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4SummaryThe topic of the present dissertation is robustness and performance issuesin nonlinear control systems.The control systems in our study are described by nominal models consist-ing of nonlinear deterministic or stochastic di�erential equations in a Eu-clidean state space. The nominalmodels are subject to perturbations whichare completely unknown dynamic systems, except that they are known topossess certain properties of dissipation. A dissipation property restrictsthe dynamic behaviour of the perturbation to conform with a bounded re-source; for instance energy. The main contribution of the dissertation is anumber of su�cient conditions for robust performance of such systems.Since the perturbations in these uncertain models possess several dissipa-tion properties simultaneously, we study fundamental properties of suchmulti-dissipative systems. These properties are related to convexity andtopology on the space of supply rates. For instance, we give conditionsunder which the available storage is a continuous convex function of thesupply rate.Dissipation theory in the existing literature applies only to deterministicsystems. This is unfortunate since robust control applications typically alsocontain uncertainty which is better modelled in a probabilistic framework,such as measurement noise. This motivates an extension of the theoryof dissipative dynamic systems to stochastic systems. This dissertationpresents such an extension: We propose a de�nition and generalize funda-mental results from deterministic dissipation theory to stochastic systems.Furthermore, we argue that stochastic dissipation is a natural fundamentfor a theory of robust performance of stochastic systems. To this end, wepresent a number of performance requirements to stochastic systems whichcan be formulated in terms of dissipation, after which we give su�cientconditions for these requirements to be robust towards multi-dissipativeperturbations.A �nal contribution of the dissertation concerns the problem of simulta-neous H1 control of a �nite number of linear time invariant plants. Thisproblem is a prototype of robust adaptive control problems. We show thatthe optimal (minimax) controller for this problem is �nite dimensional butnot based on certainty equivalence, and we discuss the heuristic certaintyequivalence controller.

5Resum�e (in Danish)Emnet for denne afhandling er robusthed og ydelse (performance) af ikke-line�re reguleringssystemer.Reguleringssystemerne er beskrevet af nominelle modeller best�aende afikke-line�re deterministiske eller stokastiske di�erentialligninger i et eu-klidisk tilstandsrum. Disse nominelle modeller underkastes perturbationersom er ukendte dynamiske systemer om hvilke det dog vides at de besiddervisse dissipationsegenskaber. En dissipationsegenskab indskr�nker pertur-bationens dynamiske opf�rsel ved at p�atrykke en begr�nset ressource, foreksempel energi. Hovedbidraget i denne afhandling er et antal tilstr�kke-lige betingelser for robust ydelse af s�adanne systemer.Eftersom perturbationerne i disse usikre modeller besidder 
ere dissipa-tionsegenskaber samtidigt, studerer vi fundamentale egenskaber af s�adannemulti-dissipative systemer. Disse egenskaber omhandler konveksitet ogtopologi p�a rummet af tilf�rselsrater (supply rates). For eksempel opstillervi betingelser under hvilke det tilg�ngelige lager (available storage) er enkontinuert konveks funktion af tilf�rselsraten.Den eksisterende litteratur beskriver kun dissipationsteori for determin-istiske systemer. Det er uheldigt fordi anvendelser af robust reguleringtypisk ogs�a indeholder usikkerhed som bedst modelleres sandsynligheds-teoretisk, s�asom m�alest�j. Det er motivationen for at denne afhandlingudvider dissipationsteorien til stokastiske systemer: Vi foresl�ar en de�ni-tion og generaliserer nogle af de grundliggende resultater fra deterministiskdissipationsteori til stokastiske systemer.Derefter argumenterer vi for at stokastisk dissipation er et naturligt udgangs-punkt for en teori for robust ydelse af stokastiske systemer. Til dette form�alopstiller vi et antal kvalitetskriterier for stokastiske systemer som kan for-muleres som dissipationsegenskaber, og dern�st angiver vi tilstr�kkeligebetingelser for at disse kriterier er robuste overfor multi-dissipative pertur-bationer.Herudover behandler denne afhandling ogs�a problemet om simultan H1regulering af et endeligt antal line�re tidsinvariante anl�g. Dette prob-lem fungerer som en prototype p�a robust adaptiv regulering. Vi viser atden optimale regulator (d.v.s. minimax-regulatoren) for dette problem erendelig-dimensional men ikke bygger p�a certainty equivalence. Derudoverdiskuterer vi heuristisk certainty equivalence regulering.
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10 CONTENTS Chapter 1IntroductionThe subject of this dissertation lies within the �eld of mathematical controltheory.In this chapter we give a broad introduction to the �eld of mathematicalcontrol theory. Those among the readers who are more interested in thespeci�c contributions of the dissertation may prefer to jump to section 1.5,which outlines the dissertation, and from there to the succeeding chapterswhich presents the new material.1.1 What is control theory?The subject of control theory is the interconnection of the dynamic systems� and K in �gure 1.1. Here � is a given dynamic plant (a mathematicalmodel of a physical system) and K is the controller (which is also a math-ematical model of a physical system). The objective is to design the con-troller K, i.e. to �nd a suitable K, such that the interconnection has somedesirable properties. These properties typically describe how the intercon-nection responds to an exogenous input w and are quanti�ed through theoutput z. The controller a�ects the response by choosing the control signalu. The controller has at least partial access to information about the stateof the plant, quanti�ed by the measurement signal y.11



12 Chapter 1. Introductionw K� yu zFigure 1.1: A control problemThe questions addressed by control theory are analysis questions and syn-thesis questions. Analysis questions investigate properties of the intercon-nection for a given controller K, while the synthesis question is how tochoose the controller K such that the interconnection has certain proper-ties. The motivation for considering analysis questions is twofold: First,analysis questions are most often much easier to answer than synthesisquestions, but good answers to analysis questions often enable the controltheorist to �nd answers to the corresponding synthesis questions. Second,the control engineer may have found a candidate controller by solving onespeci�c synthesis question and then wish to know if this controller providessatisfactory answers to other analysis questions.In order to answer analysis as well as synthesis questions, control theoryemploys several disciplines from the �eld of applied mathematics. Qual-itative and quantitative theory for deterministic and stochastic dynamicsystems is essential as is optimization theory. In addition, statistical infer-ence or deterministic estimation theory is necessary to address problemswhere the measurements y contain only incomplete information about thestate of the plant �.The resulting theory depends greatly on the speci�cs of the interconnec-tion in �gure 1.1: If the systems are linear or nonlinear, deterministic orstochastic, and if the dynamic systems are described in continuous or dis-crete time. The next section describes these di�erences in some furtherdetail, as well as clari�es and motivates how the present dissertation isplaced in this discourse.

1.2 Paradigm and state of the art 131.2 Paradigm and state of the artRobustness or performance?While most control theorists and engineers agree that robustness and per-formance are desirable properties of a controlled system, and that as aresult analysis and synthesis must address these issues, there is much lessconsensus regarding the exact meaning of these properties and their rela-tion.Performance measures the quality of the controlled system: How fast, howaccurate or how e�ective is the system. In this work we use the term per-formance to describe how a cost, accumulated during the operation of thesystem, depends on the initial state of the system, or on exogenous deter-ministic or stochastic disturbances. The lower cost, the better performance.The issue of robustness arises because the mathematical model, which isthe object of the mathematical analysis, never fully describes the physicalcontrol system. Loosely, robustness means that the mathematical analysispredicts the behaviour of the physical system with su�cient accuracy. Weassign a much more precise meaning to the word robustness: We model thephysical system by a family of mathematical models (typically obtained asan interconnection of a nominal model and an unknown perturbation), andsay that a property is robust if it holds for any model in this family.An often heard statement is that one must trade o� robustness and per-formance: For instance, if one wishes a fast response of a servo system,one must accept that the system is sensitive to parasitic dynamics. Wedo not disagree that such trade-o� considerations between sensitivity andnominal performance are helpful. However, we prefer to discuss the issue:How fast a response can we obtain in presence of parasitic dynamics? Thusthe objective is to guarantee a level of performance which is robust towardsa given family of perturbations. In summary, the question Robustness orperformance? should be answered: Robust performance!Linear or nonlinear theory?A seemingly never-ending controversy among control theorists concerns lin-ear versus nonlinear theory. Advocates of nonlinear theory emphasize thatnonlinear models provide more accurate descriptions of technical systems



14 Chapter 1. Introductionwhich makes it plausible that better control systems can be obtained withnonlinear theory. On the other hand, nonlinear theory quickly becomesso involved that the designer can be forced to oversimplify the problem,for instance by neglecting certain dynamics, and in these situations it isplausible that linear theory is more e�ective. Also, in industrial applica-tions it cannot be neglected that nonlinear control theoretic investigationsconsume great resources which perhaps would be more bene�cial if allo-cated to complete di�erent parts of the design project. A fact that keepsthe controversy going is that some �elds of applications manage quite wellwith linear models whereas nonlinearities are essential to the problems ofother �elds.Tools for analysis and design of controllers for linear plants are well devel-oped and implemented in commercial software packages such as MATLAB.The engineering appeal of frequency domain techniques is an importantfactor, as is the fact that it is possible to give standardized recipes whichwork for most linear problems. There is an abundance of methodologies,ranging from parameter tuning in PID-controllers to �-synthesis [128]. Forengineers who wish to pose their own non-standard design criteria, theframework of linear matrix inequalities is an option [20, 19]. Importantopen problems within the linear paradigm, which are topics of currentresearch, concern mixed and multi-criteria problems, the problem of de-signing controllers of �xed structure, and interdisciplinary topics such assimultaneous design of system and controller.Regarding nonlinear control theory signi�cant progress has been made buta fully operational general theory is still far away; indeed it is plausiblethat such a theory is utopian. The �eld of Lyapunov stability [74, 59]illustrates the hurdle: The theory is fairly complete from an analytical pointof view, but the problem of computing Lyapunov functions for a generalsystem is overwhelming. The same discussion applies to optimal control anddi�erential games where it is known as Bellman's curse of dimensionality :The computational complexity grows exponentially with the dimension ofthe underlying state space. Despite increased computational power andimproved numerical methods [65, 11] we cannot expect to be able solve allcontrol problems by direct solution of partial di�erential equations on statespace: It is not unusual for technical control problems to have 75 states asin [18]. One may imagine the e�ort required to compute, implement andunderstand a nonlinear controller feeding back a state of this dimension.As a consequence a myriad of special cases have been investigated and
1.2 Paradigm and state of the art 15sometimes the special structure enables progress. For instance, within thelast decades the di�erential geometric framework [51] has evolved. Theassociated tools such as feed-back linearization are valuable, although theyare prone to robustness problems and require special structure. Backstep-ping [63] and other recursive design techniques provide a methodology forsystematic design, but requires considerable computational e�ort and acertain skill of the designer. Inverse optimality [36] is another promisingconcept; with this approach one solves the linearized problem at �rst andthen constructs a nonlinear control law such that certain robustness prop-erties of the linearized system hold globally for the nonlinear system.With this state of the art, researchers and engineers must in each projectchoose pragmaticallybetween the linear and the nonlinear paradigm. Thereis little doubt that nonlinear theory is becoming increasingly important asmodels grow in �delity and complexity, as desired operating regions growlarger, and as better controller hardware allows more complex controlleralgorithms to be implemented. What is more, many concepts and ideasare clearer for nonlinear systems than for linear systems where matrix ma-nipulations tend to obscure the picture; this is perhaps most evident in the�eld of stability and of optimal and H1 control. Therefore, our ambitionin this dissertation is to develop control theory which is based on principlesapplicable to general nonlinear systems.Time domain or frequency domain?Within the linear paradigm, a great strength of control theory is the abilityto combine considerations in frequency domain and time domain. Unfortu-nately, frequency domain tools are less than e�ective in a general nonlinearcontext where even the elementary concept of bandwidth is problematic.It remains a formidable project to �nd suitable substitutes.Therefore, this dissertation considers systems in time domain exclusively.Without making a virtue out of necessity, an advantage of time domaintechniques is that they appeal to that intuition for dynamic systems whichengineers develop by studying physical systems. Not only does this facili-tate the study and teaching of control theory, but it is also advantageous inindustrial environments where a sharp distinction between controller andplant cannot be maintained, and where the control engineer works in aninterdisciplinary team. A splendid example where experience from physicsis of great value in control theory is the �eld of Lyapunov stability [74],



16 Chapter 1. Introductioncalculus of variations and dynamic optimization [41, 3], which originatelyconcerned mechanical and in particular astronomical systems, but whichin the last decades have been developed by control theorists [12, 21, 122].Deterministic or stochastic representation of uncertainty?The explicit consideration of uncertainty lies at the core of control theory.Uncertainty may be represented by unknown parameters, unknown inputsor uncertain dynamical elements, and although much recent work [26, 60,68, 69, 86, 98, 106, 129, 132] is devoted to mixed problems combining twoor more types of uncertainty, there does not yet exist a general operationalframework within which all these representations of uncertainty can beembedded.Models of uncertainty can be divided into two groups: The stochastic ones,i.e. those that build on an underlying probability space, and the deter-ministic ones, which typically result in worst-case considerations. It is notuncommon for control theorists and engineers to have a very �rm prefer-ence for one of the two groups, and occasionally this results in attempts todemonstrate that the one group can cover all models of uncertainty.This dissertation is based on the pragmatic point of view that control theoryshould, to the widest extent possible, allow for both groups of uncertainty.With such a theory at hand, the control engineer can in each applicationchoose to use deterministic or stochastic models, or both. This becomesincreasingly important as control objects grow in complexity, since a com-plex control problem may contain both elements which require stochasticdescriptions and elements which are suited for deterministic worst-case con-siderations.1.3 Two recent advances in control theoryIn this section we outline two recent developments in the �eld of control the-ory which have, too, provided background for the present work: NonlinearH1 control theory and semide�nite programming. In short, nonlinear H1theory is an analytical framework for addressing issues of robustness of non-linear systems towards dynamic uncertainty. Semide�nite programming isa special case of convex optimization which can be used as a computationaltool in control problems.

1.3 Two recent advances in control theory 171.3.1 Nonlinear H1 controlOne of the important products of control research of the 1980's was the for-mulation and solution of the linear H1 control problem. The backgroundfor this work was the robustness of LQG (Linear dynamics, Quadratic costfunctions, Gaussian noise distributions, [66, 2]) controllers - robustness ishere in the sense of the classical gain and phase margins. It was known thatlinear quadratic state feedback regulators provide universal robustness gainmargins of (12 ;1) and phase margins of �60 degrees [1, 93]; an impres-sive result which can be generalized in several directions, [118, 120]. Thisled to the question if similar universal margins existed for LQG controllerswhere the state is not available for feedback. Unfortunately, this is not thecase [27]; optimal controllers are not necessarily robust. This motivated theformulation [127] of theH1 control problem. Here the design objective is toguarantee stability in presence of perturbations with H1 norm less than aspeci�ed number; this de�nition of robustness implies gain and phase mar-gins, but is more general and more appealing from a mathematical point ofview. A later generalization was the � superstructure which allows severaluncertain elements at di�erent places in the closed-loop system; see [128]and the references therein.Although the H1 framework originated in the frequency domain,1 thecelebrated DGKF solution [29] exploited the fact that the H1 norm of atransfer function is also the L2-gain of the associated input/output operatorand thus relied on time-domain techniques, in particular completion of thesquare under an integral. This solution hinted towards two-player zero-sumdi�erential games, thus suggesting that it would be possible to extent theH1 problem to nonlinear systems. An early development in this directionwas [6]; the textbook [9] contains a large number of such results, mainlyas extensions to the linear theory and focusing on di�erent patterns ofinformation available to the players.Further insight into the nonlinear H1 problem was achieved in [119, 120]by stressing the connection to the theory of dissipative systems [124] andto that of Hamiltonian dynamics [3]. This also brought the �eld in touchwith that of passive systems which has played a central r^ole in moderncontrol theory; bounded L2-gain and passivity constitute by now the mostcarefully investigated dissipation properties.1The symbol H1 refers to the Hardy space [50] of transfer functions G : C ! Cm�nwhich are analytical in the right half plane, equipped with the supremum norm kGk1 =sup!2R ��G(i!).



18 Chapter 1. IntroductionAt the time of writing, there exists a well-established solution to the statefeed-back nonlinear H1 control problem in terms of a Hamilton-Jacobi-Isaacs partial di�erential equation or inequality, which results from apply-ing dynamic programming to the di�erential game. Nevertheless, issuesrelated to the smoothness and properness of the value functions have yetto be worked out; here the notion of viscosity solutions [23] to partial di�er-ential equations has proved e�ective [7, 105]. Also, the numerical burden ofactually computing bounds on value functions is still prohibitive except forproblems with very low-dimensional state spaces; up to four, say, dependingon the system at hand. Thus Bellman's curse of dimensionality also appliesto these problems. As the paradigm of robust control includes a use of high-order dynamic weights we conclude that there is a need for heuristics andsub-optimal strategies which can deal with higher-dimensional problems.Another remaining obstacle for the practical application of nonlinear H1control theory is the design of state estimators in the situation where thestate is not directly measurable, rather the controller is a causal map from ameasured signal y to the control signal u. While static or �nite-dimensionalcontrollers may be optimal in special situations, [120, 121], it does not ingeneral su�ce to make use of a state observer of the same dimension asthe control object [120]. In fact, general output feedback problems are verydi�cult and not fully resolved; not with respect to theoretical analysis andcertainly not with respect to practical implementations. The most generalframework for approaching these problems is that of the information state,see [55] and, in the context of stochastic optimal control problems on �nitestate spaces, [16]. With this technique the output feedback problem is �rstreduced to a state feedback problem. The state in this reduced problem isthe information state which is a real-valued function on state space (termedthe cost-to-go function by other authors, e.g. [25, 120, 9]) and hence thenew problem requires in�nite-dimensional dynamic programming.In some situations the information state can be restricted to a �nite-dimensional function space which facilitates the problem, see e.g. [56] orchapter 4 in this dissertation. In other situations one can a priori guaranteethat a certainty equivalence principle holds [54, 14]. This reduces the com-plexity of the solution so that only two partial di�erential equations mustbe solved; one o�-line (which governs the original problem with full stateinformation) and one on-line (which governs the state estimation problem).While certainty equivalence principles thus simpli�es control problems, itcan be argued that certainty equivalence architectures lack the most in-
1.3 Two recent advances in control theory 19triguing feature of control with incomplete information: That additionalinformation can be obtained by proper use of the control signal. This isthe e�ect of probing, or duality.1.3.2 Semide�nite programming and LMIsA framework which has attracted much attention among control researchersrelies on numerical solution of a special type of convex optimization prob-lems, namely semide�nite programs. These optimization problems consistof optimizing a linear functional infx c0xover all x 2 Rn which satisfy a linear matrix inequality (LMI) constraintA(x) � 0; (or A(x) < 0 )where c 2 Rn is a �xed co-vector and A : Rn! Rm�m is an a�ne functiontaking symmetric matrix values. Such semide�nite programs are convex2and it is feasible to solve them numerically; powerful polynomial-time algo-rithms based on interior-point methods exist [82]. See also [13] for furtherreferences.The surprising fact is that a large number of performance requirementsin linear control theory can be formulated as linear matrix inequalities,see [19]. Thus semide�nite programming can be used to solve especiallyanalysis problems but also some of the classic design problems, notablyH2 and H1 synthesis. The simplest example is the well-known stabilityresult [74] that, given a real matrix A 2 Rn�n, the existence of a realsymmetric Lyapunov matrix P = P 0 such that� �P 00 PA+A0P � < 0is necessary and su�cient for A to have all eigenvalues in the open lefthalf of the complex plane. In chapters 3 and 6 we demonstrate that linearmatrix inequalities provide the natural tool to deal with robustness analy-sis in linear systems where uncertainty is represented by multi-dissipativeperturbations and �nite signal-to-noise ratios.2Meaning, we minimize a convex functional over a convex set.



20 Chapter 1. IntroductionThe limitation of the LMI approaches to control design is that for the ma-jority of controller design problems it is di�cult or impossible to make theproblem convex by variable substitutions. Rather, the resulting problemsare bi-linear matrix inequalities which in general are non-convex. Numer-ical solution of bi-linear matrix inequalities is a topic of current research;see [13] and the references therein.Finite-dimensional convex optimization, and in particular linear matrixinequalities, can also be employed as a computational tool for nonlinearcontrol problems. Consider as an example the problem of �nding a non-negative function V : Rn! Rwhich satis�es the Hamilton-Jacobi inequal-ity on Rn supw2Rm @V@x (x)f(x) + @V@x (x)g(x)w � jwj2 + jh(x)j2 � 0 :The existence of such a storage function V implies (and is under certainconditions equivalent to) that the system_x(t) = f(x(t)) + g(x(t))w ; z(t) = h(x(t))has L2-gain less than or equal to 1. Here f(x) 2 Rn and g(x) 2 Rn�m.The set of those functions V which satis�es this inequality is convex; infact the inequality is equivalent to" @V@x f + jhj2 12 @V@x g12 (@V@x g)0 �I # � 0 : (1.1)A computational strategy for this in�nite-dimensional convex feasibilityproblem is to search for a V of the formV (x) = NXi=1 �iVi(x)where Vi are basis functions, and require that the inequality (1.1) and V � 0holds only at a �nite set of points xj, j = 1; : : : ;M . Inserting V =Pi�iViin (1.1) and evaluating at xj leads to M linear matrix inequalities in �i" PNi=1 �i @Vi@x f + jhj2 12PNi=1�i @Vi@x g12 (PNi=1 �i @Vi@x g)0 �I #�����x=xj � 0 ; j = 1; : : : ;M
1.4 Problem formulation 21which must holds together with with the M constraintsNXi=1 �iVi(xj) � 0 :Thus LMI solvers such as [38, 32] may be used to search for storage func-tions V , and hence to compute the L2 gain of nonlinear systems. It canbe argued that other numerical methods based on partial di�erential equa-tions would be at least as e�ective for this particular problem of L2 gainanalysis, but this dissertation contains numerous examples of nonlinearanalysis problems which can be solved by convex optimization but notwith equations. Admittedly, realistic control problems quickly lead to solarge problems that the existing numerical tools for semide�nite programswill be ine�ective, but as these tools are improving rapidly we expect thatthe approach may have practical applicability in the not so far future.1.4 Problem formulationConsider the control problem depicted in �gure 1.2. The problem is to �nda controller K in some set which maps measurements y to control signalsu such as to achieve some design speci�cations on the output z. �(�)is a plant which may be nonlinear and stochastic. The exogenous inputw, the parameters �, the dynamic perturbation � and the static nonlinearfunction � represent uncertainty. All these uncertain elements are unknownbut known to belong to some speci�ed set. Additional uncertainty may beintroduced by stochastic disturbances internal to �(�).With the current state of the art, this control problem is much too am-bitious. The far more modest objective of this dissertation is simply todevelop a framework within which this control problem can be formulated.Furthermore, to approach various subproblems, for instance by excludingsome of the uncertain elements and considering analysis problems ratherthan synthesis problems.As a starting point the theory of dissipative systems (in the sense ofWillems [124] and Hill and Moylan, e.g. [46]) was adopted. See section 2.2on page 28 below for an introduction and further references to dissipationtheory. This is a natural choice in that problems of robust performance areeasily formulated in terms of dissipation. Furthermore, dissipation theory



22 Chapter 1. Introduction�w u y z��(�)KFigure 1.2: The ultimate control problemassisted major theoretical achievements reached during the �rst half of thenineties in the �eld of nonlinear H1 control, which can indeed be seen asone of the subproblems mentioned above (see section 1.3.1 above).Our research concentrated on three subproblems:1. The problem arising by only considering a dynamic perturbation �which is known to possess several dissipation properties.2. The problem arising when only considering uncertain parameters androbustness in the H1 sense.3. The problem of incorporating stochastic noise signals in a dissipation-based framework for robustness.The �rst item led to the study of multi-dissipative dynamic systems, seechapter 2, and to the study of robustness towards multi-dissipative pertur-bations, see chapter 3. The second item is that of adaptive H1 control orrobust adaptive control; a topic which has been researched intensively overthe past few years by several groups. Chapter 4 presents some new contri-butions to this topic, especially regarding the r^ole of certainty equivalence,which were obtained by making the further simpli�cation that the param-eter � belongs to a known, �nite set. Finally, the last item motivated thenotion of dissipative stochastic systems, a class of systems which is de�nedand investigated in chapter 5, and the investigation of a class of robust
1.5 Outline of the dissertation 23stochastic control problems, namely those which involve multi-dissipativeperturbations, see chapter 6.1.5 Outline of the dissertationThe dissertation is divided into two parts. The �rst concerns determin-istic models. This means that the nominal models are deterministic, i.e.ordinary, di�erential equations, and that uncertainty is represented by per-turbations which belong to a speci�ed set. The primary novelty of thispart is the study of systems, in particular perturbations, which are dissi-pative with respect to several supply rates. Although dissipative systemsare well-studied objects [124, 53, 122], multi-dissipative systems have notbeen discussed previously.In part I, chapter 2 on multi-dissipative dynamic systems is devoted tofundamental properties of these systems; these properties concern convexityand continuity associated with the supply rates. Chapter 3 on robustnesstowards multi-dissipative perturbations develops su�cient conditions forrobust stability and performance of systems subject to such perturbations.The conditions involve certain weights, or multipliers, associated with thedissipation properties and the results are shown using state-space time-domain techniques in the tradition of Lyapunov [74, 59]. The results havesome conservativeness inherent which is illustrated by a simple examplewhere non-conservative conditions can be obtained using an input-outputapproach. Chapter 4 on simultaneous H1 control assumes that the plantto be controlled is unknown, but belongs to a given �nite collection. This aprototype of an adaptive H1 control problem and contains the problem ofduality which remains a hurdle in stochastic adaptive control. We obtain animplicit solutions in terms of a partial di�erential equation, and discuss thestructure of its solution as well as heuristic certainty equivalence control.Part II concerns stochastic models where the nominal systems are describedby stochastic di�erential equations in the sense of It^o. The aim of this partis to develop tools for problems which include both stochastic and deter-ministic representations of uncertainty. To this end, we develop in chapter 5a theory of dissipation in stochastic systems, generalizing the framework ofWillems [124]. We show that dissipative stochastic systems are as well-behaved as their deterministic counterparts; for instance dissipation has



24 Chapter 1. Introductionimplications for stability and is preserved under interconnections of sys-tems. This is exploited in chapter 6 on robustness of stochastic systems,where performance as well as uncertainty is described in terms of stochas-tic dissipation properties. Examples include H2 performance as well asdisturbances with �nite signal-to-noise ratios in the sense of Skelton [103].The perspective of this framework is that it allows a modular approach torobustness analysis, using convex optimization as a numerical tool.Concluding remarks and suggestions for future work are given in chapter 7.Appendix A concerns autonomous stochastic di�erential equations and de-rives a formula for the conditional expectation of �rst passage times. Theconditioning is here on a speci�ed part of the target set being reached be-fore the remainder. Such conditional expectations are natural performancemeasures for control systems in certain applications. Nevertheless, the ma-terial is somewhat peripheral to the robust performance questions whichare the main topic of the dissertation; hence it has been placed in appendix.Appendix B contains a few technicalities. These are long but elementarycomputations needed in proofs in the body of the dissertation. Appendix Ccontains tables of frequently used symbols and acronyms.The appendices are followed by a bibliography and an index.1.6 Prerequisites of the readerPart I in this dissertation assumes that the reader has had some exposureto system theory, linear H1 control and nonlinear deterministic optimalcontrol, e.g. at the level of [67, 128]. Part II assumes in addition somefamiliarity with stochastic di�erential equations, e.g. [83].

Part IDeterministic models
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Chapter 2Multi-dissipative dynamicsystemsWe consider deterministic dynamic systems with state spacerepresentations which are dissipative in the sense ofWillems [124]with respect to several supply rates. This property is of inter-est in robustness analysis and in multi-objective control. Weshow that under certain assumptions, the dissipated supplyrates form a closed convex cone. Furthermore we show con-vexity and semi-continuity properties of the available storageand required supply as functions of the supply rate.2.1 IntroductionDynamic systems which are dissipative in the sense of Willems [124] appearin several areas of control theory. Roughly speaking, a system is dissipativeif it is unable to produce a speci�ed quantity, such as energy. The frame-work is applicable to large-scale systems and robustness problems becausedissipativity is preserved under interconnections of systems and becausedissipativity for autonomous systems implies stability. Indeed, the frame-work is a natural extension of Lyapunov theory to input/output systems.Although the notion of dissipativity is a quite general one, most attention27



28 Chapter 2. Multi-dissipative dynamic systemshas been given to two special cases: passive systems and systems withbounded L2 gain.In this chapter we consider deterministic dynamic systems which are dissi-pative in the sense of [124] with respect to several supply rates. Such multi-dissipative systems are interesting from a control perspective for two rea-sons: It may be a design objective that a system should be multi-dissipative,for instance that the closed loop has small gain and that the controller ispassive. Secondly, uncertain dynamic elements in the system may be mod-eled as multi-dissipative perturbations. For instance, consider a mechanicalsystem containing two parasitics, each of which is passive and has smallL2 gain. This results in a total of four dissipation properties which theparasitics satisfy together. Such information can be used to show robuststability and performance of the overall system.Although much literature has been devoted to the topic of systems whichare dissipative w.r.t one supply rate, it appears that simultaneous dissipa-tion properties have not been studied. In this contribution we show thatconvexity properties appear nicely when several supply rates are consideredat once; for instance, the set of supply rates w.r.t. which a system is dissi-pative is a convex cone, and for a �xed initial state, the available storageis a convex lower semi-continuous function of the supply rate (see belowfor de�nitions and exact statements). These properties are important bothfrom an analytical and a computational point of view.The chapter is organized as follows: In section 2.2 we summarize somede�nitions and properties associated with dissipative systems, mostly fol-lowing [124]. Section 2.3 presents our new results for systems which aredissipative with respect to several supply rates while section 2.4 o�ers someconclusions.2.2 PreliminariesWe consider dynamic systems � de�ned by ordinary di�erential equationsin state-space: � : _x(t) = f(x(t); w(t))z(t) = g(x(t); w(t)) (2.1)Here, the system has input w(t) 2W, output z(t) 2Zand state x(t) 2X,and the spaces X;W and Zare Euclidean. We restrict the input signal
2.2 Preliminaries 29w(�) to a signal space W which is chosen such that the di�erential equationde�nes a state transition map �(x; t; w(�)): If x(�) solves the equation, thenx(t) = �(x(0); t; w(�)).Associated with the system we have a supply rate s : W �Z! Rwhichdescribes a 
ow of some quantity into the system. When the initial statex0 and the input w(�) is clear from the context we use the shorthands(t) := s(w(t); g(�(x0; t; w(�)); w(t))) :We do not wish to dwell on technicalities regarding existence, uniquenessand regularity of state trajectories and supplies. We hence simply as-sume that the input space W is chosen such that �(x0; t; w(�)) is a wellde�ned semi-group, continuous in t, consistent with x0, causal in w(�) andsuch that all resulting signals are measurable locally bounded functions1of time. Furthermore W must be closed under switching to guaranteethat the principle of optimality holds. These assumptions are for instancemet if f : X�W ! TX is Lipschitz continuous, g : X�W ! Zands : W�Z! R are locally bounded and measurable, and ifW is the set ofpiecewise continuous locally bounded signals.We remark that one could avoid the di�erential equations all together andde�ne the dynamic system by �, see [124]. One can also de�ne dissipationfor input-output systems, see [47].Our notion of dissipation is the original one of Willems [124]:De�nition 1: A dynamic system � is said to be dissipative with respectto the supply rate s if there exist a storage function V : X! �R+ suchthat for all time intervals [0; T ], initial conditions x0 and inputs w 2 W thedissipation inequalityV (x(T )) � V (x(0)) + Z T0 s(t) dt (2.2)holds. 2We use the following formulations interchangeably: � is dissipative w.r.t.s; � dissipates s; s is dissipated by �.The reader is encouraged to always keep the energy interpretation in mind:s denotes an (abstract) energy 
ow into the system and V denotes theenergy stored in the system.1A function is said to be locally bounded if the image of any bounded set is bounded.



30 Chapter 2. Multi-dissipative dynamic systemsWe remark that James has proposed a slightly di�erent de�nition in [53]where the storage function is required to be locally bounded. It is thenpossible to restrict attention to lower semi-continuous storage functionswhich are shown to be exactly the non-negative viscosity solutions in thesense of [23] to the di�erential formulation of the dissipation inequality8w 2W : Vx(x)f(x;w) � s(w; g(x;w)) (2.3)which must hold for all x 2X. The two de�nitions coincide when the systemis locally controllable; then all storage functions are continuous [47, 7].In many situation it is possible to use the storage function as a Lyapunovfunction to show various stability properties [124]. For instance, assumethat V attains an isolated local minimumat some point x0 and is continuousin a neighbourhood of x0 and that w(�) is chosen such that s(�) � 0, thenx(�) = x0 is a Lyapunov stable solution.v �2�1 zw yFigure 2.1: Feedback interconnection of dissipative systemsIf a collection of dissipative system components are connected in a suitablefashion, then the resulting system will be dissipative as well; as storagefunction one can use the sum of the storage in each component. Thisstatement seems obvious if one keeps the energy interpretation in mind;however there are a few technical requirements [124]. The simplest suchstatement is as follows: Assume that the system �1 in �gure 2.1 dissipatesthe supply rate s1(v; y) + s2(w; z) and that �2 dissipates �s2(w; z), thenthe interconnection (�1;�2), which is a system with input v and outputy, dissipates s1(v; y). Here we have assumed that the interconnection is awell de�ned dynamic system with a state space representation. In fact arepeated use of this simple statement is su�cient for our purposes.Sometimes it is useful to consider strict dissipation inequalities, i.e. to askif the system is dissipative w.r.t. s(w; z) � �(x) for some suitable non-negative function �. This is particularly relevant when one is interested in
2.2 Preliminaries 31time constants associated with the system, in robustness w.r.t. perturba-tions in dynamics or in supply rate, or in stronger stability properties thanLyapunov stability. In particular we follow [99] and say that the system isstrictly output dissipative w.r.t. the supply rate s i� it is dissipative w.r.ts��jzj2 for some constant � > 0. This property is of interest in L2 stabilityand performance analysis.The available storage and the required supplyA dissipative system will in general have many di�erent storage functionsfor each supply rate, but two are of special interest. First we follow [124]and de�ne the available storageVa(x) = supw(�);T Z T0 �s(t) dtwhere the integral is along the trajectory starting in x and correspondingto w(�). It is easy to see [124] that the available storage is �nite everywhereif and only if the system is dissipative, in which case it is in itself a storagefunction and satis�es Va(x) � V (x) for any other storage function V (�).Furthermore, the available storage has in�mum 0 (to see this, let V be astorage function, then so is V (x)� inf� V (�) which implies Va(x) � V (x)�inf� V (�) and hence infx Va(x) = 0). On the other hand, the in�mumneedsnot be attained; consider as an example a system of two electrons movingfrictionless in space subject to an external input force u. The supply isthe energy delivered by u, the unique storage function is the energy in thesystem. Minimum storage is found in the limit as the electrons come torest in�nitely far from each other.Secondly, we de�ne the required supply as the least possible supply whichcan bring the system from a state of minimal available storage to the desiredterminal state. More precisely:Vr(x) = infx(�);w(�);T Z T0 s(t) dtwhere the trajectory x(�) must be consistent with w(�) and furthermoresatisfy Va(x(0)) = 0 and x(T ) = x. When no such trajectory exists wede�ne Vr(x) = 1. The required supply satis�es Vr(x) � V (x) for anystorage function V which has been normalized so that V (x) = 0 whenever



32 Chapter 2. Multi-dissipative dynamic systemsVa(x) = 0. Furthermore, if Vr(x) is �nite everywhere (i.e. the system isdissipative, there exists at least one point of minimumavailable storage andany state is reachable from such a point) then Vr(x) is in itself a storagefunction.We remark that it is possible to give a more general de�nition which doesnot assume the existence of a point of minimum available storage; we shallnot pursue this. Also, the reachability assumption will be used frequentlyin the following. In some situations where it does not hold it may beadvantageous to rede�ne the state space of the system to contain exactlythose states which are reachable.Our de�nition of the required supply di�ers slightly from the one of Willems[124]: In this reference in�mum is taken over trajectories which start in a�xed, speci�ed point x(0) = x� with Va(x�) = 0. In contrast, we allowx(0) to vary as long as Va(x(0)) holds. We believe our de�nition is moresuitable when multiple points of zero available storage exist, for instanceseveral equilibrium points. A consequence of our de�nition is that any xwhich satis�es Va(x) = 0 also satis�es Vr(x) = 0.Sometimes we use the notation Va(x; s) and Vr(x; s) to stress which supplyrate we are referring to. We remark that the availabe storage and therequired supply are viscosity solutions to di�erential dissipation equalitiescorresponding to the inequality (2.3), provided that they are continuousand under certain assumptions [7]. See also the example in section 5.7 onpage 116 below.2.3 Properties of multi-dissipative dynamicsystemsIn this section we consider a system � of the form (2.1) which is dissipativewith respect to more than one supply rate. We investigate the set of supplyrates which are dissipated by the system and we show several propertieswhich are related to the convexity of this set.It was noted already in [124] that the storage functions for a dynamicalsystem with respect to a single supply rate form a convex set. For multi-dissipative systems this fact extends easily to the following:Proposition 2: Let V be a linear space of functions X! R and let Sbe a linear space of supply rates W �Z! R. Then those pairs (V; s) for
2.3 Properties of multi-dissipative dynamic systems 33which V is a storage function w.r.t. the supply rate s form a convex cone,i.e.f(V; s) 2 V �S j V � 0 and (V; s) satisfy the dissipation inequality (2.2) gis a convex cone. Furthermore this set is closed with respect to pointwise(in X) convergence of storage functions V and local uniform convergence(over W �Z) of supply rates s. 4Regarding the last closedness statement, one could have considered severaldi�erent topologies on the space S of supply rates. Throughout, we shallrestrict attention to the topology corresponding to local uniform conver-gence over W �Z; this mode of convergence appears to be most useful inapplications. We recall the standard de�nition:De�nition 3: We say that si ! s locally uniformly if, for every compactsubset 
 of W �Zand every � > 0, there exists an N > 0 such thatsup(w;z)2
 jsi(w; z)� s(w; z)j < � for i > N . 2We remark that if si ! s locally uniformly, then supt2[0;T ] jsi(t)�s(t)j ! 0for any �nite T and any trajectory which satify our standing assumptionthat all signals are locally bounded functions of time.The proof of proposition 2 is a quite straightforward exercise of the machin-ery of dissipation theory; we include it for the convenience of the reader.Proof: [of the proposition] Too see that the set is a convex cone, letthe system be dissipative w.r.t. the supply rates s1 and s2 with storagefunctions V1 and V2, respectively. We must then show that �1V1 + �2V2is a storage function with respect to �1s1 + �2s2 for any �1; �2 � 0. Tothis end, let the initial state x(0), the input w(�) and the �nal time T bearbitrary; then the dissipation inequalitiesVi(x(T )) � Vi(x(0)) + Z T0 si(t) dthold for i = 1; 2. Multiply these inequalities with �1; �2 � 0 and add thetwo to obtain2Xi=1 �iVi(x(T )) � 2Xi=1 �iVi(x(0)) + Z T0 2Xi=1 �isi(t) dtwhich says that �1V1+�2V2 is a storage function with respect to �1s1+�2s2.



34 Chapter 2. Multi-dissipative dynamic systemsTo see that the set is closed, let Vi ! V pointwise in Xand let si ! slocally uniformly over W �Z. Consider an arbitrary trajectory such thatVi(x(T )) � Vi(x(0)) + Z T0 si(t) dt :Then we have R T0 si(t) dt ! R T0 s(t) dt due to local uniform convergenceof si since all signals by assumption are bounded on the bounded interval[0; T ]. Combining with pointwise convergence of Vi(x(�)) we getV (x(T )) � V (x(0)) + Z T0 s(t) dtwhich should be shown.We see from proposition 2 that if the system dissipates any supply rate ina given set S� S, then it is dissipates any supply rate in the convex conichull of S. This was also noted in [45].An interesting question is if the set of dissipated supply rates is closedunder some given topology on the space S of supply rates. For instance,in L2-gain analysis one considers supply rates s
 (w; z) = 
2jwj2� jzj2 andde�ne the L2-gain 
� as the in�mum over all numbers 
 > 0 such that thesystem is dissipative w.r.t. s
 . The question if the system is dissipativew.r.t. s
� hence arises naturally. In this case it is [120], but the questionhas not been considered for more general families of supply rates. Noticethat the closedness shown in proposition 2 does not answer this question.A �rst result in this direction is obtained with the notion of a cyclo-dissipative system:De�nition 4: The system � is cyclo-dissipative w.r.t. the supply rate sif Z T0 s(t) dt � 0for any T and any pair w(�); x(�) such that x(0) = x(T ). 2This de�nition deviates slightly from the one in [47] where the inequalityis required to hold only when x(0) = x(T ) = 0; here, we have no reasonto discriminate the state x = 0. A dissipative system is obviously cyclo-dissipative whereas the converse implication does not hold in general [47].We can now pose the result:

2.3 Properties of multi-dissipative dynamic systems 35Proposition 5: Assume that � is cyclo-dissipative w.r.t. si, i 2 N, andthat si ! s locally uniformly as i!1. Then � is cyclo-dissipative w.r.t.s. 4Proof: Let w(�); x(�) be any trajectory such that x(0) = x(T ), let z(�)be the corresponding output. Since all signals by assumption are locallybounded, there exists a bounded set 
 2W�Zsuch that (w(t); z(t)) 2 
for t 2 [0; T ]. Let � > 0 be arbitrary and let i be su�ciently large such thatsup(w;z)2
 jsi(w; z)� s(w; z)j < �. ThenZ T0 s(t) dt � Z T0 si(t) dt� �T � ��Tsince the system is cyclo-dissipative w.r.t. si. Letting � ! 0 yields thedesired conclusion.It follows that the set of cyclo-dissipated supply rates is a closed convexcone. An appealing conjecture is that the same statement holds if onereplaces the word cyclo-dissipated with dissipated. This is not the case,however, as the following example demonstrates.Example 6: Consider a scalar integrator, i.e. a system with state spaceX= R and dynamics _x = w; z = xand let the space S of supply rates be the span of the two rates wz andz3w. Consider a sequence of supply ratessi(w; z) = �2wz + 4i z3w :It is then easy to see that the system is dissipative w.r.t. si; the availablestorage is Va(x; si) = �x2 + 1i x4 + i4 :In fact the dissipation inequalities always hold with equality (in the termi-nology of [124] the system is lossless w.r.t. si). The supply rates si convergelocally uniformly to s(w; z) = �2wz and it is easy to see that the systemdoes not dissipate s: For the dissipation inequality to be satis�ed the stor-age function must necessarily be in the form V (x) = �x2 + K and no Kexists such that V is non-negative. However, the system is cyclo-dissipativew.r.t. s in accordance with the previous result. 2



36 Chapter 2. Multi-dissipative dynamic systemsIn order to get the desired result we need an additional assumption on thestates of zero available storage:Proposition 7: Let si, i 2 N, be a sequence of dissipated supply rateswhich converges locally uniformly to the supply rate s. Assume that theset of minimal available storage fx j Va(x; si) = 0g is independent of i 2 Nand non-empty, and that the entire state space X is reachable from thisset. Then the system is dissipative w.r.t. s. 4Proof: Consider an arbitrary trajectory such that Va(x(0); si) = 0 andde�ne J := Z T0 s(t) dtwhere T > 0 is arbitrary. Let � > 0 be arbitrary and choose i su�cientlylarge such that jsi(t) � s(t)j < � for t 2 [0; T ]; this is possible since allsignals are bounded on [0; T ] and si ! s locally uniformly on W �Z. Itfollows that 0 � Z T0 si(t) dt � J + �Twhere the �rst inequality holds because the trajectory starts in a point ofzero available storage w.r.t. si. Since � > 0 was arbitrary we conclude thatJ � 0.Now consider any continuation of the trajectory starting at time T in thestate x(T ) and ending at time T 0 > T . Repeating the above argument wesee that Z T 00 s(t) dt � 0which in turn implies that Z T 0T �s(t) dt � J :We conclude that Va(x(T ); s) � J < 1. Now notice that the point x(T )can be chosen arbitrarily since the entire state space is reachable; it followsthat the available storage w.r.t. s is �nite everywhere. We conclude thatthe system is dissipative w.r.t. s.The hypothesis that the set of zero initial storage is independent of i failsin example 6 above. In this example we have Va(x; si) = 0, jxj =pi=2.
2.3 Properties of multi-dissipative dynamic systems 37In many applications there is only one set which can be a set of minimalavailable storage, for instance a single zero-input equilibrium point. Inthese situations we conclude that the dissipated supply rates form a closedconvex cone.One can also derive closedness properties using theory for partial di�erentialequations, rather than system theory, for instance following [23, 53]. Wepoint out that in comparison with this approach, proposition 7 has thestrength of not imposing local boundedness, continuity, or other regularityrequirements on the storage functions.The previous results clari�es the structure of the set of dissipated supplyrates. We now turn to the properties of the available storage and requiredsupply, seen as functions of the supply rate.Proposition 8: Let Sbe a convex set of dissipated supply rates and letx 2 Xbe �xed. Then Va(x; s) is a convex lower semi-continuous functionof s 2 S. If furthermore the set fxjVa(x; s) = 0g is independent of s 2 Sand non-empty, and if the entire state space is reachable from this set, thenVr(x; s) is a concave upper semi-continuous function of s 2S. 4Proof: First we show that Va(x; �) is convex in the supply rate: Fix theinitial condition x(0) and de�ne the functional Ja on W � �R+� S byJa(w(�); T; s) = Z T0 �s(t) dtwhere the integrand is evaluated along the trajectory starting in x(0) andcorresponding to w(�). Notice that Ja is convex in s; even linear. HenceVa(x(0); s) = supw(�);T Ja(w(�); T; s)is also convex since the supremeum of any family of convex functionals isconvex.Next we show that Va(x; �) is lower semi-continuous: Let s 2 Sand let sibe a sequence in Swhich converges locally uniformly to s; we must thenshow that lim infi!1 Va(x; si) � Va(x; s) :Choose � > 0 and let x(�) be a trajectory with x(0) = x such thatZ T0 �s(t) dt � Va(x; s)� � :



38 Chapter 2. Multi-dissipative dynamic systemsNow choose i su�ciently large such that jsi(t)� s(t)j < �=T on [0; T ]; thenZ T0 �si(t) dt � Z T0 �s(t) dt� � � Va(x; s)� 2�which implies that Va(x; si) � Va(x; s)� 2� for i su�ciently large. Now let�! 0 to obtain the desired conclusion.To show concavity of Vr(�x; �) under the additional assumptions, we followthe argument above: Let 
 denote those (w(�); x0; T ) in W �X� �R+ forwhich Va(x0; s) = 0 for s 2 S, and for which the trajectory starting in x0and corresponding to w(�) satis�es x(T ) = �x. Now de�ne the functional Jron 
� S by Jr(w(�); x0; T; s) = Z T0 s(t) dtwhich is concave, in fact linear, in s. Now notice that Vr(�x; s) is the in�mumof Jr over the set 
 and hence concave.Finally we show upper semi-continuity of Vr(x; �). Choose � > 0 and let x(�)be a trajectory which starts with zero available storage, i.e. Va(x(0); s) = 0,ends in x(T ) = x, and which satis�esZ T0 s(t) dt � Vr(x; s) + � :Now choose i su�ciently large such that jsi(t)� s(t)j < �=T on [0; T ], thenZ T0 si(t) dt � Z T0 s(t) dt+ � � Vr(x; s) + 2�which implies that Vr(x; si) � Vr(x; s) + 2� for i su�ciently large. Againlet �! 0 to obtain the desired result.With this result in mind it is natural to ask if the available storage is alsoan upper semi-continuous function of the supply rate, and thus continuous.In general, the answer to this question is negative:Example 9: Consider the autonomous system with state space X= Rand dynamics _x = �x; z = x:Let a sequence of supply rates si be given bysi(z) = � �1i if 2�i(i+1)=2 � z � 2�(i�1)i=20 else.
2.3 Properties of multi-dissipative dynamic systems 39The space S is the linear span of these si for i 2 N, and we take S= S . Itis then straightforward to see thatVa(x; si) = log2for any x � 1. On the other hand, the supply rates si converge uniformlyto the supply rate s = 0 for which Va(x; 0) = 0. Hence the available storageVa(x; �) is not an upper semi-continuous function of the supply rate. 2However, an example of particular interest is when the set Sof dissipatedsupply rates is a convex polytope, i.e. the convex hull of a �nite collection ofsupply rates. In this situation upper semi-continuity follows from convexity:Corollary 10: Take the same assumptions as in proposition 8 and assumein addition that S is a convex polytope. Then Va(x; �) and Vr(x; �) arecontinuous functions of s 2 S. 2Proof: The statement follows from a standard result [92, p. 84] accordingto which a convex function de�ned on a convex polytope is upper semi-continuous.Another situation where continuity follows is when the available storageand the required supply coincide. This is the case for lossless systemsunder certain assumptions, see [124].We summarize and illustrate the discussion with the following simple ex-ample concerning L2-gain analsysis of a scalar linear system.Example 11: Consider the system_x = �x+ w; z = xand the two supply rates s1 = jwj2 and s2 = �jzj2 corresponding to ananalysis of L2-gain from w to z. Let the space S of supply rates be thespan of s1 and s2.Since the system is linear and the supply rates are quadratic we know [124]that if the system is dissipative w.r.t. the rate �1s1 + �2s2 then thereexist a quadratic storage function V (x) = �x2. The di�erential dissipationinequality then reduces to the linear matrix inequality� �2�+ �2 �� ��1 � � 0 :The set of those �; �1; �2, for which the linear matrix inequality holds,is a cone. Let us concentrate on the subcone for which �2 > 0. We



40 Chapter 2. Multi-dissipative dynamic systemsmay obtain a cross-section of this cone by �xing �2 = 1 and examinewhich values � and �1 result in a supply rate and a storage function whichsatisfy the dissipation inequality. A little manipulation yields that this setis characterized as � � 12 ; (2�� 1)�1 � �2 :This set is depicted in �gure 2.2. It has the structure which was predictedby the previous results: It is convex and closed as is its projection on the�1-axis. Furthermore, the available storage and the required supply arecontinuous functions of �1, convex and concave, respectively. In additionthe set has the special feature of being unbounded since s1 is sign de�nite.22.4 Chapter conclusionFor a dissipative dynamic system, we have asked the question: With respectto which supply rates is the system dissipative? We have shown elementaryproperties associated with these dissipated supply rates: They form a con-vex cone which is also closed under additional assumptions. Furthermorewe have investigated continuity properties of the available storage and therequired supply, seen as functions of the supply rate. For the importantspecial case of convex polytopes of supply rates, we have shown that thesefunctions are continuous.Many of our results have been shown under the assumption that the setsof zero available storage are independent of the supply rate under con-sideration. An interesting topic of future research would be to relax thisassumption.Our original motivation for this study was the situation where a dynamicsystem contains perturbations which are known to be multi-dissipative.In this situation the inherent convexity can be employed to obtain quitesharp conditions for robust stability and performance by means of convexoptimization: we optimize over the set of supply rates with respect to whichthe nominal system is dissipative. In the special case of linear systemsand quadratic supply rates the dissipation inequalities are linear matrixinequalities and the numerical tool is semide�nite programming. Someresults along these lines follow in chapter 3 below.
2.4 Chapter conclusion 41
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42 Chapter 2. Multi-dissipative dynamic systemsAnother application of the theory of multi-dissipative systems is the prob-lem of control for multi-dissipation, i.e. �nd a controller in some classsuch that the resulting closed-loop system is dissipative w.r.t. a family ofsupply rates. For instance, one may require that the closed loop is smallgain and that the controller is passive. In chapter 4 below, which concernsthe problem of simultaneous H1 control, such a problem of control formulti-dissipation arises. Chapter 3Robustness towardsmulti-dissipativeperturbationsWe investigate the robustness of an interconnection of a nom-inal system, described by nonlinear ordinary di�erential equa-tions, and an unknown perturbation which is dissipative withrespect to several supply rates. We give su�cient conditionsfor global robust stability and performance in terms of exis-tence of solutions to nonlinear partial di�erential inequalities ofthe Hamilton-Jacobi-Bellman type with certain extra degreesof freedom, namely a vector of weights. We then specialize tolinear systems with quadratic supply rates where the analysisreduces to linear matrix inequality problems.It is popular to deal with uncertainty in control problems using the frame-work of dissipation (in the sense of Willems [124] and the previous chapter)because dissipativity is preserved under interconnections of systems and be-cause dissipativity for autonomous systems implies stability. This makes itpractical to model uncertainty by dissipative perturbations, and to pose asdesign speci�cation that the overall system is dissipative. A common exam-ple of a dissipation property is bounded L2-gain. This particular property43



44 Chapter 3. Robustness towards multi-dissipative perturbationsleads to linear or nonlinear H1 control, where the uncertainty is modelledby perturbations which have bounded L2-gain, and where performance ofthe overall system is measured by its L2-gain as well. Also passive pertuba-tions are common; for instance stability proofs of certain adaptive controlsystems employ passivity-based arguments.In this chapter we consider robustness towards deterministic dynamic per-turbations which are dissipative with respect to several supply rates. Sec-tion 3.1 motivates this problem by providing examples of such multi-dissi-pative perturbations. In this section we also compare the framework withthat of integral quadratic constraints. In section 3.2, we demonstrate thatinformation regarding multiple dissipation properties of the perturbationscan be included in an robustness analysis in an operational fashion. Theresulting conditions on the nominal part of the system are partial di�er-ential inequalities of the Hamilton-Jacobi-Bellman type with certain extradegrees of freedom. Section 3.3 specializes the discussion to linear systemsand quadratic supply rates; in these situations linear matrix inequalitiesbecomes an e�cient numerical tool with which we can also address relatedproblems involving parameter uncertainty, or of robust H2 performance.Finally, section 3.4 o�ers some concluding remarks and points out a num-ber of open problems.3.1 Multi-dissipative perturbationsThe aim of this section is to provide a few examples of multiple dissipationproperties of perturbations in control systems. The section merely summa-rizes some ideas - some well known, others seemingly new - and does notpresent new results.For a single dynamic perturbation w(�) = �z(�), typical dissipation prop-erties are related to gain and phase properties. For instance, linear positivereal perturbations - or more generally nonlinear passive perturbations - aredissipative w.r.t. the supply rate s(w; z) = hw; zi. Similarly � has L2-gain(or H1 norm) less than or equal to 
 > 0 if and only if � is dissipativew.r.t. the supply rate s(w; z) = 
2jzj2 � jwj2 - this can be generalized toany Lp induced norm for �nite p.When the perturbation represents parasitic dynamics, for instance oscilla-tory modes in a mechanical or electrical system, the passivity follows from
3.1 Multi-dissipative perturbations 45the fact that such oscillations cannot produce physical energy. More gen-erally, physical conservation laws give rise to dissipation properties. Con-servation of mass, volume, free thermodynamic energy, or momentum canbe cast as dissipation properties.Bounds on static (memoryless) nonlinearities can also be expressed in termsof dissipation properties, although the information that � is static is lost.Speci�cally, let w(t) and z(t) be scalar and let � be given byw(t) = (�z)(t) = �(z(t))where � : R! R is known to satisfy the inequality  (z; �(z)) � 0, thenobviously � is dissipative w.r.t. the supply rate s(w; z) =  (z; w). Aparticular popular class of bounds are the linear sector bounds which arecommon in the �eld of absolute stability, see [59] and the references therein.For instance, if the graph of � lies between the lines w = az and w = bzfor known real numbers a < b then the corresponding function  may betaken as the quadratic form (z; w) = (w z) � �1 a+b2a+b2 �ab �� wz � : (3.1)It is important to examine how much conservativeness one introduces byneglecting that the perturbation is static. When the supply rate s isquadratic, a partial answer to this question is obtained by examining whichlinear time invariant systems dissipate s.The above examples illustrate how one may establish single dissipationproperties of perturbations. Our prime example of a multi-dissipative dy-namic perturbation concerns parasitic dynamics which are bounded andpassive:Example 12: [Modelling of multi-dissipative perturbations] Considerthe spring-mass system in �gure 3.1, which is a simple model of a one-dimensional position regulator system. The force u is the output of an lineartime invariant controller. We consider the small mass as an unmodelledparasitic, and the parameters associated with it to be very uncertain.The overall interconnection of the small mass and the remaining systemmay be written in the form of �gure 3.2. The error signal z is then thevelocity _y of the large mass while the disturbance w is the force acting fromsmall mass on the large mass. With this formulation, � is given by�(s) = (k + cs)msms2 + cs + k :
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cFigure 3.1: A position regulator with parasitic dynamicsThe transfer function � is positive real, i.e. dissipative w.r.t. the supplyrate �s1(z; w) = zw, since this supply rate corresponds to the mechanicalenergy supplied to the parasitic. It is also small gain, i.e. dissipative w.r.t.the supply rate �s2(z; w) = 
2z2�w2 for 
 � k�k1 � km=cp1 + c2=km.�z � wFigure 3.2: System and perturbation in feed-backOne can easily imagine situations where physical considerations or a fewsimple experiments provide a reasonable bound on 
 but where we nev-ertheless do not wish to estimate m; c and k. Indeed, in many situationswe do not wish to specify the order of �. In these situations, the onlyinformation about � we wish to make use of in the subsequent analysis isthe two dissipation properties. 2See also [33] for a discussion of this example in the context of integralquadratic constraints.Another way multiple dissipation properties arise is when the input z andthe output w to the perturbation � can be partitioned asz = 0B@ z1...zp 1CA and w = 0B@ w1...wp 1CA
3.1 Multi-dissipative perturbations 47and the perturbation � is block diagonal, i.e.w = �z , wi = �izi; i = 1; : : :p :This block structure occurs when each perturbation �i is associated with adi�erent physical component in the system (if each block diagonal element�i is bounded in H1-norm, then the resulting problem is �-analysis). Itis clear that the total perturbation � inherits the dissipation propertiesof each perturbation element �i. This may quickly lead to a quite largenumber of dissipation properties of � as a realistic control problem typicallywill contain uncertain elements in many di�erent places in the control loop.We conclude this section with an example demonstrating how one mayestablish necessary and su�cient conditions for the robustness of a systemcontaining a multi-dissipative perturbation:Example 13: [A non-conservative robustness condition] Continuing exam-ple 12 above, the suitable analysis question is: When is � robustly stabletowards perturbations � which are linear time invariant and dissipativewith respect to �si for i 2 f1; 2g ? Here we construct necessary and suf-�cient conditions through frequency domain considerations. First, rescalethe system such that that 
 = 1. The requirement that � is linear timeinvariant, passive and small gain then is equivalent to the transfer function�(s) mapping the closed right half of the complex plane into the set A in�gure 3.3, i.e.8s 2 �C+ : �(s) 2 A = fs 2 C j Re s � 0 ^ jsj � 1g (3.2)The interconnection is unstable if and only if the closed loop has a pole inthe closed right half plane, i.e. there exists an s 2 �C+ such that�(s)�(s) = 1 :So the interconnection is stable for all � such that (3.2) holds if and onlyif � maps the closed right half plane into the region B in �gure 3.3, i.e.8s 2 �C+ : �(s) 2 B := fs 2 C j 1s2=Ag (3.3)= fs 2 C j Res < 0 _ jsj < 1g :An alternative characterization of the set B isB = fs 2 C j 9� > 0 : js + �j < ji+ �jg :
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Im 1Re Im ReA: B:1Figure 3.3: The subsets A and B of the complex planeSo the condition (3.3) holds if and only if there exists a map � : �C+ ! R+such that 8s 2 �C+ : j�(s) + �(s)j < ji+ �(s)j :The inequality in this expression can be restated as(1 ��(s)) � 1 ��(s)��(s) �1 �� 1�(s) � > 0 : (3.4)To recapitulate, the feedback system is stable if and only if there existsan � : �C+ ! R+ such that this holds for all s 2 �C+ . This is exactlythe type of stability conditions that appear in [57] (see also the referencestherein); in the nomenclature used there � satis�es two integral quadraticconstraints (IQC's). 2In more complicated situations, involving several perturbations or non-linear systems, the problem of obtaining non-conservative conditions forrobustness is still untractable. In the remainder of this chapter we derivesu�cient conditions only. We shall later return to this example in order tocomment on the conservativeness inherent in our conditions.3.2 Robustness analysisWe now turn to the interconnection of �gure 3.4 where � is the nominalsystem, � is a multi-dissipative perturbation and v is an exogenous deter-ministic signal. Throughout the section, x denotes a state of � while �denotes a state of �.

3.2 Robustness analysis 49�w1 z1w0 z0�Figure 3.4: Setup for robust performance analysis.The problems we consider are generalizations of robust non-linearH1 anal-ysis problems. Several versions of these problems exist; one is the following:The unknown perturbation � is a causal system with L2-gain less than orequal to 1, i.e. is dissipative w.r.t. the supply rate jzj2� jwj2. Commonly,the interconnection is assumed to be at rest at the initial time t = 0. Theaim of the analysis is to establish an upper bound forZ T0 jy(t)j2 dtwhich holds for all perturbations �, all �nal times T and all inputs v(�)with R T0 jvj2 dt � 1.The aim of this section is to consider robustness analysis problems whichgeneralize this H1 problem above in several directions. The objective isto establish a bound on Z T0 l(y(t)) dtwhere l is a given non-negative running cost. To retrieve robust H1 anal-ysis, use l(y) = jyj2.The following list makes precise the assumptions under which we obtainour robustness result:Assumption 14:1. The interconnection of � and � is well posed in the following sense:To each initial conditions x0 and �0 and each input v(�) correspond



50 Chapter 3. Robustness towards multi-dissipative perturbationsunique state trajectories x(�) and �(�) which are continuous and de-pend causally on v(�), and the signals w(�), z(�) are measurable andlocally bounded1 functions of time, at least up to some �nite escapetime.2. The perturbation � is dissipative w.r.t. to the p measurable andlocally bounded supply rates �si, i = 1; : : : ; p, with available storageVa(�0;�si) � �i for a known set of bounds �i. Here �0 is the initialstate of the perturbation �.3. The input v(�) satis�es Z T0 sv(t) dt � �vfor a known bound �v and any time T > 0, provided that no �niteescape time occurs before T . Here sv(v; y) is a given measurable andlocally bounded supply rate. 2The motivation behind the �rst assumption is as follows: We disregardpathological situations where non-unique or discontinuous state trajectoriesoccur, but we do not wish to exclude a �nite escape time a priori ; ratherwe wish to establish conditions under which a �nite escape time cannotoccur.Regarding the second assumption, we retrieve robustH1 analysis by choos-ing p = 1, s1 = jwj2 � jzj2, and �1 = 0. In applications, it is not alwaysreasonable to assume zero initial storage in the perturbations (i.e, �i = 0)as is done in the robust H1 problem as outlined here; in order to studyrobustness of transient behaviour it is essential to allow some boundedamount of initial storage in the perturbation. (If focus is on stability orsteady-state behavior assumptions corresponding to zero initial storage maybe reasonable and are seen in the IQC literature, e.g. [77, 58, 33]; an ex-ception is [96]). On the other hand, the assumption that the perturbationshave bounded initial storage is often quite reasonable - although it may bedi�cult to establish the exact size of these bounds. A similar discussionapplies to the assumption that the input v has a bounded resource givenby the rate sv and the bound �v.1A function is said to be locally bounded if the image of any bounded set is bounded.
3.2 Robustness analysis 51With this problem setup the su�cient condition for our objectives to bemet is that the nominal system is dissipative w.r.t. some supply rate whichmatches the rates si, sv and the running cost l. More precisely we can statethe following theorem:Theorem 15: [Robustness implications of dissipativity] Let assumption 14hold and assume in addition that the nominal system � is dissipative w.r.t.the supply ratePi disi+dvsv� l for some non-negative weights di, dv. LetV be a corresponding storage function. Then the following holds:1. If no �nite escape time occurs, then the interconnection is dissipativew.r.t. the supply rate dvsv � l.2. The state x(T ) remains in the setfx j V (x) � V (x0) +Xi di�i + dv�vgfor any T > 0 such that no �nite escape time occurs before T .3. If V (�) andPi diVa(�; si) are proper2 functions, then no �nite escapetime occurs.4. The performance boundZ T0 l dt � V (x0) +Xi di�i + dv�vholds for any T > 0 such that no �nite escape time occurs before T .2Proof: Fix the initial states x0 and �0 and the input v and let T > 0 be atime such that no �nite escape time occurs before T . As candidate storagefunction for the interconnection w.r.t. the supply rate dvsv � l we takeW (x; �) = V (x) +Pi diVa(�;�si). It is then easy to see that W satis�esthe dissipation inequality which proves item 1. Using the non-negativeness2A real-valued function is said to be proper i� all preimages V �1(I) of boundedintervals I � Rare bounded.



52 Chapter 3. Robustness towards multi-dissipative perturbationsof Va(�;�si) and of l we getV (x(T )) � W (x(T ); �(T ))� W (x0; �0) + Z T0 dvsv � l dt� V (x0) +Xi di�i + dv�vas claimed in item 2. If furthermore V andPi diVa(�;�si) are proper thenthis implies that x(t) and �(t) remain in a �xed bounded set which excludesthe existence of a �nite escape time and hence proves item 3. Finally item4 is simply a rearrangement of the dissipation inequality of item 1.A key feature of the theorem is that the characterization is convex : The setof those storage functions V and weights di; dv which satisfy the dissipationinequality is convex (proposition 2 on page 32 above). Furthermore, if wewish to search for the best weights di; dv, i.e. those that lead to smallestavailable storage in a �xed initial point, then this involves minimizing aconvex continuous function (proposition 8 on page 37 above and the sub-sequent corollary 10).Another feature of the theorem is that it simultaneously addresses robuststability and performance: Robust performance in the sense of a bound onan integral is given in item 4. To demonstrate that item 2 can be used toshow robust stability, we �rst establish a useful lemma:Lemma 16: [Bounding the state trajectory] Let 
 � Xbe an open setand let x(t), t � 0, be a state trajectory such that x(0) 2 
. Let 
 > 0be such that V (x(t)) � 
 at least until x(t) leaves 
. Let A be the largestconnected subset of V �1([0; 
]) \ 
 which contains the initial state x(0).Assume that A is compact. Then x(t) remains in A for t 2 [0;1). 2Proof: Assume that x(t) leaves 
 in �nite time. Let t2 denote the timeof �rst exit from 
 and let t1 denote the last preceding time of exit from A .Since A is closed and 
 is open we have t1 < t2. Let t 2 (t1; t2) and de�neB = A [fx(� ) : � 2 [t1; t]g. Then B contains x0 and is a connected subsetof V �1([0; 
]) \ 
 of which A is a strict subset. This is in contradictionwith the de�nition of A . We conclude that x(t) remains in 
, hence also inA , until a �nite escape time. Since A is bounded this excludes �nite escapetimes; hence x(t) always remains in A .The importance of A being closed is illustrated in �gure 3.5. Here A is not
3.2 Robustness analysis 53V < 

 A x0 V > 
Figure 3.5: A pre-image A = V �1([0; 
]) � 
 which is not closed.closed and hence the state trajectory can leave A and 
 simultaneously;once the state has exited 
 the bound V (x) � 
 needs not hold.We can now pose a result regarding robust Lyapunov stability of the inter-connection:Corollary 17: [Dissipativity implies robust Lyapunov stability] Take thesame assumptions as in the theorem. Let �x be a strict local minimumpoint of the storage function V and assume that V is continuous in aneighbourhood 
 of �x. Then there exists another neighbourhood 
0 � 
of �x such that the following holds: If the initial state x0 is in 
0, and if thepositive bounds �i, �v are small enough, then the state x(t) remains in 
for t 2 [0;1); in addition the performance boundZ 10 l dt � V (x0)� V (�x) +Xi di�i + dv�vholds. 2The proof of the corollary is conceptually identical to standard Lyapunovstability proofs, e.g. [59], although some extra technicalities are neededbecause V (x(t)) is not necessarily a non-increasing function of time.Proof: Set � = V (�x). Assume without loss of generality that 
 isbounded and that infx2
 V (x) = �: If not, then replace 
 with 
 \ Bwhere B is a su�ciently small bounded neighbourhood of �x. Let 
 > �and let A denote the largest connected subset of V �1([�; 
]) \ 
 which



54 Chapter 3. Robustness towards multi-dissipative perturbationscontains �x; notice that �x is an interior point in A . Assume that 
 is chosensuch that A is closed; this is possible since �x is a strict local minimum.Assume that �i and �v are small enough, i.e. �+Pi di+dv�v < 
. Let 
0be any neighbourhood of �x contained in V �1([�; 
 �Pi di�i � dv�v)) \ A ;Now assume that x0 2 
0. According to item 2 in theorem 15 x(t) remainsin V �1([0; 
]) at least up to a �nite escape time. Now apply lemma16 to seethat x(t) remains in the bounded set A � 
 for t 2 [0;1). The performancebound follows from the dissipation inequality since V (x(t)) � V (�x).In the proofs above the dissipation inequality does not need to hold every-where but only along the possible trajectories. This is particularly usefulwhen studying local behaviour. Developments along these lines are reportedin [113].3.3 Linear systems and quadratic supply ratesIn this section we specialize the previous discussion to the case of linearsystems � de�ned by ordinary di�erential equations in state-space:� : _x(t) = Ax(t) +Bw(t)z(t) = Cx(t) +Dw(t) : (3.5)For systems consisting of a nominal part in feed-back with a multi-dissipativeperturbation, we show that stability and various performance propertiescan be described by linear matrix inequalities (LMIs) which describes somedissipativity property of the nominal part. Such linear matrix inequalitiescan be veri�ed directly numerically with commercially available packagessuch as [32, 38]. The connection between dissipativity for linear-quadraticsystems and LMIs was noted already in [124] and has received much inter-est during the last few years [19] due to e�cient numerical algorithms forsolving LMI problems [82].3.3.1 Robust stabilityConsider the connection in �gure 3.6 (a) where � is the nominal sys-tem and � is a perturbation in a set �; both are assumed to be causal,linear, �nite dimensional, and time invariant systems. We say that the
3.3 Linear systems and quadratic supply rates 55con�guration (�;�) is robustly stable if for every � 2 � the con�gu-ration is well posed (i.e, the dynamics of the closed loop can be written( _x(t); _�(t)) = �A(x(t); �(t)) for some linear �A), and if furthermore z(�) 2 L2.For a deterministic linear time invariant systems with quadratic supplyrates (i.e, when s(w; z) = (w0 z0)Q(w0 z0)0), there is no loss of general-ity [124] in assuming the storage function V to be quadratic (V (x) = x0Pxwith P = P 0 � 0), in which case the di�erential dissipation inequality (2.3)becomes [124] 8x 2X; w 2W : (x0 w0)�� xw � � 0where � is shorthand for� = � PA+ A0P PBB0P 0 � � � 0 C0I D0 �Q � O IC D �This is a linear matrix inequality (LMI) in P .

(a) (b)

v � yw zz�w � �Figure 3.6: The two problems considered: (a) Robust stability. (b) RobustH2 performance.Lemma 18: Assume that every � 2 � is linear, time invariant, anddissipative w.r.t. �s, and that � is strictly output dissipative with respectto the supply rate s. Then the feed-back con�guration (�;�) is robustlystable. 2Remark 19: If � is dissipative w.r.t. s but not strictly output dissi-pative, and if the interconnection is well posed (which in this case is notguaranteed by the dissipativity), and if the storage functions are (quadratic



56 Chapter 3. Robustness towards multi-dissipative perturbationsand) positive de�nite, then we have Lyapunov stability [124], but z neednot be in L2. 2Proof: The dissipation inequalities for � and � areV (x(T )) � V (x(0)) + Z T0 s(w; z) � �kzk2 dt ;W (�(T )) � W (�(0)) + Z T0 �s(w; z) dt :Since we know that V has a local minimum (possibly non-strict) at x = 0,dissipativity of � implies that s(w; z) � �kzk2 � 0 for x = 0. Repeatingthe argument for W we get that s(w; z) � 0 whenever � = 0. Combiningthe two we get that z = 0 whenever (x; �) = (0; 0). Due to linearity ofthe output equation of � we conclude that w = 0. This implies (usinglinearity) that the interconnection is well posed, and hence the solutionsexist on [0;1).Adding the two dissipation inequalities and using the non-negativity of thestorage functions giveZ T0 kzk2 dt � 1� (V (x(0)) +W (�(0))) :Since this holds for all T , the con�guration is robustly stable.Remark 20: It can be argued that the lemma is of limited interest sinceit is very restrictive to assume that perturbations are linear time invariant(a similar point was also emphasized in [106]). Notice, however, that theseassumptions on � are only used to guarantee existence and uniqueness ofthe state trajectories; the L2-bound on z follows directly from the storagefunctions. Luckily, there exist other ways of guaranteeing existence anduniqueness when � is nonlinear and/or time varying. For instance, localwell-posedness may be established through linearizations, algebraic loopsmay be avoided by assuming that � is strictly causal, and �nally includingw in z and assuming properness of W guards against �nite escape times.To avoid these details we will in the remainder of the chapter always assumethat any feedback connection which we analyse is well-posed in the sensethat there exist unique signals which solve the describing equations. Weremark that if one is willing to make the assumption that � is LTI, thenwell-posedness is guaranteed by the stability conditions we derive. 2
3.3 Linear systems and quadratic supply rates 57In this remainder of the chapter we consider analysis of systems � connectedin feedback as in �gure 3.6 with a perturbation �, which is dissipative withrespect to the p supply rates�si = �(w0 z0)Qi� wz � ; i 2 f1; : : : ; pg (3.6)Without loss of generality we assume that Qi are symmetric. We use thesymbol� to denote this particular class of multi-dissipative perturbations,i.e. � = f� : dissipative w.r.t. � si; i 2 f1; : : : ; pgg (3.7)To each � 2 � and each supply rate �si corresponds a storage functionWi(�) de�ned on the state space of �.Specializing theorem 15 to the linear-quadratic case leads the followingresult:Theorem 21: Given the system � de�ned in (3.5) and the class ofperturbations � of (3.7). The con�guration (�;�) is robustly stable if thefollowing linear matrix inequality�PA+A0P PBB0P 0 �� pXi=1 di � 0 C0I D0 �Qi � 0 IC D �+� � C0D0 � � C D � � 0(3.8)is satis�ed for some P = P 0 � 0; � > 0; di � 0 2We emphasize that the theorem gives a less restrictive condition than e.g.small gain criterion or positive real criterion because of the extra freedomassociated with di.Remark 22: One will often examine the following linear matrix inequalityproblem in �P and �d in stead:� �PA +A0 �P �PBB0 �P 0 �� pXi=1 �di � 0 C0I D0 �Qi � 0 IC D � < 0 ;�P > 0; �di > 0 : (3.9)Feasibility of this LMIP is a su�cient condition for robust stability of(�;�) and - under weak assumptions on the data - equivalent to feasi-bility of (3.8). 2



58 Chapter 3. Robustness towards multi-dissipative perturbationsProof: Given a solution pair P; di; �, the function x0Px acts as a storagefunction for � with respect to the supply ratePi disi� �jzj2 and since any� 2� is dissipative w.r.t. �Pi disi (proposition 2 on page 32 above) wehave shown robust stability (lemma 18).It is also easy to see that feasibility of (3.9) implies feasibility of (3.8): Infact, given solutions �P; �di to (3.9), one may �nd su�ciently small � > 0such that �P; �di; � solves (3.8).A similar result was derived independently in the recent contribution [126].Example 23: [The conservativeness of the su�cient condition] Continuingexample 13 above, the two supply rates dissipated by the perturbation �are �s1 = zw and �s2 = jzj2 � jwj2 corresponding toQ1 = � 0 �1�1 0 � ; Q2 = � 1 00 �1 � :The su�cient condition of remark 22 is that � is strictly output dissipativewith respect to a combination of s1 and s2, i.e. with respect tos�(w; z) = (w z) � 1 ���� �1 �� wz � (3.10)for some � � 0. Here we have taken d2 = 1 which is possible due to theconicity, and d1 = �. This will be the case if and only if(1 ��(s)) � 1 ���� �1 �� 1�(s) � > 0holds for all s in the closed right half �C+ of the complex plane. For �! 0,we retrieve the condition that � has L2-gain less than 1, while for �!1the permittable circle approaches the entire left half plane, and thus weget the condition that � is strictly negative real. For high order plants,the latter condition is often di�cult or even impossible to obtain, whilethe former may impose too severe constraints on bandwidth. Also taking� 2 (0;1) into account obviously increases the possibility of reaching agood design.In comparison, the su�cient and necessary condition of equation (3.4) re-quires the existence of a function � : �C+ ! R+ such that the inequalityholds. In other words, the su�cient conditions of theorem 21 and remark 22are conservative in that they do not allow frequency dependent weights di.
3.3 Linear systems and quadratic supply rates 59Notice however that linearity and time invariance of � is essential to thederivation of equation (3.4), whereas theorem 21 holds also for nonlinearand time-varying � provided that the interconnection is well posed. 2Example 24: [A graphic interpretation] Continuing the preceding exam-ple, we can also give a graphic interpretation of the su�cient condition that� is strictly output dissipative w.r.t. s� for some � � 0: Let S�� denotethe circle in the complex plane which is centered in �� 2 R and whoseboundary contains the point i - see �gure 3.7. Then � is strictly outputdissipative w.r.t. s� if and only � maps the right half of the complex planeinto the interior of the circle S��. Combining with the maximum modu-lus theorem, the su�cient condition of remark 22 is that � is stable andits Nyquist plot is contained in such a circle S�� for some � � 0. Thisgraphic criterion is reminiscent of the circle criterion for absolute stability,see e.g. [59], except that we need only �nd one suitable circle in a certainfamily.
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−αFigure 3.7: Permitted area for �(�C+ ) with �(s) independent of sA further understanding of the conservativeness of theorem 21 and re-mark 22 is obtained from the following observation: If � dissipates s� forsome � � 0, then (�;�) is stable for any perturbation � which maps theright half of the complex plane into the circle S�. Notice that any suchcircle S� contains the original set A of �gure 3.3 on page 48. The conserva-tiveness of theorem 21 is thus illustrated by the di�erence between the setA and the sphere S� which covers A. This interpretation is not restrictedto this particular example, but applies to theorem 21 and remark 22 ingeneral. 2



60 Chapter 3. Robustness towards multi-dissipative perturbations3.3.2 Parameter uncertaintyA popular model of parameter uncertainty is that the system matricesA;B;C and D of the system (3.5) are time varying but remain in a givenpolytope:� A(t) B(t)C(t) D(t) � 2 Co ��� Aj BjCj Dj � j j = 1; : : : ;m�� : (3.11)Here Co(�) denotes convex hull. This situation covers not only param-eter uncertainties but also non-linear systems with sector-bounded non-linearities. In [19] a model like this is called a Polytopic Linear Di�erentialInclusion, and many properties of such models are reduced to feasibilityof LMIs. It is therefore not surprising that also robustness in the pres-ence of multi-dissipative perturbations can be guaranteed with LMIs. Forthis situation, a su�cient condition for robust stability in the presence ofmulti-dissipative perturbations is given by the following:Theorem 25: Let � satisfy (3.11). Assume that each of the supply ratessi is concave in z and that the following LMI problem in P , di and � isfeasible: 8j 2 f1; : : : ;mg :� PAj +A0jP PBjB0jP 0 �� pXi=1 di � 0 C0jI D0j �Qi � 0 ICj Dj �+� � C 0jD0j � � C0j D0j � � 0 ;P � 0; di � 0; � � 0 :Then the feed-back con�guration (�;�) is robustly stable. 2Remark 26: The assumption that si is concave in z may be writtenQzzi � 0 where Qi = � Qwwi QwziQzwi Qzzi �and essentially says, that when the input w is zero, the 
ow si is zero ordirected out of the system �. 2Proof: The proof consists of tedious though straightforward manipula-tions of linear matrix inequalities and can be found in appendix B.1 onpage 167. The idea is that the time-varying system is strictly output dissi-pative with respect to the supply rate Pi disi; as storage function we usethe time-invariant function V (x) = x0Px.
3.3 Linear systems and quadratic supply rates 613.3.3 Guaranteed H2 PerformanceWe now expand the system with an exogenous input v(t) and a performanceoutput y(t), corresponding to �gure 3.6 (b) on page 55:_x = Ax+Bw +Gvz = Cx+Dwy = Hx+ Jw (3.12)As before, we have w = �z where � 2 �. We use the symbol (�;�) todenote the closed-loop system with input v and output y. As a measure ofperformance for (�;�) we use its H2-norm.When � is nonlinear and/or time-varying one needs to specify what ismeant by theH2-norm of the interconnection, since it cannot be representedby a transfer function. Two possibilities exist: One can use the L2-normof the impulse response which we will call the deterministic H2-norm ofthe interconnection, or one can assume that v is white noise and considerthe steady-state variance of y. At this point we discuss the deterministicinterpretation while the stochastic approach is taken in the second part ofthis thesis, in chapter 6 below.Theorem 27: The H2 norm of the closed loop system from v to y isbounded above by k(�;�)k2H2 � infP;di;� tr(G0PG)where the in�mization is subject toP = P 0 � 0; di � 0; � > 0� PA+ A0P PBB0P 0 �� pXi=1 di � 0 C0I D0 �Qi � C D0 I �+ � H0J 0 � � H J �+ � � CD � � C D � � 0 2Remark 28: Computation of the upper bound on H2-performance is anLMI problem in P , di and �.



62 Chapter 3. Robustness towards multi-dissipative perturbationsNotice that if we remove �, the LMI in P reduces to PA+A0P +H0H � 0,i.e. we retrieve the standard way of computing the H2-norms of knownsystem using the obervability Gramian [128]. 2Proof: Given P , di and �, we know that � with v � 0! is strictly outputdissipative w.r.t. Pi disi � kyk2. This implies strictly output dissipativityw.r.t. Pi disi and hence it is reasonable to assume well-posedness of theinterconnection of � and �, cf. remark 20.Assume that the interconnection (�;�) is at rest for t < 0 and that we att = 0 excite the interconnection with an impulse at v, i.e. v(t) = v0�(t)where �(�) is the Dirac delta. We then have x(0+) = Gv0. Assume that P; diand � solve the LMI problem in the theorem, then the integral dissipationinequality for the interconnection readsZ T0 kyk2 dt+ Z T0 �kzk2 dt � x0(0+)Px(0+)(and holds because v(t) = 0 for t > 0). Hence,Z 10 kyk2 dt � v00G0PGv0 :Now let vj be the jth unit vector in the input space V= Rnv (v(t) 2 V)and let yj(t) be the impulse response of the interconnection (�;�) to theinput v(t) = vj�(t). We then havek(�;�)k2H2 = nvXi=1 Z 10 kyj(t)k2 dt � nvXi=1 v0iG0PGvi = trace G0PG :Since this holds for any P; di and � that solve the LMI problem the conclu-sion in the theorem follows.3.4 Chapter conclusionThe concept of dissipation is widely used in the area of robust controland control of large scale systems, but except for the special cases of �theory [28, 128] or more generally integral quadratic constraints [77, 57, 97],there has been no systematic use of the fact that systems possess severaldissipation properties at once.
3.5 Notes and references 63In this chapter we have reported results on the use of such multiple prop-erties of dissipation. Our results essentially follow from the fact that thesupply rates dissipated by a given system form a convex cone. We havederived results corresponding to robust Lyapunov stability as well as robustperformance. The framework allows generalization of several other stan-dard Lyapunov-type results; of particular practical relevance is ultimateboundedness, slowly varying systems and parametric uncertainty. Manysuch extensions are straightforward.The appeal of the framework is that it allows combination of informationand speci�cations of di�erent types. Admittedly the resulting conditionswill be conservative in that only su�cient conditions are given. Comparedto common practice, however, where either several dissipation properties ofthe involved uncertain subsystems are ignored or the uncertainty is simplyleft out of the analysis, the framework is an improvement.It is appealing that the analysis reduces to linear matrix inequalities in thespecial, but very important, case of linear systems and quadratic supplyrates. For nonlinear systems the issue of numerical methods is more critical;see the note below.3.5 Notes and referencesComparison to the IQC frameworkConsider a perturbation � which maps z(�) to w(�) and which is dissipativewith respect to a supply rate s(z; w) which is quadratic, i.e. s(z; w) =(w0 z0)Q(w0 z0)0. Assume that the available storage is 0 at time 0; then thesignals satisfy the integral quadratic constraint (IQC)Z T0 (w0(t) z0(t))Q(w0(t) z0(t))0 dt � 0for all times T . The converse also holds: If the IQC holds for all inputsz(�), and if the state space of the perturbation � is reachable, then � isdissipative w.r.t. s with available storage 0 at time 0.With this perspective, it is reasonable to compare our framework of multi-dissipative perturbations to that of integral quadratic constraints. Clearlythe motivation behind the two frameworks are identical as is the idea of



64 Chapter 3. Robustness towards multi-dissipative perturbationsmodularity : reducing a large complex problem to a collection of smallerand more managable subproblems, viz. performing dissipation (or IQC)analysis on components. The techniques used are quite di�erent, though.The IQC framework, in the sense of [77, 57], makes heavy use of frequency-domain techniques. Although it is feasible to pose IQCs for speci�c non-linear perturbations, see for instance [57], the resulting conditions on thenominal system are in frequency domain and no results are given as tohow to verify these conditions for nonlinear nominal systems. The su�-cient conditions are less conservative than the ones we have obtained inthis chapter in that they make use of frequency dependent multipliers cor-responding to our weights di (c.f. examples 13 and 23 above). In order tomake use of these extra degrees of freedom in the linear case one needs toconsider in�nite-dimensional convex optimization problems associated withthe choice of multipliers; this is the major numerical challenge. In com-parison the hurdle in our framework of multi-dissipative perturbations isthe computation of storage functions for nonlinear nominal systems, whichalso can be cast as an in�nite-dimensional convex optimization problem.Another approach to integral quadratic constraints is found in [95, 96, 97].These papers use time-domain techniques and the approach is closer tothis chapter than is [77, 57]. Only linear nominal systems are consideredas are integral quadratic constraints corresponding to L2-gain of the per-turbations.Numerical methods for optimal control problemsIn order to verify if a given system dissipates a given supply rate oneneeds to consider the optimal control problem which de�nes the availablestorage or the required supply. Except for systems with low dimensionalstate spaces or a particular structure, this is an overwhelming numericalchallenge which is the major obstacle to the practical use of the results inthis chapter.Among the numerical methods for optimal control problems, those basedon dynamic programming rather than the maximum principle are mostnatural: In fact the optimal trajectories are of less interest whereas ap-proximations of the value functions may serve as storage functions.For a �xed supply rate, storage functions may be approximated by dis-cretization of the di�erential dissipation inequality, [52, 65] or by a spectral
3.5 Notes and references 65method where a storage function is sought in a given �nite-dimensionalspace [11]. An alternative is a recursive scheme due to Lukes [73, 120, 78]for computing the Taylor expansion of the value function around an isolatedequilibrium point.The su�cient conditions for robustness presented in this chapter require�nding a storage function and a supply rate simultaneously which adds anextra twist to the optimal control problem. One approach is to restrictthe storage function to a �nite dimensional space and employ convex opti-mization techniques, optimizing over the storage function and the d-weightssimultaneously. For input a�ne-quadratic systems, the LMI based proce-dure described on page 20 may easily be modi�ed to search simultaneouslyfor the storage function V and the set of weights di, dl required by theo-rem 15. Although the convexity makes a convergence analysis feasible, thesize of the optimization problems grows exponentially with the number ofstates; this is Bellman's curse of dimensionality. More heuristic approachesmay be useful. For instance we presented in [113] an example where thed-weights �rst where �xed considering only the linearization of the system;afterwards higher order terms were included using a Lukes' scheme.State feed-back controller designWe brie
y comment on the problem of �nding a state feedback controlleru(t) = �(x(t)) such that the resulting closed loop system satis�es the suf-�cient condition derived in this chapter.For a �xed supply rate, the problem of control for dissipation requires prac-tically the same tools as the problem of dissipation analysis as is evidentin [120]. This reference treats the special problem of L2-gain analysis andnonlinear H1 control, but the discussion applies to broad classes of supplyrates: In stead of optimal control problems we consider di�erential games,and the di�erential dissipation inequality is replaced by a Hamilton-Jacobi-Isaacs equation. In both cases the Hamiltonian dynamics provides informa-tion about existence of a value function. The issue of smoothness of storagefunctions becomes more problematic since control strategies are found fromthe partial derivatives of the value functions; see [7, 105]. Local approxi-mations to value functions may be found by Lukes' scheme, [120, 78].To employ the su�cient conditions in this chapter, we need to �nd a con-trol law, a storage function, and a supply rate. In the reference [113] we



66 Chapter 3. Robustness towards multi-dissipative perturbationssuggested to �x the supply rate in a �rst step (which considered only thelinearization of the system) and then apply Lukes' scheme.An alternative is the following value-policy iteration: In the value step, fora �xed controller, we �nd a supply rate and a storage function such thatthe di�erential dissipation inequality holds. This analysis problem can forinstance be solved with convex optimization as outlined above. Then, in thepolicy step we �x the supply rate and the storage function and computethe maximum dissipation controller, i.e. the control law which at eachpoint in state space maximizes the worst-case dissipation. This is a familyof static min-max problems. Then the value step and the policy step areiterated. It is easy to show monotonicity of such an algorithm; undersuitable hypothesis this implies convergence. We have in [114] given thedetails in such an algorithm for the case of linear systems and quadraticsupply rates and demonstrated it on a numerical example.For a linear system and a quadratic supply rate it is possible to give a convexparametrization of linear controllers (static state feedback or full orderoutput feedback) which make the system dissipative; this trick appeared�rst in [15] for the state feedback problem, see also [37, 126]. This motivatesa two-step iterative procedure where the �rst step optimizes the supplyrate while the second �nds a controller which makes the closed loop systemdissipative w.r.t. the current supply rate. A similar procedure is suggestedin the recent reference [126]; see also [125].Regarding output feedback control of nonlinear plants, it is principle pos-sible to combine a search over the d-weights with the information stateapproach [55] to di�erential games. The resulting problems are in gen-eral deterringly complex and with the present state of the art heuristicapproaches should be more fruitful; for instance, �rst solving the linearizedproblem and then applying Lukes scheme.Towards a nonconservative conditionThe technique in this chapter is essentially the following: If V (x) is astorage function for � with respect to s+Pi disi and Va(�;�si) are storagefunctions for � w.r.t. �si, then V (x)+Pi diVa(�;�si) is a storage functionfor the interconnection (�;�) w.r.t. s. One way to generalize this is to�nd a function �V (x; �i) such that the available storage of (�;�) is lessthan �V provided that Va(�;�si) � �i. This leads to a less conservative
3.5 Notes and references 67condition since we do not require �V to be in the form V (x) +Pi di�i. Infact this condition is nonconservative in a certain sense, and can be veri�edby performing dissipation analysis of an extended plant. We do not pursuethis further at this point but will return to the stochastic analogy of theidea in part II of this dissertation; see page 133.



68 Chapter 3. Robustness towards multi-dissipative perturbations Chapter 4Simultaneous H1 ControlWe consider the problem of �nding one output feedback con-troller which achieves H1 performance when connected to anyone of p linear time invariant plants. This is a prototype of anadaptive H1 control problem. We formulate the problem as anon-linear H1 problem and show that the minimax controlleris �nite dimensional but not based on certainty equivalence.Synthesis of the minimax controller involves solving a partialdi�erential equation, namely a state feedback Hamilton-Jacobi-Isaacs equation. We investigate the structure of the solutionand derive the heuristic certainty equivalence controller whichhas a switching architecture.4.1 IntroductionRobustness in presence of both parametric and dynamic perturbations isan important problem which poses great theoretical di�culties. In applica-tions, parametric uncertainty is typically e�ective at low frequencies, andis often highly structured. On the other hand, less structured dynamicperturbations always a�ect high frequency behaviour [128, p. 216].With a low level of parametric uncertainty and with a H1 bounded dy-namic perturbation, linear controllers may su�ce, which then can be de-signed using � synthesis [128, 5] or quadratic stabilization [130, 39, 15]; see69



70 Chapter 4. Simultaneous H1 Controlalso [34]. For larger levels of parametric uncertainty one would expect thatimprovement can be achieved by using nonlinear controllers which includean adaptation mechanism. This motivates the �eld of adaptiveH1 control.A natural approach to adaptive H1 control is to extend the state withthe unknown parameters, thus obtaining a H1 control problem for a newnonlinear plant. Then, one may apply the di�erential game techniques [9,120, 55] to nonlinear H1 control. This approach has been pursued in forinstance [22, 25]. In these references uncertainty is restricted to specialparts of the system such that the minimax controller is �nite dimensionaland based on certainty equivalence principles such as the one in [14].In view of this, an immediate question is: With a dynamic game approachto adaptive H1 control, is certainty equivalence and �nite-dimensionalminimax controllers the generic situation, or a special case? To study thisquestion we consider the special situation where the unknown parameter apriori is restricted to a known, �nite set. Such problems of simultaneouscontrol can be considered as a prototype of adaptive control problems -see e.g. [44]. Our conclusion is negative: Certainty equivalence can notbe expected to hold in adaptive H1 control problems. Furthermore, theminimax controller must run a linear H1 �lter for each possible value ofthe parameter. Therefore we expect the minimax controller to be in�nite-dimensional when there is a continuum of possible parameter values.Next, we show that the heuristic certainty equivalence controller guaranteesH1 performance, provided that the minimax control input is uniquelyde�ned for almost all times. This weak certainty equivalence principleemphasizes the following point: The important issue is not if the best (i.e,minimax) controller is based on certainty equivalence, but if a certaintyequivalence based controller is good enough, i.e, guarantees that the H1design objective is met.Besides being prototypes of adaptive control problems, simultaneous con-trol problems have been the subject of considerable independent research.Linear controllers are investigated in [17, 19]; in general nonlinear controlleads to improvement. Switching control is studied in [79, 80, 81] and thereferences therein: These controllers consist of a bank of linear low-levelcontrollers and a high-level logical switch, which connects one of the low-level controllers to the plant. One way of designing the switch is to �nd thatestimator which supplies the best �t with observations, and then switch inthe corresponding controller. This technique appears in [81, 79, 49].
4.1 Introduction 71In this chapter we point out that this technique, when applied to the prob-lem of simultaneousH1 control, must be modi�ed so that the switch com-pares not just estimation errors but also a control error associated witheach controller. The resulting switching controller is exactly the heuristiccertainty equivalence controller.A problem with switching architectures is chattering. Chattering is rapidswitching back and forth, or that unique (classical) solutions to the dynamicequations seize to exist, depending on ones point of view. Modi�cation ofthe switch to avoid chattering are suggested in [79]; in this chapter wesuggest an alternative based on a smooth approximation of the switch.The chapter is organized as follows: Section 4.2 formulates the simultaneousH1 control problem. Section 4.3 deals with the extended state feedbackproblem while section 4.4 develops the �lter for the worst-case extendedstate estimate. Section 4.5 discusses the the minimaxcontroller. Section 4.6concerns the heuristic certainty equivalence controller. Finally section 4.7o�ers some conclusions.NotationIf P is a two-port plant with disturbance input w, control input u, mea-surements y and error signal z, and K is a controller with input y andoutput u, then (P;K) denotes the closed-loop system with inputs w andoutputs z (see �gure 4.1 below).We use the standard notion of L2-gains, see [119] and page 17 above:De�nition 29: [L2-gain] The L2-gain of a state-space system � (mappinginputs w(�) to outputs z(�) through states �(�)) is denoted k�k and is thein�mum of all numbers 
 > 0 such that8�0 : 9M (�0) : 8tf > t0; w 2 L2([t0; tf ]) :Z tft0 jz(t)j2 dt � 
2 Z tft0 jw(t)j2 dt+M (�0) :Here z(�) is the output corresponding to the input w(�) and the initial state�(t0) = �0. If no such 
 exists we write k�k =1. 2We consider only measurable locally bounded inputs and assume that allsystems map such inputs to measurable locally bounded states and outputs.



72 Chapter 4. Simultaneous H1 Control4.2 Problem statementWe consider systems of the form_x(t) = A�x(t) + B�u(t) + G�w(t)y(t) = C�x(t) + v(t)z(t) = � H�x(t)u(t) �� 2 f1; : : : ; pg 4= � (4.1)Here, x is the state of the system, u is a control input, w is an processdisturbance, y is the measured signal, v is the measurement noise, z is thegeneralized error signal. All signals take values in Euclidean spaces.The matrices (A�; B�; G�; C�;H�) are known functions of the unknown pa-rameter �. With P� we denote the linear system from (w; v; u) to (z; y)obtained by �xing �. (w; v)uyz �� �- P�KFigure 4.1: Simultaneous Control ProblemProblem of Simultaneous H1 Control with Stability: Given a con-stant 
 > 0, �nd a causal control law K : y(�) ! u(�) such that for anyparameter � 2 �, the closed-loop system (P�;K) from (w; v) to z has L2-gain less than 
 and in addition (P�;K) is internally stable in the sensethat w(�) 2 L2([0;1)), v 2 L2([0;1)) implies that x(t)! 0 as t!1. �We adopt the following standard assumptions on the system matrices:Assumption 30:1. For any i 2 �, the triple (Ci; Ai; Bi) is detectable and stabilizable.2. For any i 2 �, the triple (Hi; Ai; Gi) is observable and controllable.2
4.2 Problem statement 73The standard discussion regarding these assumptions applies [128]: The�rst part is necessary for the existence of an internally stabilizing con-troller. The second part is mainly a technical regularity assumption, whichguarantees that any closed-loop system with �nite L2-gain must be inter-nally stable and furthermore that certain loss functions are positive de�nite.As in linear H1 control for a �xed plant, the second assumption can berelaxed quite a bit but to keep the exposition simple, we shall not do this.Adding the parameter dynamics _�(t) = 0 (4.2)we obtain a non-linear system description in the extended state (x0; �)0 bycombining (4.2) and (4.1). We then attack the problem of non-linear H1control for this system using the di�erential game techniques for outputfeedback design presented in [9, 120]. To be speci�c, we consider the dif-ferential min-max problemminK supw(�);x(�);��Z 10�s�(t) dt� 12x(0)0N�x(0)� ��� (4.3)where we have used the shorthandsi = 12
2jwj2 + 12
2jy �Cixj2 � 12 juj2 � 12 jHixj2 : (4.4)Here, the supremum is subject to the dynamics (4.2) and (4.1), and theminimization is subject to the causality restriction on the controller K.Notice that the initial condition x(0) is chosen by the maximizing player.If this minimax problem has �nite upper value for some choice of Ni and�i, then there exists a controller (viz., the minimax controller) which guar-antees that the closed loop from (w(�); v(�)) to z(�) has L2-gain less thanor equal to 
. The converse also holds.In this minimax problem �i � 0 represents prior information about �; ourprior estimate of � is argmini�i (assuming a unique minimum point). Forsimplicity and without loss of generality we assume mini �i = 0.Similarly, Ni > 0 represents our con�dence in the prior estimate x(0) =0, given that � = i. The choice of Ni in
uences the transients of thestate estimator but not steady-state behaviour such as the closed-loop L2-gain. The standard discussion from linear H1 theory [42] applies; thesituation corresponds to the initialization of variances in Kalman �lters.



74 Chapter 4. Simultaneous H1 ControlFor simplicity, we are going to assume that the estimator starts in steadystate; see section 4.4 below.In the following sections we approach this min-max problems, following thegeneral procedure of [9] closely as far as possible. It is interesting to seethat no problems are caused by the fact that our state space Rn�f1; : : : ; pgis hybrid, i.e. has a continuous as well as a discrete part. The main stepsin the procedure are:1. The full information problem where x and � is available to the con-troller on-line. This problem reduces to p standard linear H1 prob-lems; section 4.3.2. The problem of estimating x and � using the measured signal y(�).The solution is a bank of linear state estimators, one for each param-eter value, which run in parallel. The �nal state estimate is found bycomparing residuals associated with these estimators; section 4.4.3. In [9], a certainty equivalence principle [14] is veri�ed at this point.In our case, the hypothesis for this principle is not met. In stead, wereduce the problem to a �nite-dimensional full information minimaxcontrol problem. Our procedure is similar to the information statemachinery [55]. The minimax controller is then characterized by aHamilton-Jacobi-Isaacs equation. We discuss this equation and thestructure of its solution; section 4.5.4. Finally we investigate the heuristic certainty equivalence controller;section 4.6.4.3 Control with known extended stateWe address the subproblem where y = (x; �). A trivial but helpful obser-vation is that this extended state feedback problem reduces to a standardlinear H1 problem for each parameter �. Following [128], we consider thep control algebraic Riccati equationsA0iXi +XiAi +Xi� 1
2GiG0i � BiB0i�Xi +H0iHi = 0 (4.5)which we explicitly assume have the needed solutions:
4.4 The estimation problem 75Assumption 31: For each i = 1; : : : ; p, the algebraic Riccati equa-tion (4.5) admits a solution Xi such that Ai � BiB0iXi + 1
2GiG0iXi isasymptotically stable. In addition Xi is positive semi-de�nite. 2Remark 32: For the relevant theory of Riccati equations as (4.5) we referto [128]. We note if such an Xi exists, it must be unique. Furthermore Ximust be positive de�nite since (Hi; Ai) is assumed observable. 2Well known results from linear H1 theory thus immediately gives:Proposition 33: [c.f. [128, theorem 16.9], [9, theorem 4.8]] Let theplant (4.1), (4.2) satisfy assumption 30. Then there exists a causal controllaw (�(�); x(�))! u(�) such that the closed-loop system from w(�) to z(�) isinternally stable and has L2-gain less than 
, if and only if assumption 31holds. In this case, one such control law is the minimax controlu(t) = �B0�X�x(t) : (4.6)The associated cost-to-go isP (xt; �) 4= supw(�) Z 1t 12 jz(� )j2 � 12
2jw(� )j2 d� = 12x0tX�xt (4.7)where the supremum is subject to the initial condition x(t) = xt and thedynamic equations (4.1,4.2,4.6) governing the closed loop. 44.4 The estimation problemIn this section we de�ne the problem of estimating the extended state andderive the dynamic �lter of the estimator. As in [9, 25, 120], we de�nethe cost-to-come function (termed the information state by other authors,e.g. [55])R(xt; i; t) = infw(�);x(�)�Z t0 si(� ) d� + 12x0(0)Nix(0)�+�i (4.8)where si is as in (4.4). The in�mization in (4.8) is subject to the constraintsx(t) = xt ;_x(� ) = Aix(� ) +Biu(� ) + Giw(� ) ; 0 � � � t :



76 Chapter 4. Simultaneous H1 ControlThe cost-to-go is the worst-case loss over the time interval [0; t], given y(�)and u(�) and assuming that x(t) = xt and that � = i.Following the notation in [120], we denote by S(x; i; t) the worst-case to-tal cost over the time interval [0;1) consistent with the observations ofu(� ); y(� ) for � 2 [0; t] and such that x(t) = x, � = i, and subject to fullinformation control for � � t. HenceS(x; i; t) = R(x; i; t)� P (x; i) :We can now de�ne the worst-case extended state estimate:� ^x(t)^�(t) � = arg minx;i S(x; i; t) : (4.9)The extended state estimate is instrumental to the minimax controller: Acertainty equivalence controller [14, 9, 120] applies the full information con-trol law (4.6) with the state x; � substituted with ^x; ^�. Without certaintyequivalence, we demonstrate in the following section that the problem canbe transformed into one where the extended state estimate ^x; ^� is the con-trolled variable.In order to derive the dynamics of the extended state estimate we split theestimation into two parts: First a conditional state estimate which esti-mates x conditioned on assumptions on �, and second the (unconditional)parameter estimate. To be speci�c, the conditional state estimate is�(i; t) = arg minx S(x; i; t) (4.10)and is the worst-case state estimate based on the assumption that the trueparameter equals i. Correspondingly the worst case parameter estimate is^�(t) = arg mini S(�(i; t); i; t) : (4.11)With this formulation the state estimate is ^x(t) = �(^�(t); t). Determining�(i; t) for �xed i is a purely linear problemwhich can be solved as in [9, 128]:Assumption 34: For each i = 1; : : : ; p, the �lter algebraic Riccati equa-tion YiA0i +AiYi + GiG0i + Yi( 1
2H0iHi � C0iCi)Yi = 0 (4.12)admits a positive semi-de�nite solution Yi such that A0i+( 1
2H0iHi�C0iCi)Yiis asymptotically stable. 2
4.4 The estimation problem 77By duality of remark 32, such a Yi will be unique and positive de�nite.De�ne Qi := 
2Y �1i . then Qi satis�esA0iQi + QiAi + 1
2QiGiG0iQi +H0iHi � 
2C 0iCi = 0 :For ease of notation we assume that the game (4.3) has been chosen suchthat Qi = Ni for all i = 1; : : : ; p; thus the �lters start in steady-state. Seethe discussion on page 74 above, and appendix B.2.The implication of assumption 34 is that the cost-to-go is always well de-�ned and for each i has a minimum over x which is attained at a uniquepoint. For the same to hold for S(x; i; t) we need S(x; i; t) to be strictlyconvex in x, i.e:Assumption 35: For each i = 1; : : : ; p, the coupling conditionQi �Xi > 0holds. 2Summarizing, linear H1 theory gives us the following proposition:Proposition 36: Let the plant (4.1), (4.2) satisfy assumption 30. Thereexist causal controllers Ki : y(�) ! u(�) such that (Pi;Ki) are internallystable and have L2-gain less than 
 if and only if assumptions 31, 34 and35 hold. Assume in addition that Ni = Qi, then �(i; t) is well de�ned forall t and all u 2 L2([0; t]), y 2 L2([0; t]) and can be computed on-line asthe solution to the ODE _�(i; t) = (4.13)�Ai + 
�2GiG0iXi � BiB0iXi� � �(i; t)+
2(Qi �Xi)�1C0i � (y(t) � Ci�(i; t))+(Qi �Xi)�1QiBi � (u(t) + B0iXi�(i; t))with initial condition �(i; 0) = 0. Furthermore the conditional worst-caseloss S(�(i; t); i; t) is computed on-line as the solution to the ODEddtS(�(i; t); i; t) = 12
2jy(t) � Ci�(i; t)j2 � 12 ju(t) +B0iXi�(i; t)j2 (4.14)with the initial condition S(�(i; 0); i; 0) = �i. 4



78 Chapter 4. Simultaneous H1 ControlAll statements in the proposition can be found in [9, theorem 5.5] (seealso [128, theorem 16.4]) except the dynamic equations for � and S. Never-theless, these equations can easily be derived using the method of [9, 120];the calculations can be found in appendix B.2.The structure of the single estimator �(i; �) is illustrated in �gure 4.2 wherewe have omitted the subscript i and used the notationE := 
�2G0XF := �B0XK := (Q�X)�1QBL := 
2(Q�X)�1C0The block diagram (and the ODEs) for the conditioned state estimate �(i; t)is identical to estimator in the standard central H1 controller [128, p.435], except for the last term (Qi � Xi)�1QiBi (u(t) +B0iXi�(i; t)) (theblock K in the block diagram). This term vanishes when the control signalis conditionally minimax (i.e, ~u = 0 as will happen when ^�(t) = i andcertainty equivalence control is used; see below) and is therefore not presentin the central H1 controller for a single linear plant. The way ~u a�ects thedynamics of the conditional state estimate corresponds to a parametrizationof all H1 suboptimal controllers [128, p. 420] (we will elaborate furtheron this connection in remark 38 below).We see from equation (4.14) that S(�(i; t); i; t) is an integrated residualassociated with the model Pi. The estimation error y(t)�Ci�(i; t) appearsalso in residuals of stochastic system identi�cation, but the subtraction ofthe control error u(t) + B0iXi�(i; t) is a new feature due to the minimaxsetting. Notice that �BiXi�(i; t) is an estimate of the full informationminimax control (4.6).In the remainder of the chapter we will use the shorthands�i(t) := �(i; t) and Si(t) := S(�(i; t); i; t) :The total cost function S(x; i; t) can be computed asS(x; i; t) = 12(x� �i(t))0(Qi �Xi)(x� �i(t)) + Si(t)after which the cost-to-come function can be computed asR(x; i; t) = S(x; i; t) + P (x; i) :
4.5 The minimax controller 79
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Figure 4.2: Block diagram of each conditional worst-case state estimator.The subscripts i are omitted.4.5 The minimax controllerHaving derived the minimax estimator in the previous section the �rst thingto verify is if the certainty equivalence (CE) principle of [14] can be appliedas in [9, 120]. This principle states that if the worst-case extended stateestimate (^x(t); ^�(t)) is always well de�ned by equation (4.9) on page 76 inthe sense that the minimum exists and is attained at a unique point, thenthe minimax control strategy associated with the game (4.3) on page 73 isu(t) = �B0^�(t)X^�(t)^x(t) : (4.15)This is a certainty equivalence controller since it applies the state feedbacklaw (4.6) to the estimates ^x; ^�. In general, a CE principle is one whichstates that a CE controller is optimal (in this case minimax). If a CEcontroller is applied without a justifying CE principle, then we emphasizethis by calling it a heuristic certainty equivalence controller.We know from proposition 36 that the conditional state estimates �(i; t)are always well de�ned by equation (4.10), which implies that the minimax



80 Chapter 4. Simultaneous H1 Controlcontroller in the case of a single plant is based on certainty equivalence [9,theorem 5.3]. However, the parameter estimate ^�(t) needs not always bewell de�ned by equation (4.11) since the minimum of Si(t) over i may beattained for two or more values of i. In fact, if ^�(t) is always well de�nedthen ^�(t) is a constant function of time t; clearly such an assumption wouldbe rather detrimental to the whole idea of adaptation. We conclude thatcertainty equivalence does not necessarily hold.Despite this it is possible to characterize the minimax controller implicitlyin terms of a Hamilton-Jacobi-Isaacs equation; this is the subject of theremainder of this section. First we reduce the problem to a dynamic gamewith full information. Next we derive the Hamilton-Jacobi-Isaacs equationassociated with this full information game. Finally we state a theorem andpose a conjecture about the structure of the value function.Reduction to a full information gameAt this point we adopt a technique similar to the information state machin-ery in order to reduce the output feedback problem to a full informationgame. See [55] for the information state machinery in the context of nonlin-ear H1 control. The corresponding approach to optimal control of Markovchains is described in [16, ch. 4].(w; v)uyz �� �- P�K yuyS; _S �� �- �KFigure 4.3: The original output feedback problem and the equivalent fullinformation problem of controlling the total cost.Use the symbol � to denote the �lter with states(�1(t); : : : ; �p(t); S1(t); : : : ; Sp(t)) ;
4.5 The minimax controller 81inputs u and y, outputs y, Si and _Si, and dynamics given by equations (4.13)and (4.14) above. Let � = (�1; : : : ; �p) and S = (S1; : : : ; Sp). Use the sym-bol (�;K) to denote the interconnection of the �lter � and a controllerK : y(�)! u(�): (�;K)(y(�)) = �(K(y(�)); y(�))The interconnection (�;K) thus has input y(�) and outputs S(�) and _S(�).See �gure 4.3.The important step in the reduction of the problem to one of full informa-tion is the following proposition, which says that as control object we maytake the �lter � rather than the plant P�:Proposition 37: Let K be a causal controller y(�) ! u(�) with a statespace representation. Then the closed loop (Pi;K) has L2-gain less than orequal to 
 if and only if the interconnection (�;K) dissipates the supplyrate _Si. 4The proposition follows directly from the de�nition of the worst-case lossSi: (�;K) dissipates _Si i� Si(�) can be bounded below in terms of theinitial condition, and such a bound is exactly what is needed according tothe de�nition of the L2 gain.The problem of controlling � is essentially a full information problem sincethe initial conditions in � are known and all inputs to � are available on-line. So also the states of � can be considered known to the controller.Remark 38: Loosely said, (�;K) dissipates _Si if and only if u+B0iXi�iis smaller than 
(y�Ci�i) in L2 norm. Therefore, we can construct such acontroller K in the following way: Take a system ~Q with L2-gain less thanor equal to 
. Let the input to ~Q be ~y = y � Ci� and denote the output~u. Now choose the control signal u such that ~u = u + B0iXi�i. Thus wehave established the connection to the parametrization of H1 suboptimalcontrollers [128, theorem 16.5], see also [9, corollary 5.2]. 2Recall that a simultaneous H1 controller was required also to be stabi-lizing. However, under the observability assumption 30 on page 72, any
-suboptimal H1 controller is internally stabilizing:Proposition 39: If (P�;K) has L2-gain less than or equal to 
 > 0 andw(�) 2 L2([0;1)), v(�) 2 L2([0;1)), then x(t)! 0 as t!1. 4If only linear controllersK are considered, then the proposition is containedin corollary 16.3 in [128, p. 418]. A statement which allows smooth static



82 Chapter 4. Simultaneous H1 Controlnonlinear control is [120, prop. 3.4]; however smoothness of the storagefunction is required there. Given these results, there is little novelty in theproposition. For the sake of completeness we give an elementary proof.Proof: Let L be such that A� + LH� is asymptotically stable; such an Lexists since (Hi; Ai) is assumed observable. Now write the state dynamics_x = (A�+LH�)x�LH�x+B�u+G�w. The hypothesis impliesH�x(�) 2 L2and u(�) 2 L2, so x is the state of a stable system with L2 inputs; thusx(�) 2 L2. Now _x is a linear combination of L2 signals; hence also _x(�) 2 L2.Finally x(�) 2 L2 and _x(�) 2 L2 implies that x(t)! 0 as t!1.Notice that the proof merely uses that L2 inputs w, v, are mapped to anL2 output z (which is somewhat weaker than �nite L2-gain), and that thecausality of K is not used.If we ignore the slight di�erence between obtaining an L2-gain fromw; v to zless than 
, and less than or equal to 
, the propositions allow us to considera problem of control for multi-dissipation rather than the original problemof simultaneous H1 control. The control object in this new problem isthe worst case �lter � with states �; S, the control objective is to makethe interconnection (�;K) dissipate Si for i = 1; : : : ; p, and the controllerhas access to both the state �; S and the disturbance y. In summary, wehave reduced the problem of simultaneous H1 control to a multi-objectivemin-max control problem with full information.This multi-objective problem may be reduced to a single-objective one; infact the interconnection (�;K) dissipates _Si for all i = 1; : : : ; p if and onlyif it dissipates the supply rate ddt mini Si(t) :This supply rate is regular (i.e, for any � and u there exists a y such thatd=dt mini Si(t) � 0) and hence the problem of control for dissipation isequivalent to a di�erential game on in�nite horizon:U (�(0); S(0)) = supu(�) infy(�)mini Si(1) (4.16)for which we can a priori pose the boundU (�(0); S(0)) 2 [�1;mini Si(0)] :
4.5 The minimax controller 83Note that the value �1 is included; the value functions in this section arein general extended real-valued. The players are allowed to play closed loopstrategies which result in locally bounded L2 signals u(�), y(�). Note alsothat the limits Si(1) = limt!1 Si(t) are well de�ned for all such strategiessince the �lters (4.13) are stable.The following theorem, which follows immediately from the discussion,makes precise the statement that the problem of simultaneous H1 con-trol is equivalent to a full information game:Theorem 40: The following are equivalent:1. There exists a controller K such that (P�;K) has L2-gain less thanor equal to 
 for any �, and such that x(�)! 0 for w(�), v(�) 2 L2.2. There exists a controllerK such that (�;K) dissipates d=dt mini Si(t).3. For each pair of initial conditions �, S, the lower value U (�; S) asde�ned above is �nite. 2The Hamilton-Jacobi-Isaacs equationTo study the game associated with U we follow the terminology of [120]and de�ne the pre-HamiltonianK(�; S; �; �; u; y) = � _� + � _S (4.17)where _� and _S are given by the �lter dynamics (4.13) and (4.14) of �. Here� and � are co-states to � and S, respectively, i.e. � is a row vector in Rp�nwhile � is a row vector in Rp.We also de�ne the Hamiltonian HH(�; S; �; �) = supu infy K(�; S; �; �; u; y) : (4.18)We restrict attention to co-states for which Pi �i > 0. Thus the Hamilto-nian is �nite, smooth, independent of S and quadratic in �, � for �xed �.Furthermore, the static game in (4.18) can be solved by completion of thesquares:K(�; S; �; �; u; y) = H(�; S; �; �)� 12Xi �iju� u�j2 + 12Xi �ijy � y�j2



84 Chapter 4. Simultaneous H1 Controlso Isaacs' condition1 holds. Here y� and u� are smooth functions of �, �and �: u�(�; �; �) = argmaxu miny K(�; S; �; �; u; y) ;y�(�; �; �) = argminy maxu K(�; S; �; �; u; y) :The functions u� and y� are linear in �, � for �xed �. It is straightforwardbut unnecessary to give explicit expressions for these functions.It is well known [10] that value functions of di�erential games, such as U ,are related to Hamilton-Jacobi-Isaacs equations, in this caseH(�; S;  �(�; S);  S (�; S)) = 0 : (4.19)The results of [10] does not cover the particular games in our study, but withanalogous arguments we may obtain similar results. First we show thatif (4.19) admits a subsolution, then it provides a guaranteed cost strategyfor u:Proposition 41: Let  (�; S) be C1 and satisfy H(�; S;  �;  S) � 0 aswell as  (�; S) � mini Si. Let the maximum dissipation controller K bespeci�ed by the state feedback lawu (�; S) = u�(�;  �;  S) ;then (�;K ) dissipates d=dt mini Si(t). Furthermore  is a lower boundon the lower value function:  � U . 4Proof: We claim that mini Si �  (�; S) is a storage function, i.e. thatthe dissipation inequalitymini Si(T )� (�(T ); S(T )) � mini Si(0)� (�(0); S(0))+Z T0 ddt mini Si(t) dtholds. This is equivalent to  (�(T ); S(T )) �  (�(0); S(0)) which followsfrom _ = K(�; S;  �;  S ; u ; y) � H(�; S;  �;  S) � 0 :Thus dissipation is established. Furthermore, we havemini Si(T ) �  (�(T ); S(T )) �  (�(0); S(0))1I.e. the game in (4.18) has saddle point u�; y� for each �; S; �;�; see [10, p. 349].
4.5 The minimax controller 85which holds for all inputs y(�) and all T - hence in particular in the limitT !1 - and thus implies that U (�(0); S(0)) �  (�(0); S(0)).Remark 42: In the case of a single plant, p = 1, we may take  =mini Si = S1. The corresponding storage function is identically 0, and theresulting maximumdissipation controller is u = �B0iXi�i. Thus we recoverthe central controller from linear H1 theory [128, p. 419]. 2The next question is if the lower value function U , or cost bounding func-tions corresponding to guaranteed cost strategies, must necessarily satisfythe Hamilton-Jacobi-Isaacs equation (4.19), or the related inequality. Herematters are complicated by the observation that it is not reasonable to ex-pect U to be di�erentiable everywhere. Within the last decade, the notionof viscosity solutions [23, 35] to equations such as (4.19) has become thestandard tool with which to approach these issues of non-di�erentiability.The following de�nition is taken from [23] and specialized2 to the case of�rst order partial di�erential equations:De�nition 43: We say that �(�; S) is a viscosity supersolution to theHamilton-Jacobi-Isaacs equation H(�; S; ��; �S) = 0 if � is lower semi-continuous and H(��; �S; ��; �S) � 0 holds for every ��, �S and every �(�; S)which is C1 and satis�es � � �, �(��; �S) = �(��; �S).We say that � is a viscosity subsolution if � is upper semi-continuous andH(��; �S; ��; �S) � 0 holds for every ��, �S and every �(�; S) which is C1 andsatis�es � � �, �(��; �S) = �(��; �S).We say that � is a viscosity solution if it is both a subsolution and asupersolution. 2If � is a viscosity supersolution, then we also say that � solves the inequalityH(�; S; ��; �S) � 0 in the viscosity sense. Notice that viscosity solutions areby de�nition continuous, and that a di�erentiable function � is a viscositysolution if and only if it is a classical solution. We refer to [23] for furtherdiscussion of viscosity solutions.It is by now a standard exercise to show that value functions satisfy Hamilton-Jacob-Isaacs equations in the viscosity sense. It complicates matters, how-ever, that the inputs u, y are not restricted to bounded sets. See page 116for an example where the value function does not solve the PDE since near-optimal controls are unbounded. Most contributions, e.g. [70], consider only2To see that our de�nition coincides with that in [23], substitute F = �H.



86 Chapter 4. Simultaneous H1 Controlproblems where the controls are restricted to compact sets. The recent ref-erence [7] explicitly assumes that near-optimal controls are bounded beforeproving that value functions are viscosity solutions, but does not discusshow to verify the assumption for a given system.For our system, we are able to show that the value function is indeed aviscosity solution. The key element is, roughly speaking, that controlsleading to fast trajectories also lead to large running costs, as will be madeprecise in the proof:Proposition 44: Assume that U is �nite everywhere and continuous.Then U solves the Hamilton-Jacobi-Isaacs equationH(�; S; ��; �S) = 0in the viscosity sense. 4Proof: We show that U is a subsolution only; the other statement followssimilarly. Let �� and �S be a �xed initial condition and let � be a C1function such that �(��; �S) = U (��; �S) and � � U . Notice that this impliesthat Pi �Si(��; �S) = 1. Hence H(�; S; ��; �S) is �nite and smooth on aneighbourhood of (��; �S).Our proof is by contradiction: Assume that H(��; �S; ��; �S) < 0. Thenthere exists a neighbourhood 
 of ��, �S and �; � > 0 such that Pi �Si > 2�and H(�; S; ��; �S) < �� on 
.Now let T > 0 be arbitrary, let �T
 the time of �rst exit time from 
, andlet T
 = minfT; �T
g.Let the minimizingplayer use the smooth feedback strategy y = y�(�; ��; �S).Let � > 0 be such that the �-ball around ��, �S is contained in 
. Let c > 0be such that �+ �ju� u�j2 > cj( _�; _S)jholds for all �, S in 
 and all u. Such a c exists since 
 is bounded and since_�, _S, are a�ne-quadratic in u. This inequality makes precise the statementthat controls leading to fast trajectories also lead to large running costs.Thus, for any strategy for the maximizing player, we have�(�(T
); S(T
)) � �(��; �S) = Z T
0 K(�; S; ��; �S; u; y�) dt� � Z T
0 �+ �ju� u�(�; ��; �S)j2 dt
4.5 The minimax controller 87� � Z T
0 cj( _�; _S)j dt� �c � � < 0which holds for any policy for the maximizing player. This implies thatsupu(�) infy(�)�(�(T
); S(T
)) < �(��; �S) :Combining this with � � U we obtainsupu(�) infy(�)U (�(T
); S(T
)) < U (��; �S)which contradicts the dynamic programming principle. We conclude thatthe hypothesis H(��; �S; ��; �S) < 0 cannot hold; in other words, U is asubsolution in the viscosity sense.Remark 45: In the light of remark 42, it is instructive to consider mini Sias a candidate solution to to the Hamilton-Jacobi-Isaacs equation (4.19).First, mini Si is a viscosity supersolution as can readily be veri�ed. Hencewe can deduce a guaranteed cost strategy for y: at each instant y is chosensuch that mini Si is non-increasing.Second, mini Si is not in general a viscosity subsolution and therefore doesnot in general help us derive guaranteed cost strategies for u.Third, mini Si is a generalized solution to (4.19) in the sense that theequation holds for almost all �; S (viz. whenever ^� = argmini Si is wellde�ned). This property is important in the following section where wediscuss a weak certainty equivalence principle concerning the heuristic cer-tainty equivalence controller. 2A theorem and a conjecture on the structure of UConsider the canonical equations governing the Hamiltonian dynamics as-sociated with U :_�i = @H@�i ; _�i = �@H@�i ; _Si = @H@�i ; _�i = �@H@Si = 0 : (4.20)It is well known (see e.g. [120]) that if the lower value function U is C1, thenthe trajectories (�; S; �; �) corresponding to the saddle point strategies u�,



88 Chapter 4. Simultaneous H1 Controly�, solve the canonical equations. Hence the co-state � is constant along thesaddle point trajectories. Now u�(�; �; �) and y�(�; �; �) are linear in (�; �)for �xed � which implies that the trajectories also solve a linear system.Furthermore this linear system is the canonical equations associated withthe weighted linear-quadratic gameZ(�(0); S(0);�) = supu(�) infy(�)Xi �iSi(1) (4.21)where � = �.This �ts with the following observation: If a controller K is such that(�;K) dissipates _Si for i = 1; : : : ; p, then (�;K) also dissipates Pi �i _Sifor any non-negative weights �i withPi �i = 1 (proposition 2 on page 32).This leads us to believe that the minimax controller at each instant choosesan equivalent linear-quadratic game, given by � = �, and plays the minimaxcontrol of that game. In fact we have the following theorem:Theorem 46: Assume that Z is �nite everywhere and C1, and that adi�erentiable function ��(�; S) exists such thatZ(�; S;��(�; S)) = min� Z(�; S;�) :Here minimization is over �i � 0 with Pi �i = 1. Then U (�; S) =min�Z(�; S;�). Furthermore, the control lawuU(�; S) = u�(�; U�(�; S); US (�; S))guarantees that (P�;K) is has L2-gain less than or equal to 
 for all �, andthat x(t)! 0 as t!1 for any L2 disturbances w(�), v(�). 2Proof: First, note that the one half of the statement U = min�Z istrivial: U (�; S) = supu infy min� Xi �iSi(1) � min� Z(�; S;�) :To show that also the other inequality holds, we denote (�; S) = min� Z(�; S;�) = Z(�; S;��(�; S))and aim to show  � U using proposition 41. First, take � = (1; 0; : : : ; 0);then  (�; S) � Z(�; S;�) = S1. Thus  � mini Si.
4.5 The minimax controller 89Second, we must show that H(�; S;  �;  S) � 0. Here �� being a minimizerimplies that �(�; S) = Z�(�; S;��(�; S)) + Z�(�; S;��(�; S))@��@� (�; S)= Z�(�; S;��(�; S)) ; S(�; S) = ZS(�; S;��(�; S)) + Z�(�; S;��(�; S))@��@S (�; S)= Z�(�; S;��(�; S)) :Since Z solves the Hamilton-Jacobi-Isaacs equation H(�; S; Z�; ZS) = 0 foreach �, these expressions imply that also H(�; S;  �;  S) = 0. Thus wecan apply proposition 41 to show that  � U , hence  = U , and that thecontrol law uU guarantees mini Si(T ) � U (�(0); S(0)) for all T and inputsy(�). Finally combine with theorem 40 to see that this control applied to P�guarantees an L2 gain less than or equal to 
 as well as internal stability.The theorem provides the following solution to the simultaneous H1 con-trol problem: First, construct the �lter bank (4.13), (4.14) which generatesthe estimates �i, Si. Second, determine o�-line the quadratic value func-tions Z(�; S;�) by �nding the stabilizing solutions to a family of Riccatiequation; one for each �. This yields the corresponding feedback controlsuZ(�; S;�) = u�(�; Z�(�; S;�); ZS(�; S;�))which are linear in �. Then, on-line, determine the minimizing argument�� and apply the control uU (�; S) = uZ(�; S;��(�; S)).One could argue that this solution is only partial since di�erentiability ofZ and �� is su�cient but not necessary for the existence of a simultaneousH1 controller. Indeed, Z may take the value +1 for some values of � and�, and - more importantly - �� may be discontinuous, when more thanone minimizing argument of min�Z(�; S;�) exist. At this point it is notclear how profound these di�culties are, and this topic deserves furtherattention. To this end, a good working hypothesis is the following:Conjecture 47: The lower value function U (�; S) is �nite for all �, S ifand only if Z(�; S;�) > �1 for all �; S; �. In this caseU (�; S) = min� Z(�; S;�)



90 Chapter 4. Simultaneous H1 Controlwhere minimization is over weights �i � 0 such that Pi �i = 1. 2A result corresponding to the conjecture was stated recently in [90] for a�nite horizon problem in discrete time; the proof has not been published. Acomplication related to the continuous-time setting is that discontinuitiesin the control law for u may lead to a closed loop system which is notwell-posed.In general, it adds some credibility to the conjecture is that many multi-objective optimization problems have been shown to be equivalent to weightedproblems. A recent contribution concerning minimax control of a discretesystem on a �nite horizon is found in [89], which also contains further ref-erences. In order to prove the conjecture, or similar results, one probablyneeds to make use of viscosity solutions as well as minimax theorems [101],and investigate in further detail how the games associated with Z dependon �.Summary of the discussion of the minimax controllerLet us brie
y recapitulate our results concerning the minimax controller:� The minimax controller is not based on certainty equivalence.� The output feedback minimax control problem can be formulated asa full information problem of control for multi-dissipation (proposi-tion 40). The control object in this equivalent problem is the �lterbank (4.13), (4.14) which generates the minimax estimates of x, �.� The lower value function U of the corresponding game is not nec-essarily C1, but solves a certain Hamilton-Jacobi-Isaacs equation inthe viscosity sense (proposition 44). In addition, C1 subsolutions ofthis equation generate guaranteed cost controllers, which solve theproblem of simultaneous H1 control (proposition 41).� These controllers can be implemented with the p� (n+1) states �; S.� Theorem 46 reduces the task of solving the Hamilton-Jacobi-Isaacsequation by determining the structure of U : U can be derived froma study of the weighted optimization problems, providing that addi-tional assumptions hold. Finally conjecture 47 suggests that theseadditional assumptions can be removed.
4.6 Heuristic certainty equivalence control 914.6 Heuristic certainty equivalence controlEven if the assumptions of theorem 46 are met, the resulting minimax con-troller is quite complex and requires substantial computation, both o�-lineand on-line. From a practical point of view it is therefore of great interestto investigate what can be obtained with simpler controller architectures.In this section we consider the heuristic certainty equivalence controlleru(t) = u^�(t)(t) = �B^�(t)X^�(t)�(^�(t); t) (4.22)where ^�(t) = arg mini Si(t) (4.23)as before. Notice that the control law has yet to be de�ned at points wherethe minimummini Si is attained at more than one i. Controllers which arebased on certainty equivalence, but without justifying certainty equivalenceprinciples, are common in adaptive control [4].The state of the controller is (�(t); S(t)). Recalling that the control ob-jective is that the closed loop dissipates the supply rate s� as de�ned inequation (4.4), consider as a candidate control storage functionV (�; x(t); �(t); S(t)) = R(x(t); �; t)�mini Si(t) (4.24)which may be computed as V (�; x; �; S) =12(x� ��)0(Q� �X�)(x� ��) + S� + 12x0X�x�mini Si :The candidate control storage function V is locally Lipschitz and hencedi�erentiable almost everywhere, viz. wherever ^� = arg mini Si is wellde�ned. Here the di�erential dissipation inequality holds, i.e.dVdt = 12
2jvj2 + 12
2jwj2 � 12 jH�xj2 � 12 juj2�12 j
w � 1
G0�(X�x+ (Q� �X�)(x� ��))j2�12
2jv +C�x�C^��^�j2 + 12 ju+B0^�X^��^�j2 :



92 Chapter 4. Simultaneous H1 ControlWe see that whenever ^�(t) is well de�ned, the heuristic CE control u(t) =u^�(t)(t) is the maximum dissipation control law with which V indeed sat-is�es the di�erential dissipation inequality _V � s. Thus V is a generalizedsolution3 to the di�erential dissipation inequality, in the sense of [35, p.20].It is now straightforward to pose the following result:Proposition 48: Let assumptions 30, 31, 34 and 35 hold, let the heuristicCE control law (4.22) be used and assume that ^�(t) is well de�ned by (4.23)almost everywhere on [0; T ]. Then the L2 gain objective is met, i.e.12 Z T0 jzj2 dt � 12
2 Z T0 jwj2 + jvj2 dt+ 12x00Q�x0 + �� :If furthermore w 2 L2([0;1)), v 2 L2([0;1)) and ^�(t) is well de�nedalmost everywhere on [0;1) then x(t)! 0 as t!1. 4Proof: We have12 Z T0 
2jwj2 + 
2jvj2 � jzj2 dt+ 12x00Q�x0 + ��� R(x(T ); �; T ) � S(x(T ); �; T ) � mini Si(T ) :Since ^�(t) was assumed to be well de�ned for almost all t 2 [0; T ] we haveddt mini Si(t) = ddtS^�(t)(t) = 12
2jy(t) �C^�(t)�^�(t)j2 � 0for almost all t 2 [0; T ] due to the control law (4.22) and hencemini Si(T ) � mini Si(0) � 0from which the result follows.To show internal stability we follow the proof of proposition 39.This result can be termed a weak certainty equivalence principle: Whereasthe CE principle in [14] requires that the extended state estimate is alwaysunique and concludes that the minimax controller is based on certainty3V is also viscosity subsolution but in general not a supersolution which would implydissipation [53]. Compare also with remark 45 above.
4.6 Heuristic certainty equivalence control 93equivalence, the present result states that if the estimate is almost alwaysunique, then the heuristic CE controller solves the original control problem,although it may not be minimax.The condition is not completely satisfying since it imposes a restriction onthe disturbances w(�) and v(�). One can draw a parallel to the assumptionof persistent excitation in stochastic adaptive control: This condition is alsonot veri�able a priori, and a safety system must be added to the controller,so that proper action can be taken if the condition fails to hold. However,in contrast to the assumption of persistent excitation, it is di�cult to seeexactly which disturbances w(�), v(�) yield �(t) being well de�ned almosteverywhere, and hence it is di�cult for the practicing engineer to judge ifthe restriction is reasonable. Further work on this issue is needed.A smooth approximation of the controllerSince the control law is discontinuous at points where the minimummini Siis attained for more than one i (indeed, the control law has yet not beende�ned at the points of discontinuity), some modi�cation is needed toavoid chattering. Dwell-time switching or hysteresis switching are sug-gested in [79]. Here we consider as an alternative to approximate thecontrol law with a smooth one. This will ease the load on the actuatorhardware and prevent excitation of unmodeled fast dynamics. To this end,let us modify the candidate control storage function (4.24) to~V (�; x; �; S) = R(x; �; t)� f(S)where the function f is the approximation of mini Si given byf(S) = �1� log0@ pXj=1 e��Sj1A : (4.25)Here � > 0 is a �xed parameter which determines the accuracy of theapproximation. The function f(S) enjoys the following properties whichmake it a suitable approximation of mini Si: 1) f is C1, 2) f satis�es@f=@Si � 0 and Pi @f=@Si = 1, and �nally 3) f(S) < mini Si < f(S) +��1 logp.The maximum dissipation controller corresponding to ~V isu~V (�; S) = pXi=1 @f@Si (�BiXi�i) ;



94 Chapter 4. Simultaneous H1 Controli.e., it is a weighted sum of the conditional minimax control suggested byeach estimator. The derivation of this expression, as well as some furthercomments on this control law, can be found in [116].Supervision of the controllerAs mentioned above, the heuristic certainty equivalence controller shouldbe supervised since we cannot prove that it guarantees satisfying oper-ation. The dissipation analysis suggests that such a supervisory systemshould monitor the signals Si(�). In particular, a decrease in mini Si orf(Si) indicates that the controller has not identi�ed the plant and is uncer-tain about which control signal to actuate. On the other hand, a suddenincrease in this signal should also attract attention as it indicates that thedisturbances behave unexpected - a possible cause could be that a changein system parameters has occured.We conclude the discussion of heuristic certainty equivalence control witha brief description of a simulation study:Example 49: In [116] we discussed a case study regarding position controlof an inverted pendulum, see �gure 4.4. Here we brie
y recapitulate thediscussion; see [116] for further details.
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xu; w �Figure 4.4: An inverted pendulum with force control and disturbanceThe inverted pendulum is popular in benchmark problems because it isnonlinear, unstable, and minimum-phase (from the control force to thecart position), and yet relatively simple.In our study, the plant is equipped with three sensors: One measuring theposition of the cart, one measuring the angular position of the rod, and one
4.7 Conclusion 95measuring the angular velocity of the rod. The latter is subject to fault sowe use two models to represent the control object; a nominal model andone corresponding to the sensor fault.A simultaneous controller for the two linearized plant models is constructed,using the heuristic certainty equivalence architecture developed above.The residuals Si are pre-�ltered with a �rst-order low-pass �lter before theplant estimate ^�(t) is generated. This corresponds to exponential forgettingin adaptive control, [85, 4].Simulation results with the nonlinear plant and the switching controller areshown in �gures 4.5 and 4.6. Here a sensor fault occurs at time 7.4 seconds,which is at a critical stage after a step in the position reference. The faultis detected within approximately 0.2 seconds (�gure 4.6). Some oscillationsresult from the fault but the system is rapidly stabilized (�gure 4.5). Afterthe fault has been detected system performance is worse since the one lesssensor implies worse state estimates.The residuals Si seem to be quite well suited as indicators of model �t, andthe heuristic certainty equivalence controller works nicely in this example.Although further work is needed with respect to forgetting schemes andmodi�cations of the switching mechanism, the controller architecture seemsto be reasonable and holds some promise. 24.7 ConclusionIn this chapter we have applied nonlinear H1 theory to the problem ofsimultaneous H1 control of a �nite number of linear plants. Our moti-vation for investigating this problem is that it appears to be the simplestproblem of adaptive H1 control, if one excludes problems where parameteruncertainty is restricted to special system parameters.We have shown that simultaneous H1 control involves a nonlinear H1problem which possesses a number of simplifying features: The full infor-mation subproblem can be solved using linear theory. The cost-to-go, orthe information state, is a quadratic function on state space which alsocan be found using linear theory. Although certainty equivalence does notapply, the simultaneous H1 control problem can be reduced to a statefeedback problem on the worst-case �lter, and hence be solved with �nite-dimensional dynamic programming. However, these worst-case �lters will
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Figure 4.5: The position of the cart and its reference. Sensor fault in theangular velocity sensor at time 7.4 seconds.
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98 Chapter 4. Simultaneous H1 Controlalways be high-dimensional (example 49 leads to a �lter with 14 statesdespite being somewhat academic) which makes direct numerical solutionimpossible and a priori insight into the structure of the solution necessary.We have made considerable progress in this direction, although a com-plete solution requires conjecture 47 to be veri�ed a falsi�ed. Furthermorewe have investigated the heuristic certainty equivalence controller, and al-though the assumptions under which we can guarantee its performance arevery restrictive, our simulations study suggests that its architecture is quitereasonable.The work reported in this chapter may be continued in several directions:Further theoretical study of the problem may lead to conjecture 47 beingresolved, or less restrictive conditions under which the heuristic certaintyequivalence controller is su�cient. Also approximations of the heuristic cer-tainty equivalence controller and investigation of various forgetting schemesis a subject which deserves more attention. Some hints towards other sub-jects are given in the succeeding notes.AcknowledgementsThe author wishes to thank Dr. A. Rapaport for stimulating discussions,and Prof. G. Vinnicombe for pointing out the work of S. Rangan and K.Poolla [90], which is described below.4.8 Notes and referencesRelated recent literatureA study of simultaneous output feedback H1 control using digital con-trollers is presented by Savkin in [94]. The approach in this reference isreminiscent of the information state machinery, although it is not explicitlyused since the problem is not formulated as a nonlinear H1 problem. Themain result of the paper is that a feasible controller exists if and only ifa) the �lter algebraic Riccati equation (4.12) admits a suitable solution(although a small perturbation of the equation is necessary due to the useof digital controllers), and b) a full information minimax control problem,which except for the use of piecewise constant control signals is similar to
4.8 Notes and references 99the problem discussed in section 4.5, admits a solution. As a consequencewe may restrict attention to �nite dimensional controllers. The problem ofexplicitly characterizing the solution of this state feedback minimax controlproblem is not addressed. It is interesting to notice that the use of digitalcontrollers leads to a certain amount of technical simpli�cation.In [90] Rangan and Poolla consider a problem of simultaneousH1 control,which is similar to the one studied here, but is formulated in discrete timeand on �nite horizon. The approach is based on the information state ma-chinery. Di�culties regarding regularity of the value function are avoideddue to the �nite horizon discrete time setting. Very interestingly, a resultwhich resembles our conjecture 47 is stated. The proof of the result hasnot been published (the result is not included in [88]), and therefore it isnot clear if it can be modi�ed to assist in the veri�cation of our conjec-ture 47. Other problems related to identi�cation and control of a plantwith multiple models are investigated in [88].Jumping parametersIn applications one must usually expect that the parameter � is not constantfor all time, but will occasionally jump. This holds whether the problem isone of fault handling or an approximation to an adaptive control problem,where the continuous parameter space has been discretized.As we mentioned in example 49 in section 4.6, one may add a exponentialforgetting scheme to the heuristic certainty equivalence controller in orderto make it handle parameter jumps. This forgetting scheme and others arepopular in adaptive control [4, 85], and although it is most often di�cultto carry through a rigorous analysis of the resulting system, experienceindicates that they work quite well.A rigorous approach to the problem with jumping parameters is to modelthe parameter variations with a Markov chain, which then leads to astochastic dynamic game. The full information, �nite time version of thisgame is treated in [8], where the solution is shown to be governed by ap coupled di�erential Riccati equations. The corresponding output feed-back problem is open and involves several new di�culties, regarding thecharacterization and r^ole of the information state.



100 Chapter 4. Simultaneous H1 ControlRelaxing the simplifying assumptionsWe have assumed the simple case [128] of the p linear H1 control prob-lems, i.e. observability of (Hi; Ai), controllability of (Ai; Gi), decoupledprocess and measurement noise w and v, and a decoupled error signalz = ( (Hx)0; u0 )0. Relaxing these assumptions involves mainly algebraicmanipulations [128], although certain details require attention.Another assumption which can easily be removed is that the p plants havestate space representations with the same dimension. Part IIStochastic models
101



Chapter 5Dissipation in stochasticsystemsWe de�ne the property of dissipativity for controlled It^o di�u-sions, and we investigate elementary properties, such as di�er-ential dissipation inequalities, convexity, and the connection tostability.5.1 IntroductionDissipative systems play a central r^ole in the deterministic theory of robuststability, as evident from the works of numerous authors and also from the�rst part of this thesis. The deterministic theory also enables performanceanalysis, where performance is measured by the response to initial condi-tions, or by the worst-case response to an input in some set. The resultingframework has much appeal from a theoretical as well as from an engi-neering point of view, and is in accordance with the currently dominatingparadigm for robust control.A drawback of this framework is that it does not allow for stochastic repre-sentations of uncertainty, such as white noise disturbances, or for stochasticperformance measures, such as risk of failure. On the other hand, the lit-erature on stochastic systems does little to address the issues of robustness103



104 Chapter 5. Dissipation in stochastic systemstowards dynamic perturbations which motivated for instance the develop-ment of H1 control.This suggests that it may be fruitful to extend the theory of dissipationto stochastic systems, and apply it to robustness analysis of stochasticsystems. In this chapter we report results which indicate that the conceptof dissipation is indeed meaningful in a stochastic context, and that muchof the deterministic theory applies more or less directly.Dissipation-like properties of stochastic systems do appear in the literature.For instance [31] uses stochastic Lyapunov functions to achieve bounds onthe L2-gain of a wide sense linear system with deterministic inputs andstochastic outputs. Another example is the stochastic small gain theoremin [30] which connects input-output properties to Riccati equations, thesolutions of which are subsequently used to obtain a stochastic stabilityresult.5.2 PreliminariesWe consider a controlled process xt in a Euclidean state space X= Rngiven by an It^o stochastic di�erential equation evolving on the time intervalT= [0;1) dxt = f(xt; wt) dt+ g(xt; wt) dBt; x0 = x 2X (5.1)where Bt is standard m-dimensional Brownian motion on a probabilityspace (
;F ; P ) with respect a given �ltration F t. The initial condition xis deterministic. The input wt is an F t-adapted process taking values inEuclidean space W = Rp. See [83] for the necessary background material.The system exchanges some quantity with its environment, speci�ed by asupply rate r :X�W ! R. The accumulated 
ow from environment intothe system during the time interval [0; t] is Rt wheredRt = r(xt; wt) dt; R0 = 0 : (5.2)Notice that we here consider the supply to be a function of state and input,rather than a function of input and output. The motivation for this issimply to achieve a shorter notation, and the reader may substitute r(x;w)with s(z; w) if he so pleases, where z = h(x;w) is the output.
5.3 De�nition of dissipativeness and elementary properties 105We do not wish to dwell on technicalities regarding existence and unique-ness of solutions. Hence we simply restrict the input wt to a set W ofF t-adapted inputs for which there exists a unique t-continuous solution xt,and assume that W is su�ciently large and closed under switching so thatthe principle of optimality holds.Associated with the equation (5.1) we de�ne for each w 2W the di�erentialoperator Lw : C2(X;R)! C0(X;R) given by LwV (x) = Vxf + 12trg0Vxxgwhere the right hand side is evaluated at (x;w).If J is a functional on sample paths of the processes xt, wt, then ExJ isexpectation w.r.t. the probability measure generated by xt, wt with initialcondition x0 = x. In this notation the dependence of ExJ on the input wtis suppressed.5.3 De�nition of dissipativeness and elemen-tary propertiesRecall that the fundamental element in the deterministic theory of dissipa-tion [124] is the storage function V :X! Rwhich satis�es the dissipationinequality V (xt) � V (x0) + Z t0 r(xs; ws) dsalong every trajectory of the system. This inequality can be generalizedto a stochastic setting in several ways, but it appears that the most usefulframework is achieved by requiring the inequality to hold in expectation:De�nition 50: We say that the system (5.1) is dissipative w.r.t. thesupply rate r, if there exists a non-negative storage function V : X! Rsuch that the integral dissipation inequalityExfV (x� )� Z �0 r(xs; ws) dsg � V (x) (5.3)holds for all bounded stopping times � and all solutions xt; wt of the systemwith x0 = x 2X. 2We emphasize that the dissipation inequality is only required to hold forbounded stopping times � ; see p. 114 below for a comment.



106 Chapter 5. Dissipation in stochastic systemsUsing the results in e.g. [83], it is easy to see that storage functions arerelated to a di�erential version of the dissipation inequality:Proposition 51: A nonnegative C2 function V : X! R is a storagefunction if and only if it satis�es the di�erential dissipation inequalitysupw2WLwV (x) � r(x;w) � 0 (5.4)on X. 4Proof: Su�ciency: Let V be C2 and satisfy the inequality (5.4). Letxt; wt be a solution with x0 = x 2Xand let � be a bounded stopping time,i.e. � < T . Let (xt^� ; Rt^� ) be the process (xr ; Rt) stopped at � , i.e.dxt^� = dxt � �t�� ; dRt^� = dRt � �t��(Here �t�� is the indicator function, i.e. �t�� = 1 if and only if t � � and0 otherwise). Now consider V (xt^� ) � Rt^� . By It^o's lemma this processis again an It^o process and the di�erential dissipation inequality impliesEx(V (xt^� )�Rt^� ) � V (x). Now notice that xT^� = x� and RT^� = R� ;we have thus shown that the inequality (5.3) holds.Necessity: Let V be a C2 storage function and consider a solution (xt; wt)for which the input is constant and deterministic, wt � w 2 W, and theinitial condition x0 = x 2 X is deterministic. Then V is in the domainof the characteristic operator Aw (see [83, p. 116]) and the dissipationinequality (5.3) implies that LwV (x) = AwV (x) � r(x;w). Since x and wwere arbitrary the conclusion follows.We de�ne the available storage of the system (5.1) w.r.t. the supply rate rin a manner analogous to [124], namely byVa(x) = supwt;� Ex Z �0 �r ds (5.5)where the supremum is over all bounded stopping times � and all solutionsxt, wt with x0 = x. With this de�nition we immediately have a resultanalogous to theorem 1 in [124, p. 328]:Proposition 52: The available storage is �nite for all x 2Xif and onlyif the system is dissipative. Furthermore, in this case the available storageis in itself a storage function and any other storage function V satis�esV (x) � Va(x); 8x 2X :
5.3 De�nition of dissipativeness and elementary properties 107Finally inffVa(x) : x 2Xg= 0. 4Proof: First we show that if the available storage is �nite, then it is astorage function. It is immediate that Va � 0 (if necessary, this is obtainedby letting � ! 0). The dissipation inequality then readsExfVa(x� )� Z �0 r dsg � Va(x)which follows from the principle of optimality. Hence the system is dissi-pative.Second we show that if the system is dissipative with storage function V ,then we have Va � V ; in particular the available storage is �nite. To seethis we rewrite the dissipation inequality asEx Z �0 �r ds � V (x)�ExV (x� ) � V (x)where the second inequality follows from V being non-negative. Since thisinequality holds for all bounded stopping times � and all solutions xt; wtwhich satisfy x0 = x we have Va(x) � V (x) <1. The conclusion follows.Finally we show the last claim: Let V (x) be a storage function, then it iseasy to see that so is V (x)� inf� V (�), hence Va(x) � V (x)� inf� V (�). Itfollows that infx Va(x) � 0.The available storage is related to a di�erential dissipation equality ; see thenote on page 116 below.In chapter 2 on deterministic systems, we stated that storage functions andsupply rates satisfy a joint convexity property (proposition 2 on page 32).This generalized a statement of Willems [124, theorem 3, p. 331] andwas the key to the chapter 3, which reduced robustness analysis to convexoptimization. This approach to robustness analysis is also fruitful in astochastic context, which is the subject of the succeeding chapter. At thispoint we state a result similar to the deterministic proposition 2:Proposition 53: Given a di�usion (5.1), a linear space V of candidatestorage functions V : X! R and a linear space R of supply rates. Thenthe subset f(V; r) � V �R j V � 0 and (V; r) satisfy (5:3)gis a convex cone. 4



108 Chapter 5. Dissipation in stochastic systemsProof: Let ri 2 R for i = 1; 2 be chosen such that the system is dissipativew.r.t. ri and let two corresponding storage functions be V (x; ri). Let xt,wt be a solution with x0 = x 2 Xand let � be a bounded stopping time;we then know thatExfV (x� ; ri) � Z �0 ri dtg � V (�x; ri) :By multiplying these two inequalities with positive constants �i and addingthe results we see that �1V (x; r1)+�2V (x; r2) is a storage function for thesystem w.r.t. the supply rate �1r1 + �2r2.In particular, the set of dissipated supply rates in R is a convex cone, as isthe case for deterministic systems (see chapter 2 or [45]). A related fact isthe following:Proposition 54: Let Va(x; r) 2 [0;1] be the available storage of thesystem (5.1) with respect to the rate r 2 R, then for each x the functionVa(x; r) is convex in r. 4Proof: The available storage is for each x de�ned as the supremum ofa family of functionals which are convex in r; the same holds therefore forVa(x; �).5.4 Linear systems and quadratic supply ratesConsider a homogeneous wide sense linear systemdxt = [Axt + Bwt] dt+ mXi=i [Fixt +Giwt] dBit (5.6)with a quadratic supply rate r(x;w) = (x0 w0)Q(x0 w0)0. We assume thatr is concave-convex in (x;w) which implies that r is regular in the senser(x; 0) � 0. This system is linear in the sense that the set of solutions(xt; wt) is a linear space; in other words, the map from input process wtand initial condition x to the state process xt is linear. It can be shownthat if such a system is dissipative then the available storage is a quadraticfunction of the initial state x, i.e. may be written asVa(x) = x0Pax
5.4 Linear systems and quadratic supply rates 109where Pa = P 0a � 0. Furthermore, the quadratic storage functions V (x) =x0Px with P = P 0 are exactly those that satisfy P � 0 and the di�erentialdissipation inequality (5.4) which can be rewritten as the linear matrixinequality � PA+ A0P PBB0P 0 �+ mXi=1[Fi; Gi]0P [Fi; Gi] � Q : (5.7)It is thus possible to use LMI solvers as [38, 32] to answer the analysisquestions: Is the system dissipative? If yes, what is the available storage?Remark 55: It is well known (see e.g. [76] and the references therein) thatmultiplicative noise terms Fi; Gi can be advantageous for a linear systemfrom the point of view of stability in probability. But such a noise termwill always contribute positively to the left hand side of the inequality (5.7)which shows that multiplicative noise terms are always disadvantageous inanalysis of dissipation w.r.t. a quadratic supply rate. 2Supply rates of special interest are those corresponding to passivity andsmall gain. Stochastic L2 gains have recently received some attention andstochastic bounded real lemmas as well as other results can be found in [30,31, 48]. Stochastic passivity has, to our knowledge, not been considered inthe literature, probably because stochastic passivity of an isolated systemis of no particular interest. However, if a nominal stochastic system isconnected to an unknown passive perturbation, then it is of great relevanceif the nominal system is stochastically passive. We will later return to suchrobustness issues; at this point we state a stochastic positive real lemma:Proposition 56: For the system (5.6), let the supply rate be r(x;w) =2hw; zi with z = Cx+Dw. Then the following are equivalent:1. The system is stochastically strictly input passive, i.e. stochasticallydissipative w.r.t. r��jwj2 for some � > 0, and the autonomous systemobtained with w = 0 is exponentially mean square stable.2. There exists a P = P 0 > 0 such that� PA+A0P PBB0P 0 �+ mXi=1[Fi; Gi]0P [Fi; Gi] < � 0 C0C D0+D � : (5.8)4



110 Chapter 5. Dissipation in stochastic systemsBefore we prove the proposition it is convenient to state an elementarymatrix lemma:Lemma 57: Let Q = Q0 > 0, R = R0 > 0, S and T = T 0 be of compatibledimensions, then for � > 0 su�ciently small the matrix inequality� 0 00 Q � > � � �R SS0 T �holds. 2Proof: [of the lemma] By Schur complement, the inequality holds if andonly if �R > 0 and Q��T ��S0R�1S > 0. These conditions are satis�edfor � > 0 small enough since Q > 0 and R > 0.Proof: [of the proposition] To see that the linear matrix inequalitycondition is su�cient one needs only verify that V (x) = x0Px is a storagefunction function w.r.t. r � �jwj2 for su�ciently small �, and that, withw = 0, V serves as a stochastic Lyapunov function to show exponentialmean square stability using a standard su�cient condition [43, p. 200].To show necessity we use that exponential mean square stability implies [43,p. 201] the existence of a Z = Z0 > 0 such thatZA +A0Z + mXi=1 F i0ZF i < �� Ifor some � > 0. Now let � > 0 and let V (x) = x0Xx be a storage functionfor the system with respect to the supply rate r � �jwj2, i.e. X = X 0 � 0and� XA +A0X XBB0X 0 �+ mXi=1[Fi; Gi]0X[Fi; Gi] � � 0 C0C D0+D�� I � :We claim that P = X + �Z solves the linear matrix inequality (5.8) for� > 0 su�ciently small. To see this, insert P = X + �Z in (5.8) andreduce terms using the LMIs which X and Z satisfy, thus obtaining� 0 00 �I � > �� ��I ZB +PF 0iZGiB0Z +PG0iZFi PG0iZGi � :This inequality holds for � > 0 small enough according to lemma 57 whichcompletes the proof.Apart from strict input passivity, one could imagine several other de�-nitions of strict positive realness of a stochastic system, just as in thedeterministic case [123].

5.5 Stability and interconnections of dissipative systems 1115.5 Stability and interconnections of dissipa-tive systemsAs in proposition 56 and in deterministic theory [124, 45] a storage functionoften serves as a Lyapunov function to show that the isolated system isstable. Indeed, this is one of the properties which make dissipative systemsinteresting from a control point of view.In order to investigate stability of the autonomous systemdxt = f(xt; 0) dt+ g(xt; 0) dBt (5.9)we use the terminology of Has'minski�i [43]:De�nition 58: A constant solution xt � �x of the autonomous equa-tion (5.9) is stable in probability if for any � > 0limx!�xP xfsupt�0 jxt � �xj > �g = 0where the di�usion xt solves (5.9) with x0 = x. 2Using the existing Lyapunov-type criterion for stochastic stability [43] weimmediately get the following:Theorem 59: Let the supply rate r be regular in the sense that r(x; 0) � 0for all x. Let the system (5.1) be dissipative with respect to r and let Vbe a continuous storage function which attains an isolated local minimumat �x 2 X. Then the process xt � �x is a solution of the autonomousequation (5.9) and is stable in probability. 2Proof: The proof runs along the same lines as theorem 3.1 in [43, p.164], the only deviation being that V is not required to be C2 around �x.Let a = V (�x), let 
 be a neighbourhood of �x such that a < V (x) forx 2 �
nf�xg. Let � be the stopping time � = infft : xt2=
g. It follows fromthe dissipation inequality that V (xt^� ) � a is a supermartingale for anyinitial condition x 2 
. In particular if x = �x then xt = �x w.p. 1 for allt which proves the �rst claim. Furthermore for x 6= �x the supermartingaleinequality of Doob (see e.g. [83, p. 28]) yieldsP xfsupt�0 V (xt^� ) � a � �g � V (x)� a�



112 Chapter 5. Dissipation in stochastic systemswhich holds for all �. Now pick arbitrarily small �; �0 > 0 such the �-ballaround �x is contained in 
. We must show that there exists � > 0 such thatjx� �xj < � implies P xfsupt�0 jxt� �xj > �g � �0. To this end choose V2 > asuch that � 2 
 and V (�) < V2 together imply j� � �xj < �. Then chooseV1 > a such that (V1� a)=(V2� a) � �0. Finally choose � 2 (0; �) such thatj� � �xj < � implies that V (�) < V1. We then have the implicationsjx� �xj < � ) V (x)� a < V1 � a) P xfsupt�0 V (xt^� )� a > V2 � ag � V1 � aV2 � a) P xfsupt�0 jxt � �xj > �g � �0as desired.Remark 60: We say that the system (5.1) is locally dissipative around�x w.r.t. the supply rate r if there exists a non-negative V and a boundedneighbourhood 
 of �x such that the dissipation inequality holds providedxt 2 
 for 0 � t < � . In this case we say that V is a local storage function.A necessary and su�cient condition for a non-negative C2 function V tobe a local storage function is that it satis�es the di�erential dissipationinequality (5.4) on 
. It is easy to see that the above theorem holds if thestorage function V is replaced with a local storage function. 2One may show other stability properties such as stochastic sample pathboundedness or exponential p-stability by imposing additional constraintson the storage function and the supply rate and using the correspondingLyapunov-type theorems in [43].As in the deterministic case, the stability implications of dissipativity isimportant in robustness analysis since systems consisting of dissipativecomponents are themselves dissipative. Consider the simple case of twosystems �i : dxi = f i(xi; wi) dt+ gi(xi; wi) dBiconnected in feedback through the equationsw1 = h2(x2; w2) + v1 and w2 = h1(x1; w1) + v2 :Here hi are output functions and vi are exogenous inputs. Assume thateach system is dissipative w.r.t. the rate ri(xi; wi). In addition, assumethat the interconnecting equations have unique solutions wi = �wi for all
5.6 Chapter conclusion 113xi and vi (for instance, if one of the two hi is independent of wi) and thatthe resulting system satis�es the well-posedness assumptions of section 5.2(in particular, (B1; B2) is standard Brownian motion w.r.t. the �ltrationF t). It is now easy to verify that the interconnection is dissipative w.r.t.the supply rate r(x1; x2; v1; v2) = r1(x1; �w1) + r2(x2; �w2). Combining withthe stability result of theorem 59 we get:Proposition 61: Assume that the each of the storage functions V i(xi)is continuous and attains an isolated local minimum at xi = 0. Assumein addition that the supply rates satisfy r(x1; x2; 0; 0) � 0 for all x1, x2.Then xit � 0 is a solution of the interconnected system with vit � 0 andthis solution is stable in probability. 4The main application of this result is to give a su�cient condition for ro-bust stability of a stochastic system subject to a deterministic dissipativeperturbation, for instance combining with the positive real lemmaof propo-sition 56:Corollary 62: Let a system � be given by the dynamics (5.6) andthe output equation z = Cx + Dw, and let � be connected in feedbackwith a perturbation � : z ! w which is dissipative w.r.t. �2hw; zi. Letthe interconnection be well posed and let � possess a continuous storagefunction of which some point � is an isolated minimumpoint. Assume thatthere exists a P = P 0 > 0 such that the linear matrix inequality (5.8) holds.Then the constant process (0; �) is a solution of the interconnection andthis solution is stable in probability. 2The corollary demonstrates that, as in the deterministic theory, robustnessquestions can be resolved by computing storage functions; in the case oflinear systems this reduces to linear matrix inequalities.5.6 Chapter conclusionIt can be argued that the concept of dissipation in dynamical systems isthe unifying factor behind a broad range of results in deterministic controltheory, in particular within robust control. We believe that the appeal ofthe framework is not lost in the transfer to a stochastic context.Although this chapter demonstrates that several key features of the deter-ministic theory generalizes to the stochastic setting, the stochastic theory



114 Chapter 5. Dissipation in stochastic systemsis far from complete. Some comments on remaining problems are discussedin the following.5.7 Notes and referencesUnbounded stopping timesIn our de�nition of a dissipative stochastic system, the integral dissipationinequality (5.3) was required to hold for bounded stopping times only. Thisleads to the question: If V is a storage function for the di�usion (5.1) and �is an unbounded stopping time, does the dissipation inequality (5.3) hold?The short answer to this question is: Not necessarily. Let � > 0, then atrivial counterexample is the stopping time� = infft > 0 : V (xt) � Z t0 r dt > V (x) + �gfor which ExV (x� )� Ex Z �0 r dt = V (x) + �provided that V is continuous, implying that the dissipation inequality doesnot hold. It is possible to construct examples where this stopping time is�nite almost surely - the interested reader is encouraged to consider thedi�usion dxt = �xt dt + wt dBt with the supply rate r = �2x2 + w2 andtake the input wt to be a non-zero constant.A �rst step towards a more complete answer is that a su�cient conditionfor the dissipation inequality (5.3) to hold is that V is a storage functionand that the family fV (xt^� )� Z t^�0 r dtgt>0of random variables is uniformly integrable. This follows from a conver-gence result for uniformly integrable random variables, [83, p. 41] - we referto the same reference for the de�nition of uniform integrability. We expectthat more explicit results can be obtained for special classes of unboundedstopping times, such as the �rst exit time of xt from a given domain.
5.7 Notes and references 115Non-smooth storage functions and viscosity solutionsIn deterministic theory of dissipation, it has been shown by James [53] thatlocally bounded storage functions can without loss of generality be takento be lower semi-continuous (l.s.c.), and that l.s.c. storage functions areexactly the viscosity solutions to the di�erential dissipation inequality (5.4).The question is if the analogous statements hold in the stochastic setting.It is easy to show that l.s.c. storage functions are indeed viscosity solutionsto (5.4). We conjecture that also l.s.c. viscosity solutions to (5.4) are stor-age functions. Existing stochastic veri�cation theorems in the frameworkof viscosity solutions [62, 131] are based on uniqueness results for viscos-ity solutions and are therefore not applicable to dissipation inequalities (oreven the corresponding equalities) which have many solutions. The de-terministic technique in [53] could probably be modi�ed and applied; theadditional complication that the dissipation inequality must hold for anyrandom bounded stopping time � could be addressed with the results onoptimal stopping in [84].Further questions are if locally bounded storage functions can taken to bel.s.c. and under what conditions they can be taken to be continuous oreven C2. These issues are left for future research.The required supplyRecall that we in chapter 2 de�ned the required supply of a dissipativedeterministic system asVr(x) = infx(�);w(�);T Z T0 r(t) dtwhere the in�mum is subject to the system dynamics and the conditionsVa(x(0)) = 0 and x(T ) = x. We see that this de�nition does not extenddirectly to stochastic systems, because the presence of noise may make itimpossible to reach a speci�ed terminal state in �nite time.An alternative starting point for a de�nition isVr(x) = supV V (x)



116 Chapter 5. Dissipation in stochastic systemswhere the supremum is over all l.s.c. storage functions V for which V (�) = 0whenever Va(�) = 0. Assume that the required supply de�ned in thisfashion is �nite; then it is l.s.c. and satis�esExfVr(x� ) � Z �0 r dsg � 0 if Va(x) = 0 :Does the available storage satisfy a PDE?It is well known that there is an intimate connection between the Hamilton-Jacobi-Bellman equations and the available storage, the required supplyand other value functions, [83, 7]. Nevertheless, the exact nature of thisconnection is often misquoted, in that situations where the value functiondoes not satisfy the Hamilton-Jacobi-Bellman equation are regarded aspathological. Consider as an example passivity analysis of a scalar wide-sense linear di�usion:dxt = (�xt + wt) dt+ �xt dBt ; r(x;w) = xw ;where � � 0 is a parameter. Since the system is linear and the supply rateis quadratic we know that the available storage is a quadratic function ofthe state. It is easy to verify that a quadratic storage function V (x) = �x2must satisfy 8x;w : 2�x(�x+ w) + ��2x2 � xwwhich implies � = 12 ; �2 � 2 :We see that the system is dissipative if and only if �2 � 2. In this case theavailable storage satis�es the Hamilton-Jacobi-Bellman inequalitysupw fLwVa(x) � r(x;w)g = (�1 + 12�2)x2 � 0 :Only when �2 = 2 does the available storage satisfy the Hamilton-Jacobi-Bellman equation. The available storage solves a strict HJB-inequalitywhen �2 < 2, for instance in the deterministic situation � = 0.The reason why the value function does not satisfy the HJB-equation is thatno optimal solution exists. For the optimal control problem associated withthe available storage, almost-optimal Markov controls are w = �fx where
5.7 Notes and references 117f ! +1. Theorems which state that the value function satis�es a PDE(as for instance theorem 11.1 in [83]) need the existence of an optimal pair(x�t ; w�t ) (either explicitly assumed or implied by other assumptions) sincetheir proofs involve di�erentiating the value function along x�t .Another situation where the available storage does not satisfy the Hamilton-Jacobi-Bellman equation is when the supply rates are not regular, i.e. insome region of state space the input is forced to deliver a positive sup-ply to the system. A trivial example is the system above with the supplyrate 1. In general, non-regular supply rates lead to many contra-intuitivephenomena and should be treated with care or avoided.Computation of storage functions with convex optimizationConsider the input-a�ne controlled di�usion on X= Rndxt = (f(x) + �(xt) wt) dt+ (g(xt) + 
(xt) wt) dBtwith the input-quadratic supply rater(x;w) = h(x) + 2k(x) w +w0 l(x) w :We assume that both Bt and wt are scalar processes. The case of vectorprocesses is conceptually the same but the notation is more involved. Thebackwards operator isLwV (x) = Vxf + Vx� w + 12(g + 
 w)0Vxx(g + 
 w)for V 2 C2(X;R); we have omitted the argument x on the right handside. The di�erential dissipation inequality (5.4) can then be written moreexplicitly asP (V; x) := " Vxf + 12g0Vxxg � h 12Vx�+ 12g0Vxx
 � k12(Vx�)0 + 12
0Vxxg � k0 
0Vxx
 � l # � 0 :(5.10)Here P : C2(X;R)�X! R2�2. A non-negative C2 function is a storagefunction if and only if this matrix inequality holds at each point x in statespace (proposition 51 on page 106).



118 Chapter 5. Dissipation in stochastic systemsWe now suggest the following numerical strategy for computing storagefunctions: Choose a set of basis functions V i 2 C2(X;R) and search for astorage function of the formV (x) = NXi=1 �iV i(x) :The basis functions V i could for instance be polynomials, trigonometricfunctions, or wavelets. In order to verify if V is a storage function, we testfor dissipation and non-negativity at a set of points xj, j = 1; : : : ;M . Thisleads to the LMI problemFind �1; : : : ; �N such thatNXi=1 �iP (V i; xj) � 0 ; NXi=1 �iV i(xj) � 0 for j = 1; : : : ;M (5.11)for which software such as [38, 32] can �nd a solution or determine that nosolution exists.The LMI problem has N scalar variables, M scalar constraints and M 2-by-2 matrix constraints. If w is a m-vector rather than a scalar, then thematrix constraints will be (m+1)-by-(m+1). Notice that the dimensionof the state space does not a�ect the size of the matrices; however high-dimensional state spaces need a large number of basis functions V i anda large number of evaluation points xj in accordance with the curse ofdimensionality.If the di�erential dissipation inequality (5.10) is merely satis�ed at pointsxj , it is quite likely that it fails near xj. Therefore, one may wish toconsider strict inequalities in (5.11) and attempt to solveFind �1; : : : ; �N ; �1; �2 such thatNXi=1 �iP (V i; xj) � ��1 �(x) ; for j = 1; : : : ;M ;NXi=1 �iV i(xj) � �2 �(x) ; for j = 1; : : : ;M ;�1 > 0 ; �2 > 0
5.7 Notes and references 119where � and � are given functions.Computing storage functions with LMI software is a relatively 
exible prin-ciple which may be modi�ed in several ways, depending on the speci�c ap-plication. For instance, one may search simultaneously for a supply rate insome convex polytope, add constraints on the storage function, its gradientor curvature, or one may include a linear functional of storage function andsupply rate to be minimized.If one goes beyond input-a�ne systems with input-quadratic supply rates,then storage functions may still be found with convex optimization butwith much greater di�culty since the di�erential dissipation inequality doesnot reduce to LMIs in state space. Further complications arise when thesupremum over w in the di�erential dissipation inequality (5.4) cannot beevaluated explicitly.While the above discussion may be su�cient for illustrative academic casestudies, it would be necessary for real-world applications to consider thenumerics in greater detail. A speci�c question which deserves attentionconcerns the dual to (5.10). As emphasized in [19], when convex opti-mization is used as computational tool in control theory, the dual problemoften have interesting control theoretic interpretations. See [57] for an ex-ample where dualism is utilized in discretized in�nite-dimensional convexoptimization problems.Another strategy for numerical computation of storage functions is to solvea partial di�erential equation corresponding to the di�erential dissipationinequality (5.4) using a �nite di�erence scheme [65]. The two approaches,convex optimization and numerical solution of PDEs, may also be com-bined.Simplifying computations with modularityFor a realistic problem involving more than a couple of states and withoutspeci�c simplifying structure, the approaches outlined above become unre-alistic as the numerical burden becomes overwhelming. In this case it maybe feasible to decompose the system into a number of sub-systems. Thesesub-systems need not correspond to physical units but could for instancebe dynamic modes which are known to interact weakly. Then one may per-form dissipation analysis on each of the subsystems and after this conclude



120 Chapter 5. Dissipation in stochastic systemson the dissipation of the overall system using the results on interconnec-tions of dissipative components. In e�ect this corresponds to imposing aspeci�c structure on the storage function of the overall system. Needlessto say, the e�ectivity of this approach relies heavily on the physical andmathematical insight into the system.For deterministic systems with (single) supply rates corresponding to pas-sivity, this approach to analysis goes back to Popov's work on hyperstabil-ity [87]. An interesting topic of future research would be systematic modu-larization. Backstepping and other recursive design techniques [63, 24] canbe seen as extreme examples of systematic modularization.Stratonovich equationsIn this dissertation we work exclusively with the It^o interpretation of stochas-tic di�erential equations. In some applications it is more natural to modeluncertainty with stochastic di�erential equations in the Stratonovich in-terpretation. The di�erence between the interpretations is mainly one ofmodelling, though; in fact a stochastic process xt solves the Stratonovichequation dxt = f(xt) dt+ g(xt) � dBtwhere Bt is scalar Brownian motion if and only if it solves the equivalentIt^o equation dxt = f(xt) dt+ 12gx(xt)g(xt) dt+ g(xt) dBt :See [83, p. 75, p. 32 f.] - a similar formula holds for the case of multidi-mensional Brownian motion. Therefore, if one has modelled a system witha Stratonovich equation, then one may afterwards do the analysis for theequivalent It^o equation.

Chapter 6Robust performance ofstochastic systemsWe demonstrate that a number of performance objectives forstochastic systems correspond to stochastic dissipation require-ments: stochastic L2 gain, H2 gain, probability of failure, andexpected time to complete a mission. Then we consider stochas-tic systems subject to dissipative perturbations and show thata stochastic dissipation analysis of the nominal system can pro-vide su�cient conditions for robust performance of the per-turbed system.6.1 IntroductionThe previous chapters in this dissertation have demonstrated that dissi-pation theory is a very useful tool in addressing deterministic problemsof robustness analysis, and that dissipation theory can be generalized toa stochastic setting. The objective of this chapter is to combine thesetwo statements: Robust performance analysis of stochastic systems can bebased on stochastic dissipation.What motivated us to consider robust performance of stochastic systemswas the speci�c problem of robust H2 performance in presence of H1121



122 Chapter 6. Robust performance of stochastic systemsbounded perturbations. The reader may recall that we in chapter 3 gavea su�cient analysis condition for this problem, for linear systems; therewe employed the deterministic interpretation of H2 performance which isin terms of the response to impulse inputs. This lead to the question ifthe same condition would also bound the H2 performance in the stochas-tic interpretation, i.e. the response to white noise. This chapter employsour notion of dissipative stochastic systems to answer this question a�r-matively: For linear systems, one LMI condition on the nominal systemimplies robust H2 performance, whether the deterministic or stochastic in-terpretation of H2 performance is used. (See the note on page 142 forreferences to the literature on mixed H2/H1 problems.)While our original objective was to bound the variance of an error signalin presence of deterministic and stochastic uncertainty, it soon becameclear that many other performance objectives could be addressed with thesame framework. Essentially, if performance analysis for the unperturbedstochastic system can be cast in terms of a Lyapunov-type function onstate space, then robust performance can be guaranteed by dissipation-type arguments. Particular examples of such performance measures arethe risk of failure, as well as expected time to complete a mission. In thischapter we provide bounds for the risk of failure of a stochastic system inpresence of deterministic dissipative perturbations; this demonstrates thatit is indeed possible to merge stochastic and robust control.The chapter is organized as follows: First, in section 6.2, we discuss perfor-mance measures for autonomous stochastic system which can be formulatedin terms of dissipation. Then, in section 6.3 we add an exogenous distur-bance and discuss L2 gain and H2 performance of the disturbed stochasticsystem. In section 6.4 we consider �nite signal-to-noise ratio systems inthe sense of Skelton and embed the associated problems in our dissipation-based approach to robust performance.In section 6.5 we demonstrate that robust performance of stochastic systemssubject to multi-dissipative perturbations can be guaranteed by performingdissipation analysis on the nominal system. After this general statementwe present two examples: robust H2 performance, and robust bounds onthe probability of failure. Finally section 6.6 contains a few concludingremarks.

6.2 Performance of autonomous systems 1236.2 Performance of autonomous systemsIn this section we consider the autonomous stochastic system� : dxt = f(xt) dt+ g(xt) dBt (6.1)where Bt is standard Brownian motion with respect to a �ltration F t ona probability space (
;F ; P ). For this system we discuss two propertieswhich may be design objectives and give su�cient conditions in terms ofdissipation properties. We do not claim novelty of the conditions. Indeed,they can be found in classical literature, for instance [64]. Our contributionis simply to point out that these properties can be cast in our frameworkof stochastic dissipation; in particular the characterization is convex. Wewill employ this in a later section concerning robustness of the propertiestowards dissipative perturbations, thus obtaining new results.For the convenience of the reader we include the proofs, which are all quitestraightforward.Expected time to complete a missionAssume that the state xt of system � evolves in a domainD �Xand thatthe control mission is completed upon �rst exit from D. We then have thefollowing bound on the expected time to complete the mission:Proposition 63: Let V : �D ! R be a continuous storage function for �w.r.t. the supply rate �1; then the boundEx�D � V (x)holds for x 2 D. 4Proof: By hypothesis the process V (xt^�D )+ t^ �D is a supermartingaleand hence Exft ^ �Dg � ExfV (xt^�D ) + t ^ �Dg � V (x) :Since this holds for all t � 0 we conclude that �D is �nite P x-almost surely,and that Ex�D � V (x).



124 Chapter 6. Robust performance of stochastic systemsRisk of failureAssume now that the boundary of D is divided into two components Aand B. As before, the process is stopped upon �rst exit from D and themission is denoted a success if A is reached, whereas exiting through B isa failure. We then have the following bound on the risk of failure:Proposition 64: Let V : �D ! R be a continuous storage function for �w.r.t. the supply rate 0 which satis�es the additional constraint V jB � 1;then the bound P xf�D = �Bg � V (x)holds for x 2 D. 4Proof: By hypothesis the process V (xt^�D ) is a supermartingale andhence P xf�D = �Bg � Pfsupt�0 V (xt^�D ) � 1g � V (x) :Here the �rst inequality holds because �D = �B implies V (x�D ) � 1 andhence sup0�t V (xt^�D ) � 1. The last inequality is the supermartingaleinequality.Notice that the proposition does not claim that the probability of success isno smaller than 1� V (x); this would in addition require that D is reachedin �nite time, P x-almost surely. Propositions 63 and 64 may be combinedto yield such a result. A related question is what the expected time tocomplete the mission is, conditioned on the mission being completed suc-cessfully. This is the subject of appendix A (page 151 �.) where a newformula for this conditional expectation is derived.6.3 Performance of disturbed systemsIn this section we consider a disturbed stochastic system� : dxt = f(xt; vt) dt+ g(xt; vt) dBt ; yt = c(xt; vt) (6.2)where vt is the disturbance input and yt is an output which is used inevaluation of the performance of the system. As before, Bt is Brownianmotion w.r.t. a �ltration F t. The input vt is restricted to a set V of F t-adapted signals for which there exists a unique t-continuous solution to the
6.3 Performance of disturbed systems 125dynamic equation. We assume that V is su�ciently large and closed underswitching so that the principle of optimality holds.Following standard notation [83], we de�ne the backward operator associ-ated with the controlled di�usion (6.2):LvV = Vxf + 12tr(g0Vxxg) :6.3.1 Stochastic L2 gainThe L2 gain is one way of measuring the ampli�cation, or gain, of a deter-ministic or stochastic system, and is a good performance measure when weadopt a worst-case view on the inputs and wish to bound their e�ect onthe r.m.s. value of the output. A reasonable question is what makes theL2 norm (or the r.m.s. value) suitable as a signal norm. Here we adoptthe pragmatic point of view that in many applications it is not at all clearwhat signal norm is suitable, and that in these situations it may be mostfruitful to use the L2 norm since it leads to technical simplicity.De�nition 65: The stochastic L2 gain of the system (6.2) is denotedk�k1 and equals the in�mum of all 
 > 0 such that the system is stochas-tically dissipative with respect to 
2jvj2 � jyj2. 2Thus, we have k�k1 < 
 if and only ifEx Z �0 jytj2 dt � 
2Ex Z �0 jvtj2 dt+K(x)holds for some K :X! Rand all bounded stopping times � and all inputsvt in V . In this case K must be nonnegative and may be taken to havein�mum 0.Our choice of notation suggests that k�k1 is a norm. Indeed, it is possibleto organize systems of the form (6.2) in a linear space: Fix the probabilityspace (
;F ; P ), the �ltration F t and the input space V. We then view thesystem as a family of operators from input vt to output zt, parametrizedby the initial condition x, and de�ne addition and scalar multiplicationof systems in the obvious way. Then the stochastic L2 gain k�k1 is asemi-norm on the subspace of those systems for which it is �nite.The stochastic L2 gain is the one property of stochastic dissipation whichhas received considerable attention in the literature [30, 31].



126 Chapter 6. Robust performance of stochastic systems6.3.2 H2 performanceWhereas it is largely agreed that the L2 gain is a suitable generalization oftheH1 norm to nonlinear systems, it is less clear how to de�ne theH2 normof a nonlinear system de�ned by the stochastic di�erential equation (6.2).Here we suggest a new de�nition which is based on stochastic L2 gains andtherefore �ts into our framework of stochastic dissipation.Since the H2 norm of a linear time invariant system concerns the responseto a white noise input vt, we need to modify the model (6.2) to allow forsuch inputs. Since we have restricted ourselves to It^o di�usions, which onlyallow a white noise term d ~B=dt to enter a�nely in the dynamic equation,we must assume that (6.2) is a�ne in vt. Furthermore, recall [128] thata stable rational transfer function has �nite H2 norm if and only if it isstrictly causal, so we can assume that the output equation y = c(x; v) isindependent of v. Hence we assume that the system (6.2) has the followingspecial form:� : dxt = f(xt) dt+ g(xt) dBt + b(xt)vt dt; yt = c(xt) : (6.3)In order to de�ne H2 performance of such a system �, we formally replacethe input vt with a white noise term �t d ~B=dt. Here �t is a scalar noiseintensity while ~Bt is standard Brownian motion with respect to Ft andindependent of Bt. Thus we obtain a new system, mapping the noiseintensity �t to the output yt:~� : dxt = f(xt) dt+ g(xt) dBt + b(xt) �t d ~Bt; yt = c(xt) (6.4)De�nition 66: The strong H2 performance index of the system (6.3) isdenoted k�k2 and equals the stochastic L2 gain of the system (6.4). 2The strong H2 performance index is the worst-case ratio between the vari-ance of the output yt and the intensity of the white noise input vt =�t d ~Bt=dt. The a�x strong is due to the feature that the intensity of thewhite noise input is allowed to vary, for instance as a function of the state.Implicit in the de�nition is that the �ltration F t must be 'large enough'to allow two independent F t-Brownian motion processes Bt and ~Bt. Thismathematical twist will probably cause little concern in engineering appli-cations where we start with statistical properties of noise signals and then,usually implicitly, de�ne the probability space accordingly.
6.3 Performance of disturbed systems 127As was the case for stochastic L2 gains, it is possible to organize systems� of the form (6.3) in a linear space such that k�k2 is a seminorm on thesubspace where it is �nite.We have the following partial di�erential inequality condition for H2 per-formance:Proposition 67: For the system � de�ned by equation (6.3), let thereexist a real number 
 � 0 and a C2 function V � 0 on Xsuch that8x 2X: Vxf + 12tr(g0Vxxg) + 12 jcj2 � 0 ; 
2 � tr(b0Vxxb) :Then k�k2 � 
. 4Proof: We claim that V is a storage function for the system (6.4) with re-spect to the supply rate 12
2�2� 12y2. The di�erential dissipation inequalityis Vxf + 12tr(g0Vxxg) + 12�2 tr(b0Vxxb) � 12
2�2 � 12 jcj2 ;which is seen to hold for all x and all � if V and 
 are as in the proposition.The condition is only su�cient since storage functions need not in generalbe C2. Notice that the characterization is convex in 
2 and V . In thenarrow sense linear case, i.e.f(x) = Ax ; g(x) = 0 ; b(x) = B ; c(x) = Cx ;we know from chapter 5 that we can restrict attention to quadratic storagefunctions, i.e. V (x) = 12x0Px, and we recover the Lyapunov-type linearmatrix inequality problemP � 0 ; PA+A0P +C 0C � 0 ; 
2 � tr(B0PB) :Feasibility of this problem is su�cient and necessary for k�k2 � 
 sincelinear dissipative systems possess a quadratic storage function. In otherwords, the strong H2 performance index equals the standard H2 norm ofthe transfer function C(sI � A)�1B.It is well known [128] that for linear systems the H2 norm of a transferfunction equals the steady-state variance of the output, when the input iswhite noise with unit intensity. This generalizes to nonlinear systems asfollows:



128 Chapter 6. Robust performance of stochastic systemsProposition 68: Let 
 = k�k2 < 1 and assume that the intensity �tin (6.4) is constant and equal to some number � > 0, thenlim supT!1 1T Ex Z T0 jytj2 dt � �2 � 
2 :If furthermore a stationary solution xt exists such that E V (xt) <1, thenE jc(xt)j2 � �2 � 
2 : 4Proof: The assumption implies that the system ~� is dissipative w.r.t.
2�2 � jyj2. Let V be a storage function; then the dissipation inequality0 � ExV (xT ) � V (x) +Ex Z T0 
2 � �2 � jytj2 dtholds. This can rewritten as1T Z T0 Exjytj2 dt � 1T V (x) + 
2 � �2 ;which holds for all T � 0. Now take lim sup on both sides and noticethat lim supT!1 V (x)=T = 0. The second claim follows directly from thedissipation inequalityE V (xT ) � E V (x0) +E Z T0 �2 � 
2 � jc(xt)j2 dtcombined with the stationarity property E V (xT ) = E V (x0).For general nonlinear systems the bounds in the proposition may be some-what conservative since we have restricted the noise intensity �t to be con-stant.In the deterministic case g = 0 the condition of proposition 67 is the exis-tence of a Lyapunov function V for the autonomous system _x = f(x) suchthat ddtV (x(t)) � �12 jc(x(t))j2and which in addition has small curvature, i.e. tr(b0Vxxb) � 
2. A classicalquestion is to what extent \nice" input-output behaviour (e.g. �nite gain)
6.4 FSN models 129implies \nice" internal behaviour (e.g. stability). In the deterministic caseg = 0 it is possible to employ La Salle's theorem [59, p. 115, p. 440]. Hence�nite strong H2 performance index implies asymptotic stability of the zerosolution to the undisturbed system _x = f(x) if: 1) the autonomous system_x = f(x), y = c(x) is zero-state detectable, and 2) the storage function Vin proposition 67 is proper and satis�es V �1(f0g) = f0g.A concluding remark concerns H2 performance of systems (6.2) which donot have the input-a�ne form (6.3). In this case one needs a more generalframework for stochastic di�erential equations than It^o di�usions, whichallows a stochastic integral to be a nonlinear function of the driving mar-tingale. Such a framework can be found in [75] but is beyond the scope ofthis dissertation.6.4 FSN modelsIn a sequence of papers [102, 104, 100, 110, 72, 71, 103], R.E. Skelton andco-workers have introduced disturbances with �nite signal-to-noise ratio(in short, FSN disturbances) and discussed their use for representation ofuncertainty. In this section we demonstrate that FSN disturbances can,too, be represented in the framework of stochastic dissipation.FSN disturbances are white noise signals with intensities which are not�xed a priori but grow with the variance of speci�ed signals in the closedloop. As argued in [102], this is a reasonable model of round-o� errors in�nite word-length computations with 
oating point, as well as of turbulenceforces around air foils.To be more speci�c, consider the linear system_x = Ax+Gw ; y = Cx (6.5)where w is an FSN disturbance: i.e., a scalar white noise signal with in-tensity �20 + �21E(y0y). Here �0 and �1 are speci�ed constants; �1 is calledthe noise-to-signal ratio. Also other terms such as controls may appearin the expressions for _x and y but are irrelevant to the present discussion.The model can be generalized to allow for vector disturbances w in severalways.The model (6.5) is well suited for steady-state analysis: A unique invariantdistribution for x exists if and only if there exists a unique non-negative



130 Chapter 6. Robust performance of stochastic systemssolution P to the generalized Lyapunov equationPA0 +AP +GG0(�20 + �21 � tr(CPC 0)) = 0 : (6.6)In this case, this unique invariant distribution for x is N (0; P ), i.e. insteady state x is zero mean, has covariance P and is Gaussian. However,the model (6.5) does not fully describe the process x. For instance, assumethat we have observed x up to some time t, what is then the conditionaldistribution of w? Such questions are important if one wishes to studytransient behaviour.The objective of this section is twofold: First, we wish to generalize FSNmodels to nonlinear and non-stationary systems. Second, we wish to formu-late FSN models such that they can be combined with our dissipation-basedframework for robustness. We believe that the following model ful�lls bothobjectives:dxt = f(xt) dt+ g(xt)��0 dBt + �1�t d ~Bt� ; yt = c(xt) : (6.7)Here �t is the scalar output of an unknown deterministic system � whichhas L2 gain less than or equal to 1, and the input of which is yt. Further-more Bt and ~Bt are independent standard Brownian motion.In order to see that this is indeed a generalization of the model (6.5), setf(x) = Ax, g(x) = G, c(x) = Cx, and assume that steady-state has beenreached. Assume furthermore that � is a worst-case perturbation so thatthe root mean square (r.m.s.) of �t equals that of yt. Then it is fairly easyto see that x in steady state must have zero mean and variance P whereP solves the generalized Lyapunov equation (6.6), which implies that themodels (6.5) and (6.7) lead to the same steady-state mean and variance.However, our suggested model (6.7) need not lead to Gaussian distributionsin steady state - this will depend on the particular system �.If one wishes to simulate an FSN system, one will obviously have to choosea particular perturbation �. Two systems with L2 gain equal to one areof special interest:� : �(t) = y(t) (for y scalar)� : �(t) = sZ 10 ! exp(�!� )jy(t � � )j2 d�
6.5 Performance of perturbed systems 131The �rst of these two speci�c perturbations � is that ofmultiplicative noise,c.f. e.g. [31] and the references therein. In certain analysis problems forlinear FSN systems this perturbation is worst case. The second form of �illustrates that � may be thought of as an r.m.s. estimator for y.When we analyse FSN models, we take the the perturbation � to be anunknown state-space system with L2 gain less than or equal to one, andwe adopt a worst-case view on this class of perturbations. In particular ap-plications, one may possess additional knowledge regarding �, for instanceconcerning time constants.We have thus demonstrated that FSN models can be embedded in ourgeneral framework for uncertain systems; viz. a nominal system describedby a stochastic di�erential equation, subject to an unknown perturbationwhich possesses a number of speci�ed dissipation properties.6.5 Performance of perturbed systemsIn this section we consider the interconnection of a nominal stochastic sys-tem � and a multi-dissipative deterministic perturbation �; see �gure 6.1.Our objective is to provide conditions on the nominal system � underwhich the interconnection dissipates a given supply rate r for any multi-dissipative perturbation �. This is a fairly general problem formulation;later we consider speci�c applications such as robust H2 performance inpresence of H1 bounded perturbations.�w1 z1w0 z0�Figure 6.1: Setup for robust performance analysis.



132 Chapter 6. Robust performance of stochastic systemsThe nominal system � is described by a stochastic di�erential equation� : dxt = f(xt; wt; vt) dt+ g(xt; wt; vt) dBt ;yt = c(xt; wt; vt) ;zt = h(xt; wt; vt) ; (6.8)whereas the unknown perturbation �, mapping z to w, is known to dissi-pate p given supply rates �ri, i = 1; : : : ; p. We let � denote the state of theperturbation � and let W (�;�ri) denote a storage function for � w.r.t.�ri. The backwards operator corresponding to (6.8) isLw;vV (x) = Vxf + 12tr(g0Vxxg)for V 2 C2(X;R); here the right hand side is evaluated at x;w; v.We omit details concerning well-posedness of the interconnection; i.e. weassume that unique t-continuous solutions xt, �t exist for any F t-adaptedinput vt in a su�ciently large class of inputs.The vehicle of our analysis of the interconnection (�;�) is an extendedsystem derived from the nominal system � and independent of �: De�nethe system �� by appending to (6.8) the dynamic equationd�it = �ri dt : (6.9)Thus �� has states xt and �t = (�1t ; : : : ; �pt ), inputs wt and vt, and outputszt and yt. The backwards operator associated with �� isMw;vU (x; �) = Uxf � pXi=1 U�iri + 12tr(g0Uxxg)for U 2 C2(X�Rp;R); here the right hand side is evaluated at x; �; w; v.De�nition 69: We say that �� is regionally dissipative on D � X� Rpw.r.t. the supply rate r if there exists a function U (x; �) which is non-negative on D and such that the dissipation inequalityEx;�U (x� ; �� ) � U (x; �) +Ex;� Z �0 r dt (6.10)holds for all (x; �) 2 D, all F t-adapted inputs vt, wt and all boundedstopping times � such that� � �D := infft � 0 : (xt; �t)2=Dg (6.11)
6.5 Performance of perturbed systems 133holds. 2Regionally dissipative systems are not directly covered by our de�nition ofstochastic dissipation (page 105); nevertheless it is straightforward to verifythat they possess many properties similar to those of dissipative systems.Let us only state the partial di�erential inequality condition:Proposition 70: Let D �X�Rp+ be open and let U 2 C2(D; �R+). Thefollowing are equivalent:1. U is a regional storage function for �� on D w.r.t. the supply rate r.2. U satis�es the partial di�erential inequalitysupw;v Mw;vU (x; �)� r � 0 (6.12)on D. 4Proof: The proof is merely a repetition of the proof of proposition 51 onpage 106 and omitted.We can now state our main result which is a su�cient condition for theinterconnection (�;�) to dissipate r.Theorem 71: Assume that �� is regionally dissipative on X�Rp+ w.r.t.r with U (x; �) a corresponding regional storage function. Then the inter-connection (�;�) dissipates r; an upper bound on the available storageis U (x; �)provided that �i > W (�;�ri). 2The idea behind the theorem is that the appended states �it of �� boundthe storage W (�t;�ri) in the perturbation. This technique has, to ourknowledge, not been used before in the literature; even in a deterministiccontext.Proof: Consider the response xt, �t of the interconnection (�;�) toan F t-adapted input vt under the initial conditions x and �. Let �i >W (�;�ri). We aim to show thatEx;� Z �0 �r dt � U (x; �) (6.13)



134 Chapter 6. Robust performance of stochastic systemsholds for any bounded stopping time � .First, notice that the output wt of � is Ft-adapted since � is deterministic.Let �xt, �t be the response of �� to the inputs vt and wt and the initialconditions x and �. Then clearly xt = �xt by uniqueness; the processes xtand �xt solve the same stochastic di�erential equation (6.8) with the sameinitial condition.Next, the dissipation inequalities for � are0 � W (�t;�ri) � Z t0 �ri ds+W (�;�ri)and hold for any sample trajectory and any t � 0. This implies that0 � �it � �it � �i +W (�;�ri) < �it :Finally, let � be a bounded stopping time. Since �it > 0 for any t � 0, theregional dissipativity of �� implies thatEx;� Z �0 �r dt � U (x; �) �Ex;�U (x� ; �� ) � U (x; �)which completes the proof.Linear combinations of supply ratesTheorem 71 generalizes the conditions of chapter 3 where we required thenominal system � to dissipate a linear combination of the supply rates r, ri.We may recover this type of results (in a stochastic context) by imposinga speci�c structure on U :Corollary 72: Assume that there exists non-negative weights di suchthat � dissipates the supply rater + pXi=0 dirithen the interconnection (�;�) dissipates r. 2Proof: In the theorem, take U (x; �) = V (x) +Pi di�i where V is astorage function of � w.r.t. the supply rate r +Ppi=0 diri. Let wt, vt be
6.5 Performance of perturbed systems 135F t-adapted inputs to � and �� and let � be bounded; we then haveEx;�U (x� ; �� ) = ExV (x� ) +Ex;� pXi=1 di�i�� V (x) + Ex Z �0 r + pXi=1 diri dt+Ex;� pXi=1 di(�i � Z �0 ri dt)= Ex Z �0 r dt+ U (x; �)which implies that the su�cient condition of theorem 71 is satis�ed. No-tice that U (x;W (�;�ri)) is in this case in fact a storage function for theinterconnection (�;�).Conservatism of the conditionSince theorem 71 provides a su�cient condition, but not a necessary one,the question is how conservative the condition is. Before we discuss thisissue we emphasize that the condition is less conservative than those ofchapter 3; this is demonstrated by corollary 72. In fact the condition oftheorem 71 is not very conservative.First, the theorem does not only guarantee that the interconnection (�;�)dissipates r but also that there exists a bound on the available storage whichdepends only on W (�;�ri), and not on the actual perturbation � and itsinitial condition �. This may be conservative if all we care about is thatthe interconnection is dissipative. On the other hand, in most applicationsit does not su�ce to know that a bound exists for the available storage of(�;�); we also want to know what this bound is. Since the initial storage in� may very well be the one quantity we can bound reliably, it is appealingthat this is exactly what we need to bound the available storage of (�;�).Another way conservatism is introduced in the theorem is that the dissi-pation inequality (6.10) holds for all F t-adapted inputs wt. Notice that adeterministic perturbation � must necessarily produce an output wt whichis adapted to the sub-�ltration generated by zt. In other words, the theoremis conservative in that the bound (6.13) holds also for perturbations which



136 Chapter 6. Robust performance of stochastic systemshave access to complete informationabout the system �. This conservatismmay even be desirable in applications where � is physically integrated in thetotal control system; for instance if � represents parasitic high-frequencydynamics. Then it would be hazardous to let a design depend on � notexchanging information with its environment.A similar discussