ing stiffness, the nonlinear coupling of the vertical to the longitudi-
nal motions, and the geometrical nonlinearity. For that purpose we
adopt 2 alternatives to (4.7): First we assume that the bending stiff-
ness can be neglected, EI = 0, and that the longitudinal motion is
of order 3 in the vertical motion, u = O(v?®). Note that according to
our remarks above, the latter assumption is rather critical. Anyway,
by making these assumptions and expanding (4.7) to third order in
v, the equations for the vertical and longitudinal motions decouple,
and the equation for the vertical motion becomes:

3
woy = POvgy + iEA’Ui’wa. (4.8)

The second alternative to equation (4.7) is as (4.8), but with the
bending stiffness taken into account:

3
wy = POvgy — Elvgg,, + EEAvgvm. (4.9)

We shall perform investigations of propagation of pulses in the three
cable equations (4.7), (4.8) and (4.9).

Note that all our wave propagation investigations neglect the effect
of damping.
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4.2.1 The method of characteristics

Equation (4.8) can be solved analytically by the method of charac-

teristics, see [44]. We define the new variables ul = v, and u2 = vy,

and the new constants 72 = %Q and 72 = ETA. (4.8) can now be

rewritten as 2 coupled first order partial differential equations:

ul; n 0 -1 uly [ [ O
u24 (V2 + 3+3ul?) 0 w2z || 0

We can manipulate these to their characteristic form:

uly + /72 + Sy3ul?ul,—
2+ o+ Prgul?uz) = 0
17272

uly — \/’Wulw+
W("Qt — 7+ $3ul?uz,) = 0.
In the z-t-plane we define the characteristics C* and C™:
o % ) \/W (4.11)

We denote them as positive respectively negative characteristics, re-
ferring to their slope in the z-t-plane. We have:
Along C

dul dul | Bul d 3
Wl Rl o+ PRultul,
du2 du2 | du2d 3
o BG4 PR,
and
Along C~:
dul dul | Bul d 3
G Rl = P Pfuul,
du2 du2 | Bu2d 3
Mo G RRh oz o+ put.

(4.10)
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Thus, on the positive characteristics, the first partial differential
equation in (4.10) reduces to the ordinary differential equation:

1 1 2
e S— ] (4.12)
7+ 373ul?

and on the negative characteristics, the second partial differential
equation in 4.10 reduces to the ordinary differential equation:

w1 aw_

Simple manipulations with (4.12) and (4.13) yield

Y+ gfygupdul —du2=0 (4.14)
3
2

y
along CT, and
y

A2 + =v3ul2dul + du2 = 0 (4.15)

along C'~. By integration we achieve the Riemann invariants:

ul\[7 + 373ul?  /Gy2 \/§ / 3
1 e 1 2 2012 ) —u2 =
5 + 62 n 2’)/2u + Al + 2’)/2u > u2 =Jy

(4.16)

(4.13)

along CT and

uly /72 + 342012 2
N —; 272 + \éizl In (\/gfygul +4/v2 + %y%uﬂ) +u2=J_
(4.17)
along C~. Thus, along a positive characteristic, the rather nasty
looking expression on the left hand side in (4.16) is constant. Simi-
larly, along a negative characteristic, the (equally nasty) expression

on the left hand side in (4.17) is constant. We refer to these con-
stants as the positive respectively the negative Riemann invariants
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N

Figure 4.2: All negative characteristics will cross the z-axis.

(with the obvious origin of the distinction). Note that each positive
(negative) characteristic attaches to a positive (negative) Riemann
invariant.

Let us consider a system given by z > 0,¢t > 0, and where ul =
0, u2 = 0at ¢ = 0. The trick is that since the negative characteristics
have negative slope in the z-t-plane, they will all cross the z-axis (at
which t=0). See figure 4.2. By inserting ul = 42 = 0 in (4.17) we
find that all the negative Riemann invariants have the same value,
i.e.they are all equal to the constant

V6?2
672

In(y1) =J_. (4.18)

We can therefore rewrite (4.17):

uly/vi+372u12 n
2

(3 2
(_{7 % in ((/3r0ul + /77 + $r3ul?) — ln(%)) +u2=0

(4.19)
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Figure 4.3: We study the behaviour along a specific positive charac-
teristic, Cj". C; and C; are negative characteristics crossing Cy -

which is valid along C~.

Now look at the behaviour along a specific positive characteristic,
Ci. We study a point where this characteristic crosses a specific
negative characteristic, C;". See figure 4.3. In this point, we can

get an expression for the positive Riemann invariable J ¢; by adding
(4.16) and (4.19); we get:

uly/? + 3rul’+
\/(_5 2
o2t (21 (/3mul + /77 + 393ul2) —In(m)) = T i

At a point where Cy crosses another negative characteristic, say
Cj_, we can the same way get an expression for Jy o;. But since all
the negative Riemann invariants are equal, the expressions for J g;
and J, o; are identical. In fact, we will find the same expression for
the positive Riemann invariant J, ¢ every time it crosses a negative
characteristic — which is all the time. J, o is equal to this expression

(4.20)




74 Chapter 4. Pantograph catenary dynamics

all the way along Cy . Studying this expression, (4.20), we see that
the only variable appearing in it is ul. The only way this expression
can then be constant along Cy is for ul = constant. We conclude
that u1 is constant along a positive characteristic.

Lets again study the point where Cj crosses the negative characteris-
tic C;", figure 4.3. Instead of adding, we subtract (4.19) from (4.16).
We get the expression

V6y
62

Corresponding to the arguments above, we realise that we will get
the same expression in all the points where Cj crosses a negative
characteristic. Since the only variable in (4.21) is 42, we conclude
that u2 = constant along C;.

—2u2 +

2
En(y) = J4 0 (4.21)

From the definition of the positive characteristics (4.11) we see that
— since ul is constant along the positive characteristics — the pos-
itive characteristics ar straight lines.

Lets summarize: We know that the positive characteristics are
straight lines and that ul and w2 are constant along the positive
characteristics. This means that, for the assumed initial values
ul = u2 = 0, we have solved (4.8) once and for all. Because if
we know the boundary values for z = 0, we can simply use the pos-
itive characteristics to prescribe the values of ul and 42 along these
straight lines in the z-f-plane. See figure 4.4. Note that another
initial condition would complicate the argumentation but not change
the essence of the analysis.

We will illustrate the analytical solution by letting a pulse propagate
on a cable described by the equation (4.8). We choose the physical
parameters according to the typical data for a contact cable in the
overhead line systems in Denmark, i.e.u = 0.91 kg/m, Py = 12000 N,
and EA = 1.24 - 10" N. (However we will consider the cable as
infinitely long. This is just for convenience, a finite length would not
change the essence of the result.)



4.2 Wave propagation investigations 75

t

\ 4

Figure 4.4: Positive characteristics. Knowing the boundary condi-
tions at £ = 0, these can be used to prescribe the solution at some
time ¢1, by utilizing that the positive characteristics are straight lines,
and that vl and u2 are constant on the positive characteristics.
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We will study a pulse that initially is a solution to the linearisation
of (4.8) (which is just the linear string equation (4.1)) given by

z+100 — /Fog
v(z,t) = 0.1sech? ( - ) .

30

This is a nice, smooth, low amplitude pulse with relatively long
length. The pulse is chosen this way because these dimensions are
conjectured to be realistic and relevant for pantograph overhead line
systems. We have also carried out investigations with other pulses
without finding important differences. Therefore we will not illus-
trate any results from the investigations of pulses with other dimen-
sions.

ul is then initially given by differentiating, (ul = v,):

4.01 z + 100 — /2ot z +100 — /Po¢
ul(ﬁv,t)Z%sech‘l( 30 £_ | tanh 30 =

The boundary condition at £ = 0 is given by inserting x = 0:

100 — ,/Eo¢
’U(O, t) = 0.1S€Ch4 Tﬂ (4.22)

thus

1, [100— /Tt 100 — /2ot
U].(O, t) = %sech T tanh T . (423)

The analytical solution found above is now used to prescribe the
values of ul along the positive characteristics given by (4.11) and the
boundary condition (4.23). In figure 4.5 we illustrate the analytical
solution of ul fort =3s,t1=13s,t=245s,1 =343, and t =44 s.
We see that after short time of propagation of the pulse (or rather:
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Figure 4.5: The analytical solution of (4.10) with the initial condition
ul = 42 = 0, and the boundary condition (4.23) fort =3 s,t = 13 s,
t=2435,t=34 s, and t =44 s.
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of propagation of the derivative of the pulse), a multiple solution
situation occurs; i.e.for some z-values, three ul-values are prescribed
simultaneously. In the second graph (¢ = 13 s) there is one such
multiple solution situation — in the third, fourth, and fifth graphs
(t =23 s,t=34s,and t = 44 s) there are two such multiple solution
situations. These are examples of so called shocks. A shock is a
nonlinear wave phenomenon. Loosely speaking, the development of a
shock is caused by the fact that, due to the nonlinearities, waves with
different wave lengths travel with different speeds (and a pulse can
be expanded in a sum of cosine waves with different wave lengths).

In figure 4.4 we already indicated the development of a shock; in the
figure it is seen that the characteristics cross at some point. This is
exactly what happens when a shock appears.

Note that the first shock develops within a realistic length of a con-
tact cable in an overhead line system. I.e.the shock appears already
in the second graph, centred at approximately z = 1280 m. In Den-
mark the typical length of a contact cable in an overhead line system
is 1600 m.

Of course the multiple solution situation does not make sense from
a physical point of view. A cable can not in some interval have more
than one slope at the same time. However, a proper interpretation
of the multiple solution situation may lead to important conclusions
about the physics. The most obvious way to handle the multiple so-
lution situation is by introducing a discontinuity. This is illustrated
in figure 4.6 for our example at ¢t = 13 s. The location of the dis-
continuity should be chosen so that the two coated areas (limited by
the full line and the dashed line) in figure 4.6 have the same size.

Performing such a ‘discontinuisation’ of our analytical solution, we
obtain figure 4.7, which shows ul for t =3 s, t =13 s, t = 24 s,
t=34 s, and t = 44 s. Compare with figure 4.5.

We obtain the analytical solution of (4.8) for the given boundary
condition, (4.22), and initial condition, u(z,0) = 0, by simply in-
tegrating the corresponding result for ul. The result is illustrated
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Figure 4.6: Introduction of a discontinuity as a proper way of dealing
with the multiple solution situation.
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Figure 4.7: The ‘discontinuised’ analytical solution of (4.10) with the
initial condition ul = 42 = 0, and the boundary condition (4.23) for
t=3s,t=13s,t=245s,t=34 s, and it = 44 s. Compare with
fig 4.5.



4.2 Wave propagation investigations 81

in figure 4.8. Note that the shocks appear as discontinuities in the
slope of the cable.

In figure 4.9 we compare the analytical solution of (4.8) with the
corresponding (analytical) solution of the linearisation of (4.8), which
is just the translated initial pulse (the D’Alembert solution of the
linear wave equation).

One of our assumptions to achieve the cable equation (4.8) was that
the bending stiffness can be neglected. However, our analytical re-
sult reveals the development of shocks, where the shocks appear as
discontinuities in in the slope of the cable. Certainly the assumption
of zero bending stiffness is not valid in the vicinity of such shocks.
We will study the propagation of a pulse with (4.9) as cable equation,
where the bending stiffness has a finite value.

Before proceeding to this, let us refer to appendix A in which we
derive a nonlinear dispersion relation for (4.8).

4.2.2 Numerical pulse propagation investigations

As mentioned above we would like to proceed now with numerical
investigations. The simplified cable equation (4.8) was nice because
we were able to use analytical tools to investigate it. However, those
analyses gave results that were not consistent with the assumptions
for the equation. The zero bending stiffness assumption was not in
harmony with the appearance of the discontinuities in the slope of
the cable; or rather, with the appearance of the discontinuities in
the slope, the assumption of negligible bending stiffness certainly
was not valid anymore. Unfortunately, one of the effects of including
the bending stiffness in the description is that the equation can no
longer be solved analytically; i.e. we turn to numerics.

All our numerical pulse propagation investigations have been per-
formed with finite difference methods. We have investigated the
importance of the spatial discretisation fineness to get hand of the
numerical errors in the simulations. The cable data are the same as
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Figure 4.8: The development of shocks in the analytical solution
of (4.8) with initial condition u(z,0) = 0 and boundary condition
given by (4.22), fort =3s,t=13s,t=24s,t =34 s, and t = 44 s,
corresponding to fig 4.7 after an integration.
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Figure 4.9: Comparison of the development of a pulse propagating
according to (4.8) (full line), and propagating according to the lin-
earisation of (4.8) (dashed line).

listed in section 4.2.1, repeated here for completeness: Fy = 12000 N,
p=0.91 kg/m, and EA =1.24-10" N. Of course the length of the
cable has to be finite in numerical investigations. In some investi-
gations we have used a simply supported cable with the length L =
1560 m, but in those investigations where a very fine discretisation
grid was necessary, we have adopted a cable of length L. = 200 m and
periodic boundary conditions, v(0,t) = v(L,t), v;(0,t) = vz(L,1),
Vz2(0,1) = vz (L, t), u(0,t) = u(L,t), and uy(0,t) = uy(L, t).

First we will illustrate the numerical investigation corresponding to
the analytical result from last section. Figure 4.10 shows the nu-
merical simulation of the propagating pulse at t = 3 s, t = 13 s,
t=2435,t=34s,and t = 44 s. (Compare with the analytical result
in figure 4.8.) This is one of the simulations where a cable length
of L = 200 m and periodic boundary conditions have been used.
Since (4.8) is hyperbolic, and all disturbances thus propagate with a
finite velocity, we believe this is a proper procedure. Note that we in
the illustration have adjusted for the finite length of the simulated
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cable, to be able to compare with figure 4.8. Note also that there
is great correspondence between the numerical and the analytical
result. In the analytical analysis we had to deal with the multiple
solution situation. We found that a proper handling of these situa-
tions revealed the shocks as discontinuities in the slope of the cable.
In the numerical simulation, the discretisation introduces numerical
dispersion by which multiple solution situations are avoided. This
may however introduce other errors and a very fine discretisation grid
has had to be used in the simulation. Therefore the cable length of
just L =200 m. Note that with the discretisation fineness we have
used, the discontinuities in the slope of the cables also appear in the
numerical simulation.

We now proceed to perform a numerical investigation of the propa-
gation of a pulse on a cable described by (4.9), in which the bending
stiffness is also included. The result of this simulation turned out to
be very sensitive to the discretisation fineness. To be able to con-
trol the numerical dispersion it was necessary to go to so extreme
discretisation fineness that a cray computer was necessary to perfom
the simulation. Due to the fine discretisation grid, we also in this in-
vestigation used a cable length of L = 200 m and periodic boundary
conditions (except when initiating the pulse, which was initiated by
varying v(0,¢). During this initiation, simple boundary conditions
were applied). We have chosen to neglect that (4.9) is not hyper-
bolic and any effects this might have. In figure 4.11 the propagation
of the pulse on a cable described by equation (4.9) is illustrated for
t=3s,1=13s,t=245s,t=34 s, and t = 44 s. It is seen that the
discontinuities in the slope, appearing in figure 4.10, in figure 4.11
have been smoothed somewhat out. However, the overall picture is
unchanged. The basic deformation of the pulse shape is only slightly
dependent on the inclusion of the bending stiffness. Note the small
oscillations in front of the pulse and in the front end of the pulse.
These persist for decreasing spatial step sizes. We tend to believe
that these oscillations are physical and not just some numerical dis-
crepancy.
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Figure 4.10: The development of shocks in the numerical solution
of (4.8). The initial condition is u(z,0) = 0; the boundary condition
is given by (4.22) supplied by v;,(0,t) = v(L,t) = vz (L,t) = 0 for
t < 200\/1310, and is periodic for ¢ > 200\/%. Snapshots at ¢ = 3 s,
t=13 s, t =24 s, t =34 s, and t = 44 s, corresponding to the
analytical result in fig 4.8.
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Figure 4.11: Numerical simulation of the propagation of a pulse
on cable described by (4.9) with initial condition u(z,0) = 0 and
boundary condition given by (4.22), for t =3 s, t =13 s, t = 24 s,
t =34 s, and t = 44 s. Compare with figures 4.10 and 4.8 in which
the bending stiffness is not included.
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In the rest of the section we will deal with the full cable equa-
tions, (4.7). Thus now also the longitudinal motion is included in
the description.

The characteristic time scale of the longitudinal motion is much
smaller than that of the vertical motion. This has two important
consequences: The first is that achievement of numerical stability
demands much smaller time steps in the time integrations when the
longitudinal motion is included in the description. The second is
that the effects from the boundary can no longer be ignored. We
have modelled the cable in its full length, L = 1560 m, and simply
supported at the ends.

These two consequences both put practical limitations on the fineness
of the spatial discretisation grid. There is no way we can use as fine
discretisations as in the above investigations.

The pulse is initiated with the same boundary condition as above,
ie. (4.22) for t < 300\/Pz0 and v(0, L) = 0 otherwise, together with
(L, t) = vg4(0,t) = vpe(L,t) = u(0,t) = u(L,t) = 0. Thus the
longitudinal motion is excited only by the coupling to the vertical
motion as given in (4.7).

In figure 4.12 we have shown snapshots of the propagation of the
pulse at £ =6 s, £ = 60 s, and t = 278 s. Note that there is practi-
cally no deformation of the pulse shape. From the top to the bottom
graph, the pulse has travelled a distance of more than 31 km. (As a
contrary to figures 4.10 and 4.11 we have in figure 4.12 not compen-
sated for the finite length of the cable, since the pulse in the simu-
lation actually has travelled back and forward on this finite length
cable.) It is barely visible in the bottom graph, that small oscilla-
tions of the cable appear away from the pulse itself. To search for the
origin of these oscillations, we have performed a simulation identical
to that of figure 4.12, except for the bending stiffness which was set
to zero, EI = 0. This simulation is illustrated in figure 4.13. We note
that the small oscillations persist for £I = 0. Thus the oscillations
are not caused by dispersion due to the bending stiffness. (We see
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Figure 4.12: Numerical simulation of the propagation of a pulse on
cable described by (4.7), for t = 6 s, t = 60 s, and t = 278 s.
The pulse travels almost undisturbed. Compare with figures 4.10
and 4.11.
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Figure 4.13: Numerical simulation of the propagation of a pulse
on cable described by (4.7) with the bending stiffness set to zero,
ElI =0, fort =63, t=060s and { = 278 s. Compare with
figure 4.12.

no effect of the bending stiffness in these simulations, in so far as our
discretisation can fully resolve the effect of it.) Unfortunately (but
not very important) we can not fully investigate what then causes the
small oscillations. They may be caused by numerical dispersion (due
to the discretisation) or may be an effect of the nonlinearities. But,
as mentioned above, due to computer power limitations we can not
just refine our discretisation grid to outrule or confirm the numerical
dispersion alternative. We can not change the nonlinearities either,
without changing the whole system. We are content to realize that
propagation of a pulse with the given dimensions on a cable described
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by (4.7), reveals behaviour very close to the D’Alembert solution of
the linearised equation, i.e. a pulse travelling almost without chang-
ing shape. (Remark: This conclusion goes for the pulses and cables
with the given dimensions and parameters, which are conjectured to
be relevant for overhead line systems.)

We have been investigating the importance of the ‘small terms’ in the
equation for the vertical motion in (4.7) by switching on and off the
different terms. It seems that none of these terms have significance
for the behaviour of the travelling pulse. Lets study the appearance
of the different terms in the case of the propagating pulse. We define
the ‘linear term’ [, the bending term bt, the nonlinear coupling terms
nltl and nlt2, and the geometrical nonlinearity term nlt3:

It = Pyvgyg,

bt = —Elvggey,
nitl = EAv Uy,
nlt2 = EAvg Uy,

and 3
nlt3 = EEAvgvm.

In figure 4.14 we illustrate the appearance of the different terms
at t = 8.5 s. We depict the vertical deflection of the cable, v, in
the upper graph, the distribution of the linear term, [{, around the
pulse in the second graph, the distribution of the bending term, bt,
around the pulse in the third graph, and the distribution of the
nonlinear terms, nltl (- -), nlt2 (- —) and nlt3 (—), around the
pulse in the fourth graph. Not surprising it is noted that the linear
term is by far the largest term. For the travelling pulse with the
given dimensions, the linear term is 2 orders of magnitude larger
than the the nonlinear terms, and 4 orders of magnitude larger than
the bending term. Thus, apparently the nonlinear terms are much
more important than the bending term. Looking closer, however, it
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Figure 4.14: Comparison of the appearance of the different terms in
the equation for the vertical motion in (4.7) for the travelling pulse
at ¢ = 8.5 s. First graph: Location of pulse. Second graph: linear
stress term, [{. Third graph: bending term, b¢. Fourth: Nonlinear
terms; nltl (- -), nlt2 (- -), and nit3 (—).
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Figure 4.15: Comparison of the sum of the nonlinear terms, nitl +
nlt2 4+ nlt3 (full line), with the bending term, bt (stabled line). Note
that the sum of the nonlinear terms have same order of magnitude
as the bending term.

is seen that the two nonlinear coupling terms have sizes and signs
so that their sum apparently balances the geometrical nonlinearity
term. This is illustrated in figure 4.15 where we have depicted the
sum of the nonlinear terms (—) as well as the bending term (- -).
It is seen that the sum of the nonlinear terms has same order of
magnitude as the bending term for the given pulse.

Let us investigate it further by studying the distribution of the en-
ergy on the different contributions. We define the energy per length
contributions Ep, Eb, and Enl. Ep describes the potential linear
stress energy per length

1
Bp= Py (s + 502)

Eb describes the bending energy per length

ET
Eb=—uv>

2 b ol
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and Enl describes the nonlinear energy per length

Enl = E2—A (ui + ugv? + ivi) .

These are recognized from the derivation of the cable equation in
(4.5). In figures 4.16, 4.17, and 4.18 we illustrate the energy distri-
bution for t = 8.5 5,1 = 8.75 s, and t = 9 s. The top graphs show the
vertical deflection of the cable — the pulse. The second graphs show
how the longitudinal motion behaves. It is seen that the longitudi-
nal motion can be thought of as divided into a global oscillating part
and a local part centred around the location of the (vertical) pulse.
Heuristically it can be seen that the ‘local part’ of the longitudinal
deformation behaves in a way so that it distributes the stress energy
to all the cable, instead of having all the stress concentrated around
the pulse. The cable is stretched into the pulse. This is supported by
the appearance of the linear stress energy and the nonlinear energy
in the third and fifth graphs in the figures. Most of the energies in
those contributions is global and only small discrepancies are seen
around the location of the pulse. Not surprising the bending en-
ergy is found to be a local contribution. Note the mutual ratios
between the different energy contributions. For the given pulse, the
linear stress energy is 3 orders of magnitude larger than the bending
energy, and 4 orders of magnitude larger than the nonlinear stress
energy.

Referring to our derivation of alternative cable equations in sec-
tion 4.1, let us study figure 4.14 and figures 4.16-4.18 again. A
bit surprising we find u = O(v*) — O(v?). But u; = O(v3) — O(v2)
and ugy, = O(v2,) — O(vgg), and studying the nonlinear terms in
the equation for the vertical motion does yield that the geometrical
nonlinearity term, ;—’vgvm, is larger than the other ones, but also
that the two nonlinear coupling terms are not negligible, especially
not since their sum seemingly balances the geometrical nonlinearity

term.

Lets develop the idea of the longitudinal motion consisting of a global
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Figure 4.16: Vertical and longitudinal deflection of propagating pulse
at t = 8.5 s. Distribution of energy on the contributions: linear stress
energy per length Ep, bending energy per length Eb, and nonlinear
stress energy per length Enl.
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Figure 4.17: Vertical and longitudinal deflection of propagating pulse
at t = 8.75 s. Distribution of energy on the contributions: linear
stress energy per length Ep, bending energy per length Eb, and
nonlinear stress energy per length Enl.
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Figure 4.18: Vertical and longitudinal deflection of propagating pulse
at t =9 s. Distribution of energy on the contributions: linear stress
energy per length Ep, bending energy per length Eb, and nonlinear
stress energy per length Enl.
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and a local part. We exploit that the local part has a much larger
characteristic time scale than the global part. Thus we write

u(z,t) = uO(z, et) + uP (2, Tp) = u (2, T1) + u? (z,1) (4.24)

with |e] << 1. Thus, u(®) describes the slow part and u(? describes
the fast part. The equation for the longitudinal motion becomes

pgy = EAugy + EAvgUgy
= (4.25)
,u62u§91)T1 + H62U%)To = EAug;c) + 62EAu552z) + EAv,v,y.

We then find the equations

0° 0= EAuY + EAv,ug, (4.26)
and ) .
2° uugwo)To = BAul?) — '“ugl)Tl' (4.27)
Integration of (4.26) with respect to z yields
1
/ (ug;) + vwvm) dz = ul + §v§ =C(T) (4.28)

and
I ( + 3v2 ) dz' = uO(z) — u@(0) + 1 J§v2 do’ =
(iL‘) + b f(;v ,Ugl diL" = f(;v C(Tl)diL" = C(Tl)iL‘

(4.29)

By inserting « = L in (4.29) and exploiting u(9 (L) = 0 we have

2/ vdr' =C(Ty)- L <+

|
o) = 5= /0 V2 de!, (4.30)

and ©(® is found by inserting (4.30) in (4.29):

u®(z) = i/L v dz’ — l/w v2 d’. (4.31)
2L Jo ¢ 2Jo ¢
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Lets illustrate that -2 aT? 2 u©® can be seen as an excitation of u(®). In the

case of the travelling pulse, we have seen that there is only very little
deformation of the pulse shape. This means that we can approximate

02 192 =
B (1) RO A 2 dx'
BTfu 28T12/0 vy dT

and (4.27) becomes

2 z
(2) _ 2 lu 8 2 !
Py, = EAugm) + §—BT12 /0 vy dz'. (4.32)
In figure 4.19 we have illustrated 8%27 Jo v2 dz’ in the case of the

travelling pulse. The pulse is travelling towards right From top
to bottom the figure illustrates v, vy, v2 da:, Vi da:

x?
and 2 [Fv? d'. The figure shows that £ 2, fO”” 2 da' is located
around the centre of the travelling pulse. Thus, equa,tlon (4.32) will

experience the term as a local excitation.

Since the pulse travels very slowly compared to the propagation ve-
locity for u(?), lets assume that only the first (linear) mode of u(?) is
excited. We then have

u? = f1(¢) - sin (72—9”)
) = Zfi(t) - cos (%)
u&%} = —%zfl(t) - 8in (72—9”) )

For u = u(® + 2u(® we have

u= g JF 0k de' =} [0k dod + () s (5E)
up = o Jo 02 dz’ — Lo + T f1(t) - cos (T2) (4.33)

Ugg = —VgUgg — Z—2f1(t) -sin (22) .
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Figure 4.19: Illustration of the excitation in the u(-equation,
(4.32). From top to bottom: v, vy, v2, f5 v2 da’, % v 2 dz', and
a@:g Jo v2 dz’. Note that a@:g Jo v% dz’, which goes into (4.32), be-
haves like a localised excitation.
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We insert (4.33) in the equation for the vertical motion. The non-
linear terms then become

EA (wauw + Vgligy + %Uwvww) =
EA (vm (% V02 dr’ — L2 + Tfi(t) - cos (%)) +
Vg (_Uwvww — T fi(t) - sin (%)) + %vwvm) =
EA ((ﬁ J w2 da’ + Tf1(t) - cos (%)) Vg —
(7510 -sin (%)) va) =
(K + K1 (t)) veo + Ka(t)vs.

(4.34)

We remark that

L . . .
5 Jo v2 dz’ is close to being a constant in the case of the

travelling pulse, since, as we have discussed above, the shape
of the pulse is almost unchanged under the propagation. If the
assumption uy = 0 is made (no axial inertia forces), the sum
of the nonlinear terms in the equation for the vertical motion
would yield - OL v?2,dz’. We will refer to this term as the
bias-vy, term in the following.

we expect the time modulation of the v;,-term in the sum,
K (t), to be oscillatory with a period equal to that of the lowest

(linear) mode of the longitudinal motion. This can be found as
To = 2L\/%. With the given cable data we get Ty = 0.85 s.

the time modulation of the v,-term in the sum, Ks(t), looks
like that of the v,,-term except for the factor —7, which for

the given cable data yields 7 ~ 0.002.

Thus from these considerations we expect to find that the sum of the
nonlinear terms consists of a bias v,,-term, an oscillating v,,-term,
and a small oscillating v-term.

Let us depict how it does look in the simulation (which of course
is performed with the full equations, (4.7)). In figure 4.20 we have
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made a small cartoon depicting the sum of the nonlinear terms nlt1+
nlt2 + nlt3 (full line) around the pulse, and the bias-vy, term from
the above analysis, 5~ fOL v2, dz’ vy, (stabled line). In figure 4.21
there is a similar cartoon, depicting the sum of the nonlinear terms
minus the bias-v,, term, nltl + nlt2 + nlt3 — ﬁ OL vi, dz' vy, (full
line), and the bias-v,, term (stabled line). Two things are noted from
the figures: The first thing is that the sum of the nonlinear terms
actually does look like what we expected from the above analysis.
The sum of the nonlinear terms is basically an oscillating v, signal
superponed with the bias-v,; signal. The second thing to notice is,
as is seen from the cartoons, that the period of the oscillation is in
the interval 0.8 s < T < 0.9 s corresponding to the period of the
first longitudinal mode, Ty = 0.85 s — as expected from the above
analysis.

4.2.3 Conclusions on pulse propagation

We derived the equations of motion of a near horizontal cable, (4.7).
These equations contain a term for the bending stiffness of the ca-
ble, as well as nonlinear coupling terms of the longitudinal and the
vertical motions, and a geometrical nonlinearity term.

Neglecting the bending stiffness and assuming u = O(v3), the equa-
tion for the vertical and the longitudinal motion in (4.7) decoupled,
and (4.8) became the equation for the vertical motion. This equation
we were able to solve analytically. We found that a smooth pulse
travelling on a cable described by (4.8) underwent deformations and
developed shocks, appearing as discontinuities in the slope. However,
with the discontinuities in the slope of the cable, the assumption of
negligible bending stiffness (neglected by putting it to zero) certainly
was not valid any longer.

Including a term for the bending stiffness, (4.9) became the equation
for the vertical motion of the cable. The propagation of the same
smooth pulse as before, but with (4.9) as the cable equation, was
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Figure 4.20: Cartoon with comparison of the sum of the nonlinear
terms nltl + nlt2 + nlt3 (—) with o [ v dz’ vy, (- -). It is seen
that the sum of the nonlinear terms basically consists of an oscillat-
ing vy, signal superponed with the bias-v,, signal. Compare with

figure 4.21.
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Figure 4.21: Cartoon with comparison of nltl + nlt2 + nlt3 —

T OL’U?U, dz' vgy (—) with 57 OLU?U, dz' vgy (- -). Tt is seen that

nltl + nlt2 + nlt3 — % OL vg, dz' vyy ~ K1 (t)vgg. The period of the
recurrence is in the interval 0.8 s < Tj., < 0.9 s corresponding to

the period of the first longitudinal mode, Ty ~ 0.85 s.
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solved numerically. The discontinuities were smoothed out but the
overall deformation of the pulse shape was the same. Thus, for the
given investigations, the bending stiffness was found to have very
little influence on the pulse propagation.

The propagation of the same pulse again but with the full cable equa-
tions, (4.7), was solved numerically. We found that the propagation
of the pulse on a cable described by these equations were very close
to the propagation of the pulse on a cable described by the linear
string equation, (4.1), which is just propagation of the pulse without
deforming. Comparisons of the different terms in the equations and
investigating the energy distribution suggested that the longitudinal
motion of the cable could be described by a relatively slow, local
part, and a relatively fast, global part. Going through these consid-
erations we found expressions for the slow and the fast parts, in the
case of the travelling pulse. The expressions yielded the longitudinal
motion, v as the sum of the solution for v under the assumption of
no axial inertia forces, and the excited first linear mode of 4. When
this was plugged into the equation for the vertical motion, the sum
of the nonlinear terms was found to basically consist of a term on
the form (K + K(t))vgz. See (4.34). The correspondence between
these expressions and the results from the the numerical simulations
with the full equations was remarkably good.

4.3 Overhead line systems

In this section we shall consider the designs of overhead line systems.
We discuss the simple, sagged configuration, the stitched configura-
tion (or Y-configuration), and the compound configuration. These
are illustrated in figure 4.22.

An overhead line system is a compromise between quality and econ-
omy. The larger train speeds an overhead line system has to serve,
the better quality the configuration must have — and the more ex-
pensive it is. The question now is, for some given wanted quality,
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Figure 4.22: Overhead line system configurations: The simple,
sagged configuration, the stitched configuration, and the compound
configuration.
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what is the cheapest configuration this quality can be obtained with.
Such questions form the background of this part of the ph.d. project.

The cheapest possible overhead line configuration is the so called
trolley configuration, which is just the supported contact cable. This
configuration is used as overhead equipment for tramways and other
types of vehicles with relatively low travel speeds, or in railway areas
with only low speed traffic.

In the simple configuration, the contact cable is carried by a cate-
nary cable via the hangers, which typically are cables. By purely
statical considerations it is realized that the configuration is softer
in the middle of a span than at the position of the masts. Thus,
a pantograph travelling under the overhead line system will have a
larger uplift at midspan than at support. This is compensated for
by giving the contact cable a presag corresponding to the expected
extra uplift. This is supposed to make the pantograph travel more
smoothly and is a very widely used technique. In our section with
results and investigations we shall discuss this presag.

Another way to compensate for the varying stiffness is by adopting
the stitched configuration, see figure 4.22. Compared to the simple
configuration, the stitched configuration has extra stitch wires, and
around the masts, the contact cable is carried by the catenary cable
via the stitch wires. This reduces the stiffness of the configuration
around the masts and a more homogene elasticity experienced by
the pantograph is obtained. The drawback is of course that the
configuration is more expensive. The system height is increased,
more materials go into the installation, it takes longer time to install
— and not to forget, the maintenance costs are higher.

The compound configuration (see figure 4.22) has an even more ho-
mogene elasticity, seen from the pantograph, but is even more ex-
pensive. The contact cable is carried by an auxiliary cable, which is
carried by the catenary cable.

Considering a specific type of configuration, there are still a number
of parameters to vary: the system height, the number of droppers
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per span, the span length, the type of dropper, the type of support,
the material of the cables, the mass per length of the cables, the
prestress of the cables, etc. It would be beyond the scope of this
thesis to discuss all these parameters. We will only consider a few of
them and refer to what is being used.

Together with the choice of overhead line system configuration, the
prestress of the contact cables, and to less degree of the catenary ca-
bles, are some of the most important design parameters. The larger
the prestress is, the less flexible the overhead line system is, and the
better properties it has for dynamic interactions with pantographs.
Especially as the train speeds approach the propagation velocity of
transversal waves — the so called critical speed — the problems
worsen. The critical speed is given as v, = \/% . But the prestress is
closely connected to the mass per length of the cables. The prestress
is chosen as high as possible and the cables can not be prestressed
stronger without compromising safety. Hence an increase of the pre-
stress can only be obtained by increasing the cable diameters. l.e.
the critical speed is independent of this manoeuvre. Unless new ma-
terials are used which allow higher prestress. The usual material for
contact cables is a copper silver alloy. The silver is added to avoid
long time creep of the cables; typically the silver content is 0.1 %.
(Which doubles the price compared to pure copper cables. Earlier
a copper cadmium alloy was used. For obvious reasons it isn’t any-
more!) In the newest German overhead line system, the Re330, a
copper magnesium alloy is used for the contact cables. This mate-
rial enables a lager prestress, such that the critical speed for this
system is 565 km/h against the typical 410-440 km/h, [30].

According to our informations, the compound configuration is only
still being used widely in Japan (for which informations are very hard
to obtain). It was earlier used in France and lines with compound
configuration of course still exist there. However, the french switched
to the stitched configuration — and to our knowledge they have now
skipped this one too, in favour of the simple, sagged configuration
with rather strong prestress and corresponding large cable diameters.
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In Germany, overhead line systems with a stitched configuration are
the most common ones. Their standard configuration (at least until
recently), the Re250, has ‘medium’ prestress and cable diameters.

Italy, which traditionally is among the leading countries when it
comes to railway technology, is hard to compare with, since they
only have DC overhead line systems. (France has some early DC
systems, but switched a long time ago.) DC current systems have
lower voltages and thus higher current intensities than AC current
systems. In order to carry this current, rather heavy cables and
pantographs are necessary. (The dynamics of DC overhead equip-
ment/DC pantographs is inferior to the dynamics of AC overhead
equipment/AC pantographs.) However, our informations are that
the future high speed line between Rome and Neaples will have an
AC overhead line system with simple configuration.

Thus, the ‘battle’ now apparently is between the stitched and the
simple configuration. Measured in man-power, the stitched config-
uration is more expensive to install and maintain than the simple
configuration. On the other hand, the simple configuration must
have larger prestress to achieve the same performance, which makes
the material cost larger. It shall be interesting to see which approach
will be the cheaper over a 20 year period.

4.4 Catenary system model

All our numerical investigations in this project are based on the over-
head line system in use in Denmark, which is a 25 kV AC current
system, with a light weight, low tensioned simple, sagged configu-
ration. The contact cable is made of a copper silver alloy, has a
cross section of 100 mm?, and is prestressed with Py = 12000 N.
The mass per length, the bending stiffness and the axial stiffness
are u = 0.91 kg/m, EI = 98.6 Nm?, and EA = 1.24-10" N. The
catenary cable is made of bronze, has a cross section of 50 mm?
and with the same prestress as the contact cable, Py = 12000 N.
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The mass per length, the bending stiffness and the axial stiffness are
po = 0.50 kg/m, EI; = 50 Nm?, and EA; = 0.5- 107 N. Each span
is 60 m and there are 5 droppers per span equally distanced, which
leaves 12 m between the droppers. The presag is ﬁ of the span
length, i.e.0.06 m. We model a section of 20 spans, L = 1200 m.

The equations of motion of the cables are based on the full nonlin-
ear equations from section 4.1. There is a set of partial differential
equations corresponding to (4.7) for each cable. Terms for dropper
forces, influence of the registration arms, support forces, gravity and
pantograph impact are added.

4.4.1 Droppers

The design of droppers varies. In the danish overhead line systems,
they typically consist of a piece of bronze cable with suitable length,
clamped to the catenary cable and the recess of the contact cable. In
other designs the droppers are not clamped to the catenary cable but
lying across it. See figure 4.23. We believe the actual design of the
droppers is not very important. We model the droppers as bilinear
springs with a very stiff spring coefficient given by the axial stiffness
divided by the length of the dropper when loaded, kgrop = BAdrop

DLo >
and zero stiffness when slacking:
Fdropy, %ﬁ%ﬁ:‘ (distqy — DLoy) , (disty, — DLgy) >0
m= bl
0 , (distym — DLom) <0

see figure 4.24. In the figure we have indicated both the bilinear
spring model and a more realistic dropper force relation.

4.4.2 Registation arms

To distribute the wear on the contact strips of the pantographs, due
the friction between the contact cable and the contact strips, a stag-
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dist

Figure 4.23: Two different dropper design. In Denmark the one on
the left is most usual.
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Fdrop I

—_——— — = — diSt—DLO

Figure 4.24: The nonlinear dropper force relation. The dropper force
is modelled as a bilinear spring. dist is the actual distance between
the catenary and the contact cable; D Ly is the lenght of the unloaded
dropper.



stag stag

Figure 4.25: Stagger configuration; registration arm equipment.

ger of the overhead line systems is implemented. As mentioned ear-
lier, a simple, sagged overhead line system has larger stiffness at the
supports than at midspan. The stagger increases this phenomenon
in that the presence of a registration arm gives rise to an extra lo-
calised stiffness and an extra point mass fixed on the contact cable
at the position of the registration arm.

Apparent stiffness

Let us derive an expression for the extra apparent stiffness of the
contact cable at the position of a registration arm. In figure 4.25
the stagger and the registration arm equipment is illustrated. Tg
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is the horizontal reaction force between the contact cable and the
registration arm, which implements the stagger. Trr¢ is then the
axial force in the registration arm. [ is the length of the registration
arm and A is the heel setting. ¢ is the angle between the registration
arm and horizontal. The prestress force in the contact cable is Fj.
The length of each span is L and the size of the stagger is +stag.

For equilibrium of the registration arm, Tr must be balanced by
TrEq cos ¢. The vertical component of the force in the registration
arm is then given as Trr sin¢. In equilibrium this vertical force is
balanced by a local deflection of the contact cable. Any displacement
of the registration arm will result in unbalanced loading of the arm
resulting in a restoring force on the contact wire. We neglect the
lateral motion of the contact cable and derive Tg

2. stag 4-stag- Fy

V/ stag? + L? 0= L

2
sin¢:% and cos¢:m: 1_(?)

we find the axial force in the registration arm

Tr =2 (4.35)

With

T, 4 - stag - P
Trpg = —— = — 2290 (4.36)

cos¢p 1 — (,%)2

and the vertical composant becomes

4-stag-Py-h

Trpgsing = ————.
1-Lyf1— (%)

The stiffness coefficient k, of the apparent stiffness is then calculated

(4.37)
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Figure 4.26: Registration arm and equivalent point mass system.

as

k. — d(Tprpgsing) _  4-.stag Py 4-stag-Po-h _2h
a = dh = " ) 12
l-L\/I—(T) 2~l-L(1—(%) )

4-stag-Po ..
en(1-(4))"
(4.38)

With parameter values for the danish overhead line equipment: stag-
ger stag = + 0.2 m, pretension force Py = 12 kN, (typical) length of
registration arm [ = 1.1 m, heel setting A = 0.15 m, and span length
L = 60 m, we find that the upwards pointing force on the contact
cable Trpg sin¢g =~ 14.6 N, and the stiffness coefficient of the extra
apparent stiffness as k, = 147 N/m.

o)

Registration arm equivalent dynamic mass

The registration arm also gives rise to extra localised inertia and
static load. Considering figure 4.26, with Fy = 0, we easily derive
the static load of the registration arm

! M
~Mgz +Fl=0 & Fs:Tg,
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which leaves the equivalent static point mass ms; = % We then set
g = 0 and write the equation of motion of the registration arm as:

!

3M12<£ = Fyl.

%M I2 is the inertial moment of the registration arm through the fixed
endpoint. We call the vertical deflection of the non-fixed endpoint
of the registration arm z and approximate this as z = [sin(¢) =~ l¢
leaving the equation of motion of the registration arm as

1
g Mi = Fy.

For the equivalent system the equation of motion is
mddf = Fd,

and the equivalent dynamical point mass thus is

mg= 5. (4.39)

A registration arm in Denmark typically has the physical weight
M = 1.54 kg. With these data the static load is F; = 7.6 N and the
dynamical point mass is mq = 0.51 kg.

4.4.3 Support

We are convinced that the error made by assuming infinitely rigid
supports is of minor importance. Some authors have performed dy-
namic tests with the cantilever structure supporting the catenary
cable at each mast, [7], and found that the support should be equiv-
aleted with a sprung mass, mass and stiffness coefficient given by
Mupport = 438 kg and Esyppors = 280000 N/m.
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More for the sake of convenience than for the sake of accurate mod-
elling, we model all the intermediate supports as preforced springs
with the spring coefficients given as in [7]:

Fsupp,(t) = —280000 - (v2(zsupm,t) — v2(xsupm,0)) + Fsupo m,
(4.40)
where Fsupy, is the m’th support force, v2(x,t) is the vertical de-
flection of the catenary cable, zsup,, is the position of the m’th
support, and Fsupg p, is the preforce of the spring giving the right
static equilibrium configuration.

4.4.4 Equations of motion

Finally the partial differential equations for the contact cable be-
come:

Pog = —muvs+ Povgy — ElVggey
+EA (wauw + VgpUgy + %Ungw) — Mg
+ P Barop,,8(z — zdro
Zm_1 "Dm, ( pm) (4.41)
+ Yt Fregmd(z — z5upm,)
+Fc(t) 6(x — speed - t)
pug = —noug + EAugy + EAvgvg,

with boundary conditions

0(0) = (L) = 03(0) = v4a(L) = u(0) = w(L) =0,
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and the partial differential equations describing the motion of the
catenary cable read:

o V2 = —mv2 + Poo 024y — Ely 02450,

+EA, (v2mu2w + 02,4250 + gwgwm)

—H29 — Z;;di?p Fdropy,6(x — xdropy) (4.42)

+ 30 Fsupmd(z — zsupm )
pouy = —nous + EAsu2yy + EAp v2,024,
with boundary conditions
v2(0) = v2(L) =1, v244(0) = v24,(L) = u2(0) = w2(L) = 0.

In the above equations v and u are the variables that describe the
vertical and longitudinal motions respectively of the contact cable,
v2 and u2 are the variables that describe the vertical and longitu-
dinal motions respectively of the catenary cable. 7; and 7 are the
damping coefficients for vertical and longitudinal motions (we sim-
plify by assuming that the vertical damping is purely due to wind
friction, whereas the longitudinal damping is purely due to material
friction within the cables). The damping in overhead line systems is
extremely low and we have only included it as small viscos damping
in our modelling. ndrop is the number of droppers, Fdrop,, is the
force in dropper number m, and zdrop,, is the location of the m’th
dropper. nsup is the number of supports (exclusive the end sup-
ports), Fregy,, describes inertia forces and apparent stiffness forces
of the registration arms, and xsup,, is the location of the m’th sup-
port. F'¢is the contact force between contact cable and pantograph.
Fsupy, is support force number m.

4.4.5 Discretisation

We shall discretise the partial differential equations by using a finite
element method in space and a finite difference method in time. First
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we describe the spatial finite element approach.

finite element approach

In this subsection we shall in detail describe the finite element dis-
cretisation of the equations of motion of the contact cable, (4.41).
The calculations for the catenary cable are similar, and we will there-
fore not go through these.

First we rewrite (4.41) in its weak formulation:
fOL (b vg +mvg) Wlde + fOL Elv, W1, dz
+ Jy PovsWly do + [ BA (vyu, + 503) W1, do =
— fOL pugWldz + Y irop Fdrop,W1(xdropy,,)

m=1

+ 3P Freg, W 1(zsupy,)

m=1

+FcW1(speed -t) (4.43)

— [EI (052aW1 — vz W1g)|b + [PovaW1]§

+ [EA (kuwr + %vg) Wl]
fOL (1 uge + mouy) W2dz + fOL EAu W2, dz+

L
0
JEEARW2, = [EA (uch2 + %”3W2)]0L

W1 and W2 are the test functions for the vertical and longitudinal
equations respectively. By demanding W1(0) = W1(L) = W2(0) =
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W2(L) = 0, the weak formulation finally becomes:
fOL (pvee + mvy) Wldz + fOL Elvg W, dz
+ Jy PovsW iy do + [ BA (vyu, + 503) W1, do =
— fOL ugWldz + Z’;{Z‘{” Fdrop,W1(xdropy,,)
+ >t FregmW 1(zsupp,) (4.44)
+FcW1(speed -t)
fOL (1 uge + mouy) W2dz + fOL EAu W2, dz+

Ji BAv2w2, = 0.

Now we approximate v(x,t) and u(z,t) by 9(z,t) and 4(zx,t):

oz, t) = 3050 (bi()di(z) + ci(t)i(z))
a(z,t) = Y5G di(t)0i(z),

and we constraint ¢; and ; to lie in the set of functions so that they
posses the properties

(4.45)

¢Z($) =0 ; T < Ti—1

di(zi) =

¢i(z) =0 ,x>zi

4.46

z) =0 , z<a (4.46)
i) =
Hz) =0 , 2>

'(/}Z z =0 s X <z

'sz Zj =0

= 3 z‘in—l—l

)

)

g o iz (4.47)
)

)

= 3 z‘in—l—l
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and 6; to lie in the set of functions so that it possesses the properties

0;(x ) 0 , z<xi
0;(x;) =1 (4.48)
Oi(x) =0 , x> zi1.

The simplest choices then are ¢;, ¥;, and 8;, stated in chapter 2 for
a uniform grid:

_hg?_l(x—xi)?’ - h??’_l(x—xi)2 +1 , z<z<u
¢i(z) = & (-2 -5 (e—m)P+1 , zi<z<zin
Z OZ , otherwise
(4.49)
ﬁ(ﬁ —z)® + h,-2_1 ( — i) + (¢ — z), zio1 <z <z
pi(z) =9 3z @—@)® -2 (@—z)’+@—z), zi<z<zin
' 0 , otherwise
(4.50)
@ —z)+1 , g <z<uw
Oi(z) = —L@—z)+1 , z;<z<mzip (4.51)
"0 , otherwise.

The basis functions ¢;, ¥; and 8; are illustrated in figure 4.27.

Substituting (4.45) in (4.44) and skipping the ‘hats’ (that indicate
that we are in the discrete system), we find the discretised equations
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x(i-1) x(‘i) x(i+1)

Figure 4.27: Basis functions ¢;, ¥; and 6;.

of motion as:
Sy 5o (s + mubi) s + (s +mués o) W d =
— [ BT Y0 (bl + cpl!) W1 da
—Jo Py PSS (bid} + cif) W' d
— Jy BEAY ) (bidh + i) difp W1 do
— Jo BA S0 (bidh + cith}) (e, + cadly) (i) + cp) W' da
- fOL pugWldz + S Fdrop, W1(zdropy,)

m=1

+ 3P Freg, W 1(zsupy,)

m=1

+FcW1(speed - t)
1o 2% (s + 1adi)0:) W2 =
— J§ EAYEG (dith) W2 do

— i B (bidh + i) (bud, + cathy) W2 da.
(4.52)
By successively letting the testfunction W1 run through g, ¢1, 91,
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¢2; ¢2;- sy ¢nco—2a ¢nco—2a ¢nco—1; 'anco—b and 'anco and successively
letting the testfunction W2 run through 6, 0, 8s,..., Opc0—2, and

Onco—1 We obtain a system of (2(nco + 1) — 2) + (nco+ 1 —2) =
(3nco — 1) coupled, second order, ordinary differential equations in
the (3nco — 1) variables ¢y, b1, c1, be, co, b3, €3,-- ., bnco—2, Creo—2;
bnco—15 Cnco—1, Cnco and di, da, d3,...,dpco—2, dneo—1, and we are
done. (Note that by, bpeo, do, and dpe, are given by the boundary
conditions).

Lets summarize: The equations of motion of the contact cable, given
by the partial differential equations (4.41), was transformed to their
weak formulation given by (4.44). With the approximation (4.45)
and suitable basisfunctions (4.49),(4.50) and (4.51), the partial dif-
ferential equations were transformed to a system of coupled ordinary
differential equations. We then chose the testfunctions among those
of the basisfunctions that satisfies the boundary conditions. The co-
efficients from the integrations are calculated once and for all. These
integrations are performed in appendix B.

time discretisation

Modelling a complex system as a pantograph overhead line system
involves a lot of approximations and uncertainties. In our opinion
it is therefore not crucial to use very precise (and cpu expensive)
time integration algorithms. We have chosen the simplest possible
method, a so called forward Euler method which is just a finite dif-
ference method. This is characterized by the relation:

Tjp1 =285+ i1
dt? ’

Ft=j-dt) =~

where z is some variable, £; is its discrete approximation at ¢ = j-dft,
and dt is the time step size. For numerical stability there is an upper
limit of the value of dt. Experiments have yielded dt = hco/6500 s to
be suitable in our case, where Aco is the numerical value of the length
of the elements in the finite element discretisation of the contact
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cable. (Note: We use the same or a finer grid for the contact cable
than for the catenary cable).

4.5 Pantograph modelling

Knowledge of the dynamical behaviour of the pantograph is quite
important to be able to describe (and predict) the pantograph over-
head line system dynamics in numerical simulations. This section
considers the lumped mass models that are generally adopted for
describing the dynamics of asymimetric and symmetric pantographs.

Pantographs are often designed and optimised for a specific overhead
line system. A pantograph configured to operate on a railway line
with one type of overhead line system does not necessarily operate
satisfactorily with other types of overhead line systems. Especially
the DC and the AC pantographs are fundamentally different, and
operation of a DC pantograph on an AC overhead line system is
liable to cause dangerous levels of contact wire displacements.

Setting up the exact nonlinear equations of motion of a pantograph
is not only a pretty tough task in itself — it’s also complicated by the
fact that different parameters for describing some of the important
details of the design of the pantograph, are very difficult to estimate.
It is hard obtaining reliable data.

For investigations with an ezisting pantograph it is, in our opinion,
much better to perform dynamic measurements with the pantograph,
and then fit parameters of a relatively simple pantograph model with
the results from the experiments. The disadvantages with this ap-
proach is that the process of parameter identification puts constraints
on the complexity of the pantograph model. Besides the procedure
is unsuitable for investigations of nonexisting pantographs (i.e. for
instance in the design process of a pantograph). We would have
preferred to achieve the pantograph model data for our simulations
from such an experimental approach. However, due to mainly time
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Figure 4.28: The SCHUNK WBLS88 pantograph.

restriction reasons this has not been possible. Instead we have got
the data for our simple pantograph models from reports, pantograph-
vendors, railway engineers, and other researchers in this field, who
have performed experiments; [7], [14], [31] and [6].

In figure 4.28 and 4.29 is seen the asymmetric SCHUNK WBLS&§
pantograph, which is used for the swedish X2 (X2000) train and the
danish ER4 train. This would have been the most relevant pan-
tograph to include in our simulations. Unfortunately we have not
been able to get satisfactory data for this pantograph. Instead we
have then experimented with data for other pantograph models, and
chosen a model of the DSA350S pantograph for most of our numer-
ical simulations. Of the different pantograph models we have tried,
this is by far the one yielding the most favourable behaviour in our
simulations.
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Figure 4.29: The SCHUNK WBL88 pantograph, side view.
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<

speed

Figure 4.30: Lumped 3-mass model of asymmetric pantograph.

Our simple pantograph models only consider vertical motion. Obvi-
ously this is a simplification since the motion of the pantograph head
will have composants in the directions of the contact cable (longitu-
dinally) and perpendicular to the contact cable (horizontally). We
believe it’s reasonable to neglect the longitudinal composant. The
horizontal composant is harder to ignore. Lesser et al [32] find that
the rotational motion of the pantograph head in the direction trans-
verse to the travel of the pantograph is superior to all the other
motions, since the stagger of the contact cable excites this motion.
Coupling between this motion and vertical motion is then important.
In the end of this section we will show how the pantograph model
can be modified to include this motion. It should be relatively sim-
ple; however we have not had the time for it. The simple pantograph
models we adopt, only describe vertical motion.

We would like to stress that to model the vertical dynamics of an
asymimetric pantograph this way, at least a lumped 3-mass model
is necessary, whereas the vertical rigid body motion of a symmetric
pantograph takes at least a lumped 2-mass model. In figure 4.30
we have indicated how the lumped masses in the discrete model
should be associated with the physical pantograph as: head mass,
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Figure 4.31: The pantograph head.

upper frame mass, and lower frame mass. In figure 4.31 the pan-
tograph head is seen. Figure 4.32 shows the time response from
experiments with the asymmetric Brecknell-Willis “high-speed” pan-
tograph taken from [13]. The left graph corresponds to low-frequency
excitation and the right graph corresponds to excitation above the
first resonant frequency. Note that for low frequencies the upper
and lower frame arms are in phase with the input signal while the
pantograph head is out of phase. For frequencies above the first res-
onant frequency, the pantograph head and the upper frame arm are
in phase with the input signal while the lower frame arm is out of
phase. This means that a 2-mass model, which has only a single
frame mass, will not even be able to describe the vertical rigid body
motion of the asymmetric pantograph. This is the typical scenario.
For symmetric pantographs, however, the situation is different since
the upper and lower frame arms are more constrained to each other.
In this case a single lumped mass is adequate to describe the vertical
rigid body motion of the frame dynamics.

Taking a look at figure 4.28 and 4.29 again reveals that there is a
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Figure 4.33: Lumped mass pantograph model where the head mass
is divided into two masses to describe the separation of the contact
strips.

certain distance between each contact strip. This can be important
to include in the model since the unwishable contact slips between
the pantograph and the contact cable tend to happen at certain
points. Thus, the fact that there is this distance between the con-
tact strips has a positive effect on the interactions (the two contact
strips don’t hit the critical points at the same time). To include the
distance between the contact strips in the pantograph model, the
head mass (and the corresponding spring and damper) is divided
into two masses (and two springs and dampers) describing front and
rear part of contact head. See figure 4.33.

As an extra detail we also include extra masses for the contact strips.
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L.e.these are described by a spring and a dashpot connecting a little
mass. The spring rate corresponds to the flexibility of the contact
strips. The mass is not the physical mass but a ‘numerical’ mass,
tuned so that spring and mass together model the first deformable
mode of the contact strip. This is of course a very rough representa-
tion of the deformability of the contact strips. The spring rate, k.,
modelling the contactstrips of the DSA350S pantograph have been
measured by Andrea Collina and colleagues at Politecnico di Mi-
lano in Italy. They found k. = 50.000 N/m. With a frequency of
the first deformable mode at approximately f; = 80 Hz this leaves
the numerical mass as my, = 0.2 kg. We use these data for all our
pantograph models.

All together we end up with the pantograph model seen in figure 4.34.
In table 4.1 is listed data for 4 lumped mass pantograph models: the
SNFC GPU 25 £V pantograph, two different models of the Dorniers
DSA350S pantograph, and a set of data for a lumped 2-mass model of
the SCHUNK WBL88 pantograph (which is insufficient, as described
above). The parameters correspond to figure 4.30.

4.5.1 Inclusion of rotation of pantograph head

We will here consider the modifications of the simple pantograph
model, necessary to take into account the rotational motion of the
pantograph head. The best approach would be first to identify the
parameters of the 3-mass pantograph model — then to modify the
model as described below.

Taking a look at figure 4.28 again, we see that the rotation of the con-
tact head is connected with torsion of the upper frame linkage. The
flexibility of the upper frame linkage can be estimated or, even bet-
ter, measured. The simple pantograph model can then be modified
as sketched in figure 4.35. On the left the pantograph is seen from

Yki (2) = 4400 + 2.364 - 1072% — 7.364 - 10" 02* N/m.
%ascending/descending; additional frame damping +17 N.
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Figure 4.34: The final lumped mass pantograph model which also
includes a very rough description of the contact strip deformability.
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GPU 25 kV | DSA350S | DSA350S WBLS8
ORE Milan

my [kg] 7.0 5.9 6.0 6.6
ky [X] 9000 2650 4500 | 4400-6800
Dy [3Z] 0 0 20 75.6
mo [kg] 8.1 7.1 9 19.7
ks [ 1200 10000 7000 10000
D, [X5] 0 0 7 0/63.5 2
mg [kg] 23.0 11.8 5.0 -
ks [X] 0 80 500 -
Ds [X£] 140 70 70 -
kae [ 0.018 0.0066 0.0066 0.00648
Fstat [N] 70 80 80 70

Table 4.1: Data for lumped mass pantograph models.

Figure 4.35: Left: front view of pantograph. Middle: The lumped 3-
mass model. Right: The rigid body pantograph model with inclusion

of a description of the rotational motion of pantograph head.
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the front; in the middle the original discrete, lumped 3-mass model;
and on the right is shown the discrete model when rotation of the
pantograph head is included. The only function of the top bar in the
model is to distribute the contact force to the pantograph head body
right, according to the geometry of the pantograph. The top bar is
infinitely rigid as well as the connections from it to the pantograph
head body. Note that it is necessary to know the relevant moment
of inertia of the pantograph head. k1o describes the flexibility of the
upper frame linkage and k;; the flexibility of the connecting bar be-
tween the upper frame linkage and the contact head, see figure 4.28.
The spring rate from the original discrete 3-mass pantograph model,
k1, is related to k11 and kq9 as

2k11k12

kH=——"7-—".
" ki + 2kn0

It is also necessary to know the distance between the attachment
points of the upper frame linkage to the pantograph head and be-
tween the attachment points of the contact strips to the pantograph
head. Finally we have in figure 4.35 indicated the horizontal varia-
tion of the position of the contact point (the effect of the stagger).

4.6 Coupling of pantograph to catenary sys-
tem

By far the most difficult part in the process of modelling the panto-
graph catenary system has been the coupling of the two dynamical
systems. The discussion of the coupling of discrete and continuous
systems in chapter 2 was mainly based on our experiences from the
process of coupling the pantograph and the catenary system.

The coupling involves two tasks: Computation of the contact force
and handling of the moving, localized forcing of the contact cable.
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4.6.1 Contact force

In [35] and [37] theoretical considerations on the contact force and
the coupling are made. One of the authors has later admitted that all
these considerations failed when they were adopted in simulations.

In our opinion the correct contact force can be decided from two
simple criterias (Newton’s second law):

e The force from the contact cable to the pantograph should
equal the force from the pantograph to the contact cable.

e The position of the contact point on the pantograph should
equal the position of the contact point on the contact cable.

Decision of the contact force from these two criterias involves an
iterative procedure between each time step to obtain convergence of
the contact force on the pantograph and on the contact cable and of
the contact point for the pantograph and for the contact cable.

An early version of our developed simulation program included a
Newton-Raphson procedure, [2], for the decision of the contact force.
This was rather cpu-time consuming and we therefore considered al-
ternative approaches. We ended with an approach in which a very
stiff spring between the pantograph and the cable describes the con-
tact. This gives results in good harmony with the more correct
iterative procedure — and it is much faster.

4.6.2 Discretisation of the dirac delta function

The dynamics of the pantograph is coupled to the motion of the
contact cable and appears as a moving, discrete force in the par-
tial differential equation for the motion of the contact cable (4.41).
In this section we shall discuss the handling of this term when we
discretise.

At first glance, compared to other discretisation methods, the fi-
nite element method seems very well suited to handle such localised
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15

Figure 4.36: Expansion of Dirac delta function

forces, since dirac’s delta function has the property:
o0
/ F(2)8(z — o) de = F(zp).
—Co0

Thus, in principle no approximations of the dirac delta function has
to be made to handle the term for the pantograph force. However,
when simulating we observated some motion which clearly was de-
pendent of the element lengths; i.e. a numerical, non-physical phe-
nomenon. A more thorough investigation identified the delta func-
tion as the source of the trouble. We illustrate the problem by ex-
panding a dirac delta function after our basis functions:

n
d(z — 20) = D(z — z0) Z cid; + did;)
=0
In figure 4.36 we have depicted the expansion of é(z — 2) using (4.49)
and (4.50) with n =4 and h; = h = 1. The troublesome oscillations
near the singularity are clearly seen. In the equations of motion of the
contact cable a dirac delta function appears. The poor representation
of the dirac delta function gives rise to the high frequency, numerical
oscillations destroying the overall picture in the pantograph overhead
line simulations. The problem is somewhat reduced by refining the
discretisation. Not quite to an extent that makes it acceptable if the
cpu-time for each simulation is included in the considerations.
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Figure 4.37: Approximation of the dirac’s delta function.

Instead we approximated the dirac’s delta function by smearing it
out. We have chosen the approximation as

(@) — @) + fp, B <e<0
§a)m{  BZ(aP - 2(2)?+ 2, 0 <z <M, (453)
0 , otherwise

where hd is then a parameter for the width of the pulse shaped ap-
proximation of the delta function. See figure 4.37. The wider the
pulse is, the more smooth is then the approximation and the better
the pulse is expanded in the basis functions. On the contrary, too
wide a pulse might of course make the discretised model unable to
model physical phenomena due to the pantograph force, which in
reality is very localised. Thus, we have to find a suitable compro-
mise for this parameter, acceptable for both physics and numerics.
We have experimented somewhat and have found hd = 2.5hco to be
suitable, where hco is the length of the elements in the finite element
discretisation of the contact cable.
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4.7 Results

We shall now present our numerical results. Where nothing else
is stated, the pantograph model is given by the ‘Milano’ data for
the DSA350S pantograph. The presentation of our results will be
divided into 5 subsections. First we will discus the presag of the
contact cable in the overhead line system. We shall then compare
the importance for the pantograph overhead line system investiga-
tions of the ‘small terms’ in the cable equations. We have a short
subsection on the (non)importance of the registration arm dynamic
mass. The breaking sound barrier like phenomenon near the critical
speed is investigated, and finally we consider the effect of the spatial
discretisation versus the effect of filtering of the output signal.

4.7.1 Presag

In section 4.3 we mentioned that the simple configuration is softer
in the middle of a span than at the ends. We illustrate that in
figure 4.38, where we for one (arbitrary) span have depicted the qua-
sistatic uplift of the contact cable relative to the static equilibrium
configuration, at the position of a constant, upwards pointing force
of 100 N. Or to put it another way, in the figure we have depicted
the relative uplift of a 100 N biased pantograph, in the span given
by 420 m < x < 480 m, for an infinitely slow train speed. The grid
in the figure indicates the position of the droppers.

The variation of the flexibility of the contact cable over the span is
clearly seen. Note that the quasistatic uplift in the most soft place
is more than twice as large as the quasistatic uplift the most stiff
place. It is seen that there are local minima in the quasistatic uplift
at the positions of the droppers. Especially the droppers near the
masts give rise to very hard spots.

We will now derive a simplified model for the overhead line system.
We search for a stiffness per length, k(z), such that the motion of
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Figure 4.38: The quasistatic uplift of the contact cable relative to the
static equilibrium position, for a upwards pointing force of 100 V.

the contact cable excited by a moving force can be approximated by
the equation

vy = Pyvgy — k(z)v + F.6(z — vt). (4.54)

This model is of course only justified for performing fast, rough inves-
tigations, since the model neglects inertia of catenary cable, bending
stiffnesses, nonlinearities, etc. By experimenting with the numbers
we have found the stiffness per length &(z) for this purpose given as

k(z) = 7P (2064 6(z — (6 + (i — 1) - 60)))
+§:"s”‘”‘( 512 6(z — (18 + (i — 1) - 60)))
+ 7P (1390 §(x — (30 + (i — 1) - 60))) (4.55)
+ SR (512 6(x — (42 + (i — 1) - 60)))
+ 1P (2064 6(x — (54 4 (i — 1) - 60))),
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where nspan is the number of spans. and the constants are spring
coefficients and have units N/m.

We have been using the simplified model given by (4.54) and (4.55)
to investigate if advantages could be obtained with an asymmetric
presag of the contact cable, compared to the usual symmetric presag.
We have found that only small improvements could be obtained by
making the presag asymmetric. Anyway this is most of theoretical
interest, since today most railway lines must be equally runnable
from both sides. An asymmetric presag giving better performance
for trains running in one direction is likely to give worse performance
for trains running in the other direction.

In figure 4.39 we have depicted the altitude of the contact point
at the position of a moving constant force of 80 N, travelling with
190 km/h, relative to the static equilibrium position, as calculated
with the simplified model. In figure 4.40 we illustrate the correspond-
ing result calculated for an overhead line system without presag, and
with the dynamic contact force given by the coupled overhead line
system and a pantograph. The similarities and the differences of
the two results are clear. The simplified model predicts the over-
all motion but misrepresents the influence of the singularities at the
positions of the droppers. Most important, it is seen that there is
a phase shift of the two models. This is due to inertia effects of
the catenary cable and of the pantograph, which is neglected in the
simplified model.

In the design parameters for the danish overhead line system, the
size of the presag is prescribed as ﬁ of the span length, which
yields 0.06 m. In figure 4.41 we have illustrated the altitude of
the contact point at the position of the pantograph travelling with
190 km/h, calculated with a model of an overhead line system with
a 0.06 m presag. It is seen that the amplitudes of the variations of
the altitudes of the contact points are of same order in the system
with the 6 ¢m presag and in the system with no presag.

In figure 4.42 is illustrated the altitude of the contact point over
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Figure 4.39: The uplift of the contact cable relative to its static

equilibrium position at the position of the moving force of 80 N,
calculated with the simplified model.
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Figure 4.40: The altitude of the contact cable at the position of a
moving pantograph, calculated with a full model of an overhead line
system without presag.
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Figure 4.41: The altitude of the contact cable at the position of a

moving pantograph, calculated with a full model of an overhead line
system with a 6 cm presag.
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3 spans, calculated with full models of overhead line systems with
presags from top to bottom of 0 ¢m, 2 ¢m, 4 ¢m, and 6 c¢m, and
the pantograph travelling with 190 km/h. The comparison of the 4
different signals reveals that

e The 0 ¢ presag configuration gives large amplitude, relatively
low frequent variations of the altitude of the contact point.

e The 2 ¢m presag configuration gives lower amplitudes and still
low frequent variations of the altitude of the contact point.

e The 4 ¢m presag configuration signal has same order of mag-
nitude amplitude as the 2 ¢m presag configuration signal, but
high frequent motion is introduced.

e The 6 ¢m presag configuration gives variations of the altitude
of the contact point with large amplitudes and a high frequency
content.

In figure 4.43 we have depicted the contact force signals correspond-
ing to the contact point altitude signals in figure 4.42. We admit
it is a bit difficult looking at this figure (it is easier seen with all
signals depicted simultaneously with different colours, in one graph,
which unfortunately was not possible for this thesis). It is, however,
clear from the figure that the performance of the normal overhead
line system with the 6 ¢m presag is inferior to the other ones.

One way of measuring the quality of an overhead line system is by
studying the statistical occurrences of contact losses; another is by
studying the mean value M and the standard deviation ¢ of the con-
tact force signal. A measure for the contact quality is the relation
M —30. 1t is a necessary but not sufficient demand that M —30 > 0
to obtain a satisfactory contact quality. In tables 4.2 and 4.3 we
have listed the mean values My, My, My, and Mg and the standard
deviations oy, 02, 04, and og of the contact force signals for the
overhead line systems with the specified presag, for the train speeds
140 km/h, 180 km/h, 190 km/h, 200 km/h, 210 km/h, 220 km/h,
230 km/h, and 240 km/h. The contact force signals were obtained
with simulations of the pantograph travelling the distance of the first
10 spans of the overhead line systems, i.e. 600 m. From the table it
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Figure 4.42: The altitude of the contact cable at the position of
a moving pantograph, calculated with full models of overhead line

systems with 1) no presag, 2) a 2 c¢m presag, 3) a 4 ¢m presag, and
4) the normal 6 ¢m presag.
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Figure 4.43: Contact force signals calculated with full models of an
overhead line systems with 1) no presag, 2) a 2 ¢m presag, 3) a
4 c¢m presag, and 4) the normal 6 c¢m presag, corresponding to the
variations of contact point altitudes seen in figure 4.42.



146 Chapter 4. Pantograph catenary dynamics

speed My My M, Mg
Fm/h | IN]| V| IN]| M)
140 | 73.10 | 76.38 | 79.94 | 82.58
180 | 77.48 | 80.67 | 83.69 | 86.90
190 | 78.89 | 82.13 | 85.18 | 85.44
200 | 80.09 | 83.33 | 86.40 | 89.70
210 | 81.37 | 84.53 | 87.52 | 90.74
220 | 83.72 | 86.81 | 89.78 | 93.35
230 | 85.36 | 88.32 | 91.34 | 94.67
240 | 86.94 | 89.95 | 92.81 | 95.94

Table 4.2: Mean values of contact force signals for different speeds
and overhead line systems with no presag, a 2 ¢m presag, a 4 ¢m
presag, and a 6 c¢m presag.

speed o9 o9 o4 o6
Fm/h | N]| V]| [IN]| [N]
140 | 15.70 | 14.42 | 14.31 | 15.22
180 | 24.03 | 23.73 | 25.16 | 27.81
190 | 21.65 | 21.42 | 23.58 | 27.41
200 | 21.99 | 20.40 | 22.50 | 26.96
210 | 22.34 | 22.70 | 26.44 | 31.29
220 | 32.06 | 32.16 | 33.50 | 35.11
230 | 33.06 | 32.70 | 34.35 | 36.23
240 | 36.70 | 36.46 | 35.26 | 35.96

Table 4.3: Standard deviations of contact force signals for different
speeds and overhead line systems with no presag, a 2 ¢m presag, a
4 ¢m presag, and a 6 c¢m presag.
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is seen that using the ratios of the mean values of the contact force
signals over the standard deviations of the contact force signals as
measure, the 2 ¢m-presag configuration is the preferable one of the
above, slightly preferable to the configuration with no presag. Look-
ing at the contact force signals, however, the configuration without
presag is slightly preferable to the 2 ¢m configuration, since the latter
at certain points is closer to experiencing contact losses.

Now, we are aware of the controversity of this result. Our remarks
above concerning the amplitude and the frequency content of the con-
tact point altitude signal heuristically explain the conclusion; with
the introduction of the presag, the variation of the contact point al-
titude gets a high frequency content that makes contact losses more
probable.

4.7.2 Importance of ‘small terms’

We shall now study the importance for the pantograph overhead line
system investigations of the ‘small terms’ in the equations for the
cable motions. Our method of investigation is simply to switch on
and off the different physical constants, performing some simulations,
and compare the time series of the contact force.

Let us recall that the bending stiffness is the first small term that
has traditionally been included in the modelling of the cables, thus
changing the cable models from a linear string model to a linear beam
model. The justification was that for investigations with train speeds
approaching the critical speed (the propagation velocity of transver-
sal waves, ~ 413 km/h for the considered overhead line systems),
inclusion of the bending stiffness was important to satisfactorily de-
scribe the breaking sound barrier like phenomenon. We shall return
to this in section 4.7.4. In this section we shall consider more realistic
train speeds.

It turns out that in the speed range 140 km/h — 240 km/h, which is
relevant for the overhead line system used by the Danish State Rail-
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ways, the inclusion of bending stiffness has very little significance.
This corresponds to our expectations as referred to above, in our
remarks about string models versus beam models. In figure 4.44 we
have depicted the contact force signals over 2 spans, for the train
speed equal to 280 km/h. The top graph shows the contact force
obtained in the simulation with the full cable equations, and the
bottom graph shows the contact force obtained in the simulation
with the bending stiffness set to zero. It is seen that even at this
high speed, the bending stiffness has very little significance for the
appearance of the contact force signal.

However, we find that the nonlinearities do have some significance
for the dynamics in the considered speed range. We illustrate it in fig-
ure 4.45, which shows times series of the contact force obtained from
simulations with the train speed set to 230 km/h. In the upper graph
we use the full equations for the cable motion, corresponding to (4.7).
In the middle graph the axial stiffness is set to zero, EA = 0, cor-
responding to the linearised equation for the cable motion (4.3). In
the bottom graph we have implied that the longitudinal motion can
be neglected in the cable motion, corresponding to (4.9). It is seen
that the contact force signal obtained with the linearised equation
yields larger contact peaks and more contact losses than the contact
force signal obtained with the full equation. The time series of the
contact force from the simulation in which the geometrical nonlin-
earity term is included also differs from the time series solution of the
full equations, but the differences are smaller. (Since we above have
introduced mean value and standard deviation as mean of measure,
we rattle off their values for the contact force signals in the figure:
M =85.4 N and ¢ = 33.1 N for the upper graph, Mg4—¢ = 86.2 N
and oga—o = 33.0 N for the middle graph where the nonlinear-
ities are neglected, and M,—y = 87.0 N and o,=¢ = 34.2 N for
the bottom graph, where the longitudinal motion is assumed negli-
gible. The corresponding values for the contact force signal found
by setting the bending stiffness to zero are Mg;_o = 85.5 N and
ogr—o = 33.0 N which is seen to be very close to those of the full ca-
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Figure 4.44: Comparison of contact force signals from simulations
with the train speed 280 km/h. The top graph corresponds to the
simulation with the full cable equations, and the bottom graph cor-
responds to the simulation with the bending stiffness set to zero.
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Figure 4.45: Contact forces. Cables modelled after (4.7) (top), (4.3)
(middle), and (4.9) (bottom).
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ble equations. The corresponding values for the contact force signal
found by setting both the bending stiffness and the flexural stiffness
equal to zero, and thus model the cables as linear strings, are found
as Mpa—pr—o =86.3 N and oga—gr—o = 32.3 N.)

We conclude that the nonlinearities have a positive effect on the
dynamic interaction between the pantograph and the overhead line
system. Our investigations have convinced us that in order to model
the dynamic interaction between pantographs and overhead line sys-
tems, the cables should be modelled with the nonlinearities included.
We find the bending stiffness to be less important.

However, the modelled overhead line system is designed for relatively
low speeds. In systems where trains with higher speeds operate, the
cables in the overhead line systems are thicker. Since the bending
stiffness F1 grows with the fourth power of the diameter of the cable,
whereas the axial stiffness FA only grows with the second power of
the diameter of the cable, the bending stiffness may be more impor-
tant for these overhead line systems. We would suggest to include
all the ‘small terms’, so that the cables in the overhead line systems
are modelled by the equation (4.7).

Another argument for including the bending stiffness in the descrip-
tion is the choice of numerical method. If a finite element method
is used for the spatial discretisation of the cable equations, the in-
clusion of the bending stiffness necessitates a choice of smooth basis
functions. Referring to chapter 2 we have found that the convergence
of the contact force signal is faster with smooth basis functions.

In section 4.2.2, where we considered the propagation of pulses on a
single cable, we found that a very good approximation of the full ca-
ble equation could be obtained by describing the longitudinal motion
by a ‘quasistatic’, local part plus the first few linear modes (possi-
bly only the first linear mode). Unfortunately we have not had the
time to test this approach for the pantograph overhead line system
investigations. This should be investigated in the future since this
would mean that the longitudinal motion could be included in the
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description in a very cheap way, in means of computer power.

4.7.3 Registration arm

We have found rather large discrepancies between our value for the
dynamic mass modelling the inertia of the registration arms, and
the values other researchers are using; discrepancies that are hard
to explain by different designs. We also know that registration arms
made of other materials, typically aluminium, are sometimes consid-
ered instead of the normal and heavier steel registration arms. We
therefore investigate the importance of the size of the dynamics mass
of the registration arm.

In figure 4.46 we compare the contact force signals obtained with our
normal value for the dynamic mass of the registration arm, mr =
0.51 kg, and obtained with a value of the dynamic mass we have
found in [7] for an almost similar overhead line system, mr = 1.12 kg.
The speed for the simulations is 230 km/h. It is seen that at this
speed the changed dynamic mass has some influence on the contact
force signals near the supports (the positions of the registration arms
are indicated by the grid). We have of course performed similar
investigations for other speeds, and the conclusion is that the exact
value for the dynamic mass is only of minor importance in the overall
picture, but locally around the positions of the masts, a reduced
mass of the registration arm can help significantly to improve the
dynamics.

4.7.4 Behaviour near critical speed

In this section we shall investigate the breaking sound barrier like
phenomenon, that is predicted for trains accelerating up to and past
the critical velocity. The prediction of this phenomenon is illustrated
in figure 4.47 in which the deflection of a linear string forced by a
constant, moving force is depicted. The figure shows snapshots at
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Figure 4.46: Contact forces. Top graph: Normal value of dynamic
mass of registration arms, mr = 0.51 kg. Bottom graph: dynamic
mass of registration arms is set to mr = 1.12 kg.



154 Chapter 4. Pantograph catenary dynamics

the same time ¢ = ¢, for 4 different situations. In the top figure the
force moves with a speed well below the wave propagation velocity
of the string; this wave propagation velocity can in the figure be seen
as the position of the front edge of the disturbed part of the string
divided by the time £;. In the second snapshot the force travels with
a speed close to but lower than the wave propagation velocity. In
the third snapshot the force moves with the speed equal to the wave
propagation velocity; the position of the force and the front edge of
the disturbed part of the string coincide. In the last snapshot the
force moves with a speed larger than the wave propagation velocity.
The disturbed part of the string is now behind the force. The change
in situation from the second to the fourth snapshot is violent and
the change takes place instantaneously when the speed goes from
being subcritical to being supercritical. This is the so called breaking
sound barrier like phenomenon, called this way since the situation
corresponds to that of an aeroplane breaking the sound barrier.

With inclusion of the bending stiffness, i.e. switching from a linear
string model to a linear beam model for the cables, the breaking
sound barrier like phenomenon still appears, but the breaking is
somewhat smoothed out, [4].

We will now study and compare the importance for the breaking
sound barrier like phenomenon, of the inclusion of the bending stiff-
ness and the nonlinearities in the cable motion equations. For this we
have excited the overhead line system with a moving, constant force,
instead of the dynamic contact force from a pantograph. We note

(again) that the critical velocity is given by v, = ‘/%Q ~114.8m/s ~
413 km/h.

In figure 4.48 we have depicted the deflection of the contact cable
relative to its static equilibrium configuration, as it appears when ex-
cited by a moving force with subcritical speed, speed = 400 km/h.
The position of the force is speed -t = 180 m in all the snapshots, as
indicated by the grid in the figure. The upper graph shows the deflec-
tion of the contact cable as found with the full cable equations (4.7);
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Figure 4.47: A string excited by a constant moving force with speed
much lower than the critical speed, with the speed a little lower than
the critical speed, with the speed equal to the critical speed and with
the speed above the critical speed.
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the second graph shows the deflection of the contact cable as found
by modelling the cables as beams, i.e. with (4.3) as the cable equa-
tion; the third graph is the deflection of the contact cable as found
by setting the bending stiffness equal to zero; and the bottom graph
is the deflection of the contact cable as found by setting the bending
stiffness and the flexural stiffness equal to zero and thus model the
cables as strings. Remember that the speed of the force for the simu-
lations was subcritical, and the appearance of the results correspond
more or less to our expectations; the position of the force coincides
with the position of the maximal cable deflection. Note that in the
simulations where the nonlinearities were neglected, the deflection
(nonsurprising) is larger than in the simulations where the nonlinear
stiffening is included in the cable description. (Anyway, we are ne-
glecting the unrealistic large cable deflections in these simulations.
The overhead line system would probably have broken already).

In figure 4.49 we show the corresponding results, but now for a su-
percritical speed, speed = 420 km/h. From this figure we have the
following remarks:

e The deflection of the contact cable when this is modelled as a
string (bottom graph) corresponds pretty well with our expec-
tations from figure 4.47, except for a little discrepancy which
we put down to numerical dispersion.

e The deflection of the contact cable when this is modelled as a
beam (second graph) is rather similar to the deflection when
this is modelled as a string (bottom graph). In both graphs the
breaking sound barrier like phenomenon has taken place, and
the pantograph is mainly travelling in front of the disturbed
part of the contact cable.

e The deflection of the contact cable when this is modelled with
the full cable equations (upper graph) and when the bending
stiffness is set to zero are nearly identical. We conclude that
the bending stiffness has very little influence on the result.

e In the cases which include the nonlinearities of the cables (first
and third graphs), the deflection is, as expected, much smaller
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Figure 4.48: Deflection of the contact cable relative to its static equi-
librium configuration, when excited by a constant, moving force with
the subcritical speed, speed = 400 km/h. Upper graph: full cable
equations (4.7). Second graph: cables modelled as beams, (4.3).
Third graph: The bending stiffness set to zero. Bottom graph: ca-
bles modelled as strings, (4.1).



158 Chapter 4. Pantograph catenary dynamics

v
=
o1

T
1

120 180 220

v [m]

o

120 180 220
x[m]

Figure 4.49: Deflection of the contact cable relative to its static equi-
librium configuration, when excited by a constant, moving force with
the supercritical speed, speed = 420 km/h. Upper graph: full ca-
ble equations (4.7). Second graph: cables modelled as beams, (4.3).
Third graph: The bending stiffness set to zero. Bottom graph: cables
modelled as strings, (4.1).
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than in the cases where the nonlinearities of the cables are not
included.

In the cases which include the nonlinearities of the cables (first
and third graphs), the breaking sound barrier like phenomenon
is only in its beginning state. The position of the force is no
longer coinciding with the position of the maximal contact ca-
ble deflection, as it was in case of the subcritical speed in fig-
ure 4.48, but is not mainly in front of the disturbed part of the
contact cable either as it is in the second and fourth graphs,
the linear cases. This indicates that the breaking sound bar-
rier like phenomenon is smoothed out by the inclusion of the
nonlinearities.

Inspired by the last remark above, we in figure 4.50 depict the deflec-
tion of the contact cable relative to its static equilibrium position,
calculated with the full cable equations (thus including the nonlinear-
ities) for 6 different speeds: speed = 400 km/h, speed = 410 km/h,
speed = 420 km/h, speed = 430 km/h, speed = 440 km/h, and
speed = 450 km/h.

From the figure we remark:

The position of the force and the position of the maximum
deflection of the contact cable coincide in the first two graphs,
the two subcritical cases.

In the last 4 graphs, the position of the force moves closer and
closer to the front end of the disturbed part of the contact
cable, the ‘more supercritical’ the speed is.

We conclude that there is a breaking sound barrier like phe-
nomenon for the overhead line system.

We find that the breaking sound barrier like phenomenon is
much smoother than predicted by the linear equations, and
that there is no way this phenomenon can be described satis-
factorily without including the nonlinearities of the cable mo-
tion.
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Figure 4.50: Deflection of the contact cable relative to its static equi-
librium configuration, when excited by a constant, moving force with
the speed 1) 400 km/h, 2) 410 km/h, 3) 420 km/h, 4) 430 km/h,
5) 440 km/h, and 6) 450 km/h. Note the smooth breaking sound
barrier like phenomenon as a contrary to the case with linear cable
models.
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4.7.5 Filtering

In this section we shall treat the subject of filtering of output signals.
The background for the investigations comes from our considerations
on choice of spatial discretisation method, as we gave an account
on in chapter 2. We know of other researchers who use a finite
difference method for the spatial discretisation, and due to computer
power reasons find it impracticable to use a sufficiently fine spatial
discretisation to get converged output. Instead they use some spatial
discretisation, and filter the output results to get rid of the large,
numerical oscillations. As we mentioned in chapter 2 we feel very
inconvenient with this approach.

We shall now illustrate the problem for the pantograph overhead line
system with our choice of spatial discretisation, and show that great
care should be taken when filtering an output signal.

Our method of filtering is rather primitive: We use the fast fourier
transform (fft) device of MATLAB, [33], to transform the signal to
the frequency domain. We choose a cut-off frequency and discard all
the contribution to the signal which is content above this frequency.
(Actually, due to the symmetry properties of a fast fourier transfor-
mation, we only discard the part of the signal given by the frequency

range fout-off < f < (fmax — feut-off), Where fmax is the maximal
frequency given by 1 over the time step size in the time series.)

In figure 4.51 we show the contact force signals over two spans, for
a train speed of speed = 220 km/h, and with 3 different spatial
discretisation step sizes, Ax =2 m, Az =1 m, and Az = 0.5 m.

It is seen that the contact force signals get lower amplitudes and
become more high frequent as the discretisation step size decreases.
In figure 4.52 we blow up the part of the signal given by 360 < z <
384 for better being able to see the effect.

We must conjecture that the contact force signal given by the small-
est spatial discretisation is ‘closest’ to being the true one.
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Figure 4.51: Contact force signals over 2 spans, for a train speed of
speed = 220 km/h, and spatial discretisation lengths of the cables
of 1) Az =2m, Az =1 m, and Az = 0.5 m.
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Figure 4.52: Blow up of figure 4.51.
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In figure 4.53 we have filtered all the output signals with cut-off fre-
quencies corresponding to the spatial step sizes; i.e. since speed =
220/3.6 =~ 61.1 m/s, the output signals are filtered with cut-off fre-
quencies 30.5 Hz, 61.1 Hz, and 122.2 Hz. Comparison with fig-
ure 4.52 yields that only very little of the signals are contained at
frequencies corresponding to the spatial discretisation and above.

In figure 4.54 we compare the unfiltered signals (full lines), with
the signals filtered with cut-off frequencies corresponding to twice
the spatial step sizes (stabled lines), for the two contact force signals
given by the spatial step sizes Az = 2 m and Az = 0.5 m. Le.the cut
off frequencies are given by 15.2 Hz in the upper graph and 61.1 Hz
in the bottom graph. We note that in the upper graph, the filtered
and the unfiltered signals are very different, whereas the filtered and
the unfiltered signals in the bottom graph are not very different. For
the upper graph we must ask ourselves, what is being filtered away;
numerical oscillations or physical oscillations? The upper graph sug-
gests that the given spatial step size is too large to obtain sufficient
convergence of the contact force signal. However, the bottom graph
shows that a filtration of the output signal corresponding to twice
the spatial step size,

61.1 m/s

fcut_oﬂ‘ = m = 6]_]_ HZ,

yields a filtered output signal very close to the unfiltered signal. This
suggests that the oscillations in the output signal in the bottom
graphs in figures 4.51, 4.52, 4.53, and 4.54 are physical, modelled
oscillations rather than numerical oscillations.

Thus, one should be very careful when filtering an output signal.
It may be relevant, but we think that the unfiltered output signals
should also be studied, to be sure that the filtration does not de-
stroy important informations about the physical system. We hope
it is clear why we find it so important to chose a spatial discretisa-
tion method with fast convergence for these kind of systems, as we
reflected on in chapter 2.
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Figure 4.53: Filtered contact force signals corresponding to fig-
ure 4.52. The cut-off frequencies are 30.5 Hz in the upper graph,
61.1 Hz in the middle graph, and 122.2 Hz in the bottom graph,
corresponding to the speed divided by the spatial discretisation step
sizes.
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Figure 4.54: Comparison of unfiltered contact force signals (full
lines) with contact force signals filtered with cut-off frequencies cor-
responding to twice the spatial discretisation step sizes. In the upper
feut-off = 19-2 Hz; in the bottom graph f., i of = 61.1 Hz.
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We illustrate the dangers of filtration with one of our results from a
previous section. In figure 4.43 we showed the contact force signals,
for a pantograph travelling with speed = 190 km/h under overhead
line systems with no presag, a 2 c¢m presag, a 4 ¢m presag, and a
6 cm presag. We found the 6 c¢m presag configuration (which is
the one corresponding to the danish overhead line systems) to have
inferior performance to the other ones. In figure 4.55 we show this
signal again in the upper graph, whereas the mid graph shows the
contact force signal filtered with a cut-off frequency corresponding to
the spatial discretisation step size, f.,i_off = 92 Hz, and the bottom
graph shows the contact force signal filtered with a cut-off frequency
of feut-off = 26 Hz. It is seen that any information about the 6 cm
presag configuration having a problem at the end of each span is lost
by the filtration.
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Figure 4.55: Upper graph: The unfiltered contact force signal of a
pantograph travelling with speed = 190 km/h under an overhead
line system with a 6 ¢m presag. Middle graph: The contact force
signal filtered with f.. i off = 52 Hz. Bottom graph. The contact
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Chapter 5

Conclusion

Let us conclude the thesis.

In chapter 2 we discussed in a general sense how to handle ‘nonlinear
systems with discrete and continuous elements’. Our discussion was
based on our own experiences, mainly from the part of the ph.d.
project about pantograph overhead line system interactions. With a
simple example of the considered type of system, we illustrated some
of the problems connected to the coupling of continuous and discrete
subsystems. We found that performing the spatial discretisation with
a finite element method with cubic basis functions is best suited,
because it gives faster convergence in the coupling process of the
two subsystems than other methods. We also mentioned the modal
approach as a very strong alternative, if the continuous system can be
described by linear equations, or if it is very rigid, not too complex,
and/or only the first few modes are excited.

In chapter 3 we considered train bridge interactions. We found that
this system is exactly of the type that can advantageously be han-
dled with a modal approach. Our train bridge investigation differed
from earlier investigations by the relatively complex train models,
which included a description of some important nonlinearities. The
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background for these nonlinearities was described shortly. A few re-
sults were referred to. The most important conclusion of our train
bridge investigations was that a very simple train model could be
adopted with very good accuracy in investigations only considering
vertical motion of the bridge.

The most important system we have analysed is that of pantograph
overhead line system interactions in chapter 4. We first reflected on
the traditional approaches for modelling the cables in such systems.
We derived a set of partial differential equations for the cable motions
that includes both a description of the bending stiffness and of the
weak nonlinearities of the cables in such systems. We then divided
our analysis into a part concerning investigations of the propagation
of a pulse on single cable models, and the direct investigations of
pantograph overhead line system interactions.

We found that none of the ‘small terms’ in the cable equations had
much significance for the development of the propagating pulse, for
the considered pulse and cable dimensions. The individual nonlinear
terms were much larger in magnitude than the bending term, but
their sum almost balanced. In fact we found that the longitudinal
motion could be satisfactorily described by a slow, local part and a
fast, global part, yielding the sum of the nonlinear terms as (K +
K (t))vgy, where v(z,t) is the vertical motion of the cable.

In the direct pantograph overhead line system investigations, we
found that the nonlinearities, as a contrary to the bending stiffness,
did become important within the range of realistic train speeds. We
found them to have a positive effect on the dynamics. We concluded
that the nonlinearities should be included in the cable models. This
means that, due to the characteristic time scale of the longitudinal
motion, the cables in the overhead line systems will have to be mod-
elled in their full lengths. This puts limitations on the spatial dis-
cretisation step size due to computer power reasons — which means
that a spatial discretisation method with fast convergence must be
chosen, as considered in chapter 2. Actually, our results indicate
that an even faster converging method should be developed in the
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future; we suggest a finite element method with higher order basis
functions than the piecewise cubic ones we have adopted.

For our investigations near the critical speed, we found that it was
strictly necessary to include the nonlinearities in the model, to be
able to satisfactorily describe the breaking sound barrier like phe-
nomenon, that appears for pantographs accelerating up to and past
the critical speed. We found that the breaking sound barrier like phe-
nomenon is much smoother when the nonlinearities of the system are
included. This is important because the critical speed thereby is not
as critical as henceforth assumed.

We have also investigated the influence of a presag of the contact
cable in overhead line systems with simple configurations. The pre-
sag is meant to compensate for the variation of the flexibility of the
contact cable over a span. However, we think that the presag has
been designed from purely statical considerations, and from our dy-
namical investigations we find that the presag should either not be
there, or should be much smaller.

Finally we have considered the effect of filtering output signals. In
this respect we are rather restricted in our conclusions, since we have
not had access to measurements for comparisons with our numerical
predictions. Filtering might be relevant! However, filtering should
be used with caution and can by no means substitute the use of a
sufficiently fine discretisation grid.
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Appendix A

Nonlinear dispersion
relation

We now want to use a variational approach to achieve a nonlinear
dispersion relation following the technique in [44]. We first illustrate
the method on the Bernoulli Euler beam equation (which of course
is linear):

pog = Povgy — Elvgges (A.1)
It is not a surprise that the dispersion relation for this equation is
pw? — Pok* — EIK' =0 (A.2)

found simply by substituting v ~ e*%~%% in (A.1).

We will derive this result using a variational approach. We study
slowly varying wavetrains

v ~ a(z,t) cos(0(z,t) + n(z,t)). (A.3)

Because a and 7 are assumed to be slowly varying, these can be con-
sidered as constants when integrating over a period in 8 (averaging).
Further, we can approximate

vy ~ ap(z,t) cos(0(z, t) +n(z, 1)) —a(z,t)0:(z, 1) sin((z, t) +n(z, t))—
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a(z, t)m(x, t) sin(6(z,t) + n(z,t)) ~
—a(xz, t)0(x, t) sin(6(z, t) + n(x, t))
vy ~ ag(z,t) cos(0(z,t)+n(z,t))—a(z,t)0;(z,t) sin(0(z, t)+n(z,t))—
a(z,t)n(z,t) sin(@(z, t) + n(z,t)) ~
—a(x, t)0,(x, t) sin(6(z,t) + n(x, t)),

thus, terms involving as, a., 7 or 7, are neglected.
0(x,t) is called the phase, and we finally define the local wave number
and frequency by

k=10, and w= —b;. (A.4)

To use a variational approach we need the Lagrangian for the system.
This is
1 2 2 2
L= (w0} — P2 - BIvZ,) . (A.5)

(Note: (A.1) is refound by computing —%LU — %va + —ai:gLvm.)

We now substitute (A.3) in (A.5), neglect all derivatives of a, 7, w,
and k, and average over one period in & to achieve the function

1
£ = (uw? - Rok* - BIK") a?. (A.6)
4
We propose the ‘average variational principle’
5 / /E(w, k,a)dtdz = 0 (A7)

for the functions a(z,t) and 6(z,t).
The variational equation for variations in a becomes

da: Lg=0. (A.8)

The variational equation for 6 is

0 0 0 0
60 . __‘Cat i %an — Eﬁw i %

= (. A.
5 Ly=0 (A.9)
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At last, from (A.4) we have the consistency relation for 6

Ok Ow
a5+t e =0 (A.10)

Substituting (A.6) in (A.8) yields

1
5 (uw? — Pok? — EIK") 6 =0 <= pw? — Pok® — EIK'
w=ty P2y Blya (A.11)
7 7

which we recognize as the dispersion relation for the Bernoulli Euler
beam equation. We calculate the linear group velocity as

0w

P EI1.3
c, = wk+2°0k Pk +2EIK?

4 = . A2
ok [Pog2 4 EIpa o ( )
7 m

Substituting (A.6) in (A.9), taking advantage of (A.10) and (A.12)
yields

0 0

aﬁw — %Ek =0 &
o (i,uwa ) ~ 92 (—iPoka — EIk”a ) =
0 9 0 (1 Pk+2EIK® ,\
ot (i,uwa ) + Bz <§Mw—,uw a’ | =

1 da? 0 9 1 ,0w 1 o Ow
e (— + 37 (Cga )) + gHa §+ gHa Cg% =

1 da® 0 9 1, Ok Ow
5*‘“(5*%(%“ )>+§W C (a %)—
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1 da? 0 9
i,uw (W-i_% (Cga )) =0&

da® 0 9
= T 5 (Cya?) =0 (A.13)

which is an equation for the amplitude.

Haven developed the technique we will now derive a dispersion rela-
tion for the cable equation (4.8). The equation is repeated here:

3
vy = Povgy — Elvgges + ivszwa (A'14)
thus, the Lagrangian is

1 1
L= (;w? — Pyw? - EIvZ, — ZEAvi) : (A.15)
We search for a slowly varying wavetrain solution. In our case it will
suffice to apply a near-linearity-technique; thus, we assume

v(z,t) = v(0) = acos(8) + az cos(260) + a3 cos(36) + a4 cos(46) + . ..
(A.16)
where 0 still has the property given by (A.10), and where we assume
az = O(a?),a3 = O(a®),as = O(a*) and so on. We then substitute
(A.16) in (A.15) and average over one period in 8; this is done keeping
w, k, a; constant:
1 2w

L=—

o7 o L(vg, vy, Ug0)d0 =

1 2r /1 1 1
5 / (§(W2 — Pok?)vj — S BTk vy — gEAk%g) dg =
T Jo
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% (,uw2 — Pyk? — EIk4) a’+

((,uw2 — Pyk? — 4EIk4) a3 — 63—4EAk4a4) + (A.17)

(% (,uw2 — Pyk? — 9EIk4) a3 — %EAlc‘laga2 + %0303) + O(a®).

Defining then

L= i (,uw2 — Ppk? — EIk4) a2+

((,uw2 — Pok? — 4BIK") o} — G%EAk‘la‘i) (A.18)

we have
L=L+0(%.

We propose the variational principle
5 / /E(w, k,a,a2) dz dt = 0. (A.19)
Variation with respect to ag shows that ao = 0. Thus
L= % (,uw2 — Ryk? — EIK' — f—GEAk‘la?) 3 (A.20)
Substituting (A.20) in (A.8) yields
da : % (,uw2 — Pyk?> — EIK* — gEAk4a2) a=0&

pw? — Pok* — EIK* — gEAk4a2 = 0. (A.21)

This is the nonlinear dispersion relation!
We also find the nonlinear group velocity

on 0w _ Pk + 2EIk® + 3EAk3a?
9 Ok pw )

(A.22)
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Substituting (A.20) in (A.9) and taking advantage of (A.10) and
(A.22) yields the amplitude equation:

9 (1 2 4 1 2 32 3 34)_
Bt( pwa )_817 (—2P0ka — EIk _IGEAka =

L o a

2) o (1 Pok + 2EIK® + 3EAk®a® — 3EAk®a? 2)

2 (L) 4 2 (Swcpe?) - £ (L gt -
at(2“w“)+ax(2“wcga oz \167AK @ ) =

Ok Ow g (3
n 2 3 4
2,uC (Bt + _Bx) — —EAk a ) =

oz
]. 8@ 8 n 2 8 3 3 4\
( 5 T B (cra )) e ( EAKa ) =0  (A23)

Note that the important new feature not is the correction of the
amplitude equation but the dependence of the amplitude in the dis-
persion relation, (A.21).
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Appendix B

Finite element
integrations

In this appendix we shall calculate the integration coefficients from
the finite element discretisation of the contact cable. Similar calcu-
lations go for the catenary cable and the results for these integra-
tions are found by interchanging variables. The integrations have
been performed with the commercial software for performing sym-
bolic mathematics on computers, MATHEMATICA, [45].

We shall calculate the coefficients term by term and we shall indicate
the combination of variables that belong to the coefficients. The
titles of the sections refer to subroutine names from the numerical
implementation.
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B.1 phi
With W1 = ¢; the first term in (4.52) becomes:

I, nco
/Z (b + mbi) i + (N5i+nléi)¢i)¢jd$:

(,UbJ 1+ 77le 1) f:z: 7 $j1gidr + (,Ub + 771b )f;f:l ¢jpjdaz+
(ubj i1 + mbjr1) f o $j+195 dz+
(uéj—1 +méj—1) fwj_l pi—1¢jdx + (né; + mé;) f;]?'fll p; dr+
(Wi 41 +méjp) Jo7* bing; da.
We therefore calculate the following coefficients and indicate the vari-
ables to which they maid.

. . 9h;_
Lot s e =
2a bj, bj : fw] 1 ¢j¢jd$ = 13%_1
. 13 h;
2b :bj,b; Dt ididr =
. . 9 h;
tbjt1,b541 ¢ f ¢j+1¢jd$ =70 R
.. ) 13 hi_
4 :éj1,651 :fw] L Yim1gide = gy ,
5a C],C] wa] L ¢]¢]d$ — _112?6_1
2
5b :¢j, ¢ : fwﬁ_l Yipjdz = léf(])
. ) —13 1,2
6 :éiy1,¢41 ifw”l Yir19ids = —5"
B.2 ddphi

By substituting W1 = ¢; in (4.52) the second term becomes:

nco

/ EIZ b ¢II +CZ,(/}II) ¢II dr =

0
EIb;_, fwf 8] da + BIb [ 4] dot
EIbjqq fw”l ¢” dz + Elcj_; fw] 719 dz+
Elc; [5+1 ¢"¢" do + Elcj1 [, @) de,
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why we calculate the following coefficients:

1
2qa
2b
3

ba

5b
6

B.3 dphi

By substituting W1 = ¢; in (4.52) the third term becomes:

nco

:bj1

. w]l

. fw] ) ,(/)II¢II dZ'
. f$]+1 ,(/}II¢II dz
. fil»']+1 ,(/}II ¢II dz

Zj I! ¢II dZ‘

: Ti_1

. fw] ) ¢II¢II dr

. f$]+1 ¢II¢II dr
:fil»']+1 ¢II ¢II dr

¢II dZ‘

L
/ POZ (bighh + ct) ¢ da =
0
| $i_18; dz + POb; f;jjfll ¢ do+

POb;_, f

POb]"'lw"[wj +1 ¢;+1¢; dr + POCj;1 f;jj_l
POc; fwj]jll Z/J;gﬁ; dz + POcjq1 fwj”l 1/1;~+1¢;~ dz,

and we calculate

1
2a
2b
3
4
5a
5b
6

58 de
5 1¢'¢' dw
Jo+ iy da
:fw]"rl
Zj
:fw] ! yy
5 ) de
o Vi) da

:f:l:]+1 ]+1¢”d$

118 dz
]_1¢; dz

I
[S4)
au;..‘
L

sl=gl- |

19 do+

ot
@u;.‘
|
~

| o
sl

[&]
a

Sl=&l=
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B.4 dvuphi

By substituting W1 = ¢; in (4.52) the first nonlinear term becomes:

nco

/ BAY (bid}; + cith) (dib}) 6 da
0 i,k=0
why we calculate the coefficients
. . . . w = 6
1 : b]—ld]—l : :/vgv]] 1 ! Il¢ dz = 5hi_612
2 :bj_1d; : fw].]_l ]_10]¢] dx = 5hi_12
3 : bjdj_l : f;jj_l ;'0;'—1(%' dz = 5h]_-_612
1 L 1Ti o gt —__6
4a M b]d] M fw;'—l ]0]¢] diE — 5h]'_12
b by I =5
5 . b]d]+1 . f(B]"rl ¢I +1¢/ dx — %2—
6 : b]+1d] : f;] j+1 ¢"7+10‘;¢; dx = 5;3;2
. . j - =6
7 M b]+1d]+1 . f;]]-f‘l "7+10;I7+1¢I‘,7 diE — 5h]'12
8 tcjdj—1 fw] L 51¢5dz = g5 Bi-1
9 1cj—1d;j : ;jj_l _19;'%' dz 10 hI,-_z
10 :c¢idj—1 ;]’ , %505 1¢" dz = 10h_;
lla :c;d; el '9' ; do = 0%
116 :¢jd; : fw]“ 1/1; ¢’ dx = 16i1nj
12 :cjdjpq : fw]1+1 d,; +1¢I dz = 101h]-
13 teind; o [OVL 08 de = g
14 : Cj+1dj+1 : f;jj—’_l ;'+10;'+1¢;' dr = 101h]-

B.5 d3dphi

By substituting W1 = ¢; in (4.52) the second nonlinear term be-
comes:

L ppA ™0
/0 — 2 (bigi+ i) (budh + extin) (i + atfy) ¢ da

4,k,1=0
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1 .
) tbj1bj_1bj—1 - [ , el
- 3b;_1b; o ;
3 .3b] 1bj_1b; . w] ! lzf 1¢f 1¢ de = =12
4 . 3 j—1bj-1¢j—1 :fw]] e 145¢; de = Bl
2 3b; L
5 boibe 1 B f Wiagjde = miz
) : 3b]_1b]b] : fil»'] 1 1¢_I7 1'(/)’ ¢’ dx _ 35 }251
. : 6bj_1bjci—1 w] 1 1¢ ¢’ ¢’ dx B 35&;7_212
. . . I N
8 :gbaﬂqu f:] 1 1¢/ / gjde = 3Bhy-i”
9 - sz_lcj_lcj—l . f j—1 1¢ '(/} ¢I dZ' . 35h6_12
. b Y ! ~ 3Bh_,?
10 ;3b]._lcj_lcj 3wa 1 11/}? -1 de = o
lla :b g],_blcjcj L lzﬂ/ﬁw‘ﬁ' i =0
100505 j—1 1 !
11h bjb~b]. iy ¢'¢'¢, / zxdﬂv = %7
19 .371 :fw]+1¢,¢, A _ T
3 bjb;bj+1 : fwm ! 039; d _ Ty
. . I N
14 : 3bibjci—1 o) j ¢/ 15 d — 35%3
14; : 3b;bic; :fz] . /¢, ¢ dz _ 53
e : 3bjbjCj ) f“;J]+11¢I¢ ’g[)’(ﬁ’ dz _ W
) : ! - y
: 3b,bici i1 o &bl da Rk
16 : 3b;bj41b a5 ¢ = wp
T GbJ.b]—H j+1 : fw1+1 ¢/ +,1 de - 35—9]7
18 6b]bj+lcj :wa+1 ¢/ ]+1¢J,+}¢ dz = 3L}2L7§
. . . 5 i
19 3b] j+1C5+1 :fw1+1 ¢I¢[+1¢,¢ dz = _}3
. . . 2
20 -6 jcio1ci—1  : J g jritidide = -
2 1 6bjci1c4 : & Yigid = B
la :3bic; Jol ¥ 1
2 Shcry S 1¢’¢f«/ﬁ¢ T
: CiCa Zj—1 ! B
929 . 6b.7 §Cj :fil»'J+1 ¢I,(/}/ ,¢,d$ = 3
DO i i
93 - 3hios .f]+1¢/¢, , :33
94 ; iCi+1C5+1 3fw]+1 ¢, +1¢ dx _ O5hj
04 . / B
26 3 j+10j+1¢5 :fgj”]f+1 Hl fﬂ(ﬁj“w dv = _—%5
t 3bjt1bjt1ci1 w]]-'rl ¢'+1¢]+1¢ iide = P
/ =
L de = 353;'2
35 h;?
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27 - 3bisicic; : o¥yve; da 5
28 : 6bj+1CjCj+1 : ffj“ 1'9[), 1¢I dx =0
29 :3bjiicj41¢41 ¢ fw]“ ¢;+1¢;+1¢]+1¢ de = 352]-
30  :c¢j_icj_1cj1 :fw] L 11/1; 11/’; 1¢’ dz = ﬁ
31 :3cj_1cj_1¢j N PN 11/1; 11/1’¢’ dx = _11_0
32 :3cj_1cic :fw] L rﬂ/’;‘/’;‘ﬁ; dx = _11_0
33a :cjcic; : fw] | Ui d - ﬁ
33b  :cjcic; : wa_l ¢’¢I¢I ¢’ dz = _11_0
34 : 3CjCjCj.|_1 : wa_l 'Sbl '9[), 1¢I dz = ﬁ
35 :3cjciricit : fwﬁ_l 'Sbl ]+1¢;+1¢; dz = ﬁ
36  :cjricjriciyr - f;jj“ ]+1¢]+1¢;+1¢9 dz _11_0

B.6 phic

We now substitute W1 = ¢; in (4.52). The constant term

L
/0 pgd; d

appears and we calculate the coefficients

f;jj—l ¢j dz = -2
f;jj“ $idz =

hi_s

N |u;.‘
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B.7 psi

We now substitute W1 = ¢; in (4.52). The first term then becomes:

ano
/ Z (ub; + mbi)gi + (uéi+mc'z~)z/zi) ¥ dz =

(,UbJ 1+771bJ l)f

(,Ub]+1 + 77le+1) fsz Pj19; dr+
(wéj—1 +méj—1) f;f_l Yi—19; dz + (ué; +mé;) f;jjjll Y;v; dr+
( )

pEjg1 +méjp) o7

Yipiyt, de,

and we calculate the coeflicients

1 5]'_1, bj_l
2a Bj, bj
2b Bj, bj
3 by, bin
4 :¢j1,651
5a :¢j,¢j
5b :¢j, ¢
6 &1, 854
B.8 ddpsi

t ol di-1de
Dol dibida
L

: fz]- $jr1idz
Dol Yi-1yde
Dol Yiide
Dol yda

: wa_l Yi1ide

¢] 1'¢’] dz + (,Ub + 771b )wa_l ¢]"/’] dz+

By substituting W1 = ; in (4.52) the second term becomes

0

nco

/ EIZ b ¢II +Cz'(/}”) ,(/}II dr =

EIb] 1 fw]
EIbj.y wa+1
El¢; fwj]_+11 1/1"1/1" dz + Elcjiq fwj”l

9 da + EIb; [594) ¢! dut
'l do+ ETe; f“f

”—1’(/)_;" d$+

1Yy da
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and we calculate the coeflicients

1 b :f;]j . '~' lzﬁ"dx = h]_%z‘

2a :b; fw] . ¢”1/J” dz = ﬁg

26 :b; fw”l i de = %

3 by fw”l P9 de = ;]—g
o T W lde = 2

ba :¢; fw 7 opllde = h-i

5b :¢j . fw]+1 ¢//¢u da _ hi

6 icj fw]+1 ,(/}II ,(/}II d %

B.9 dpsi

By substituting W1 = 4); in (4.52) the third term becomes

12 nco
/ POZ (b} + ci}) oy dw =
0
POb;_, f , #5195 dz + POb; [ '¢;.¢;. dz+
PO0bj 11 fwj”‘l ¢;+1¢; dz + POcj_1 f;jl_l ;_1¢9 dz+
; .
POc; f;]?fll 1/1;1/15 dz + POcjq1 fwj”l 1/1;4_11/1; dz

and the coefficients become

1 b1 :fw] i ¥ide = i
20 :b; :fw] 1¢'1/J' dz =—15
N i A
thipr [P ¢iaide =~
tej1 :fw] Y idr = 45t
S5a :c; : fw] ) ¢’.¢’. dz = 2};"5_1
50 :¢; fw”l Yiide = %

e L [Eim ' —
6 :cim -fzj i de = 55
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B.10 dvupsi

When we substitute W1 = 4; in (4.52) the first nonlinear term
becomes

L nco
/0 BA Y (bigh + civh}) (dibh) o du
ik=0

for which we calculate the coefficients

1 :bj_ldj_l Ifw ¢I 101 1'9[), dz = 10;'1 1

j—1 -
thjady oz [T #5Opyde = 10hf_
:bjdj_l Zf;jj_l ;'0;'—1'9[};' dz = IOhI; 1

fa cbdi [N @6 de = s
4b  :bid; . fw]jﬂ ¢/ ’1/1’ dz - ﬁ
5 . bjdj+1 . f:m+1 ¢I +1,¢)I dr — 101h]-
6 :bj11d; : f;]1+1 H_ ]¢I dx = 101h,-
7 tbjdjp f;]“_l i+1 +1¢] dz = 15}1L]-
8  igiadiy : [y W05 Wdn = %

9 1 ¢j—1d;j : fw] L ;_10;"9[};' dx = _%
10 :¢idjg :fw] . 101 1¢I, dz = —12—5
lla :cjd; :fw] L ’9' d =1
116 :c;d; : fw”l 1/1; =1
12 :cjdjqq . fw]Hl 1/,; +1¢’ dx = %
13 :¢jt1d; : fw]J"rl ¢;+101¢/ dz = %
14 :cjpdjq If;]]-H 5+1 ]-1-1'9[) dz = _%

B.11 d3dpsi

By substituting W1 = 4; in (4.52) the second nonlinear term be-
comes:

L ppA ™0
/0 2 (bigi+cirpi) (budhy + cxtii) (gt + atfy) o do

4,k,1=0
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and we therefore calculate the coefficients

© 00 ~J O O = W N =

—_
el

11a
11b
12
13
14a
14b
15
16
17
18
19
20
21a
21b
22
23
24
25
26

:bj_1bj_1bj_1
:3b;_1b;_1b;
:3bj_1bj—
:3bj_1bj_1¢;

: 3b;_1b;b;

1 6b;_1bjci1

: 6b;_1bjc;
:3bj_1cj_1¢—1

16—1

:6bj_1cj_1¢
: 3bj_1cic

: bjb;b;

: bjb;b;
:3b;b;bj41

: 3bjbjCj_1

: 3bjbj6j+1

: 3bjbj11bj411
: 6bibj11c)
$6bjbjr1¢i01
:3bjcj_1c—1
1 6bjcj_1c)

: 3bjcic;

: 3bjcic;

1 6bjcicip
$3bjciricin
tbj1bj41bjta
2 3bj11bj 16
:3bj11bj 116541

[
:fw
:fw
[
[
[
[
[
i
T G de
[ g d
[ g,
: fw 7 b
T G da
[0 i) do
[ gl
: wal ¢I ]+1¢;+1¢ dz
:f$]+1 ¢I
: wal ¢I ¢I+1¢I+1¢ dz
N
S,
il 1¢1¢1¢/,¢1 d
Dot Gy da
I G
: fw]“ G 1% do

. f;]+1
¥

1¢; 1¢; 11/1' dz
1851055 do
1¢; 11/’; 11/1' dz
195 1%y d
195 dx
1¢’ 11/1' dz
1¢’¢’1/1’ dz
11/’; 11/’; 11/1' dz
1% 1y d
i1y de

j—1

] 1

j—1
j—1
j—1
j—1
j—1
j—1

j—1

¥ da
11/1' dx
+11/1’ dx
+11/’I 1/” dx
11/’;—11/1’ d
11/”1/” dx
+11/1’ dx

a+1¢3+1¢3+1‘/" dzx
le ¢;+1¢;+1¢, 1/’I dz

:wal ]+1¢;+1¢]+1¢ dz
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27 :3bjticic : f;f“ P ¥ji; da - ﬁ
28 :6bjiicicit1 : f;f“ +1¢, +1¢, dz = _11_0
29 : 3bj+1Cj+1Cj+1 : fil»‘]+1 ¢;+1¢]+1¢]+1’(/} de = 11_0
30  :cj_icj_1ci—1 ifw] 1 ]—11/’;—11/’;—11/’; dz = —fg*
hi_
31 :3cj_1cj_1cj : fw] L ;_1@[1;_1@[};"/’; dz = 2]101
32 :3cj_1cjcj :fw] L 9_11/1;1/1;1/’;' dz = o
2h;_
33a :cjcic :fw] 11/)/.1/)/.1/}/,1//, dx =
33b :cjcic : fwﬁ_l "/JI'S[}’ '9[), ¢I dz = %
34 : 3CjCjCj+1 . f:m+1 ¢I¢I +1,¢)I dx = IT}B
h.
35  :3cjcjqici41 : fw”l 1/" ]+11/’;'+11/’j dz = 210
—h;
36 :cjriciriciy1r - wal ]+1¢;‘+1¢;+1¢; dz = §T0)
B.12 psic
We now substitute W1 = ; in (4.52). The constant term
L
/0 pgi; dz
appears and we calculate the coefficients
) —hi_+s2
f;jj—l d}jdx = 2121
. h;
[ e ="

B.13 theta

Substituting W2 = 6; in the second equation in (4.52) first yields

the term:

1, nco
/ Z (i + m12d)0:) 0; dae =

(,Udg 1+772d] 1)f

(udj 1 +m2dj1) J5 o 0;+10; dz

, 05210 dz + (ud; + mady) [2951 0,0; do+
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U idja,dia c [ 0, 00dz =5
2 :dj,d; : fgjf 0,0;dx = h’;
2 :dj,d; : f;jf“ 0,0;dx = };—’
3 :djy,din [P 050ds = F

B.14 dtheta

The second term in (4.52) by the substituting W2 = 6; yields the

term
L nco
| B4 Zd 00" dz =
0
EAb;_ f 10’ dz + EAb; |, -’/U]+11 . 0’ dz+
EAbj 44 fw +1 0;+10’ dz
and we calculate the coeflicients
L idjoy : [y 05 16jde = _1hj1—1
X
20 :d; :f]] L 0;0% dz = B
26 :dj :f;]”l 00, de = A
3 idjn :f;]”l 0;+ 0;de = _h%-

B.15 dv2theta

Finally the last term (the nonlinear term) in the second equation

in (4.52) by the substitution W2 = 6; becomes

L neco
/ EA Z b ¢Z + Cldjz) (bk¢k + Ck¢k) 0’ dz
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and we calculate the coeflicients

1
2
3
4
5a

5b
6

8a
8b
9
10
11
12
13
14
15a
15b
16
17

tbj_1bj1
: 2bj_1b;

: 2bj_1c]~_1
: 2bj_1cj

: bjb;

: bjb;

: 2bjbjq1

: 2bjei1

: 2bjc;

: 2bjc;

: 2bjciqn

D bjtibjp
: 2bj11cj

: 2bj11¢541
tCj—1C51
: 2¢5_1¢§

: ¢jcj

: ¢jcj

: 2¢5c541

P GG+

:fw
:fw] 1¢’ ’H;dx
:fw”l ¢’ ’~0’~ dx
:fw”l ¢’ +10I dx
:fw] ) ¢’ 1/1’ 10’ dx
a1 505 e
:fiﬂ zf 1% Z,x J

O g T

. (i gy I1 9" d
. f ¢]+1¢]+1 4
. fww]:]-‘rl ¢I 101 da:
ot a+1‘/’§+19 dz
:fw
:fw

o A ; 10’~dx
:fw

ZTj—1 ] 1

S 1¢;9' dx
:f;]] . I’QZJ; 19’ dx

L I’QZJ;H' dx

W\ do
T de
:fw] Y05 d

:fw]+1 ¢/ /01
: fw”l 1/1' +19' dx
: wal 1/’I+11/’ +10 dz
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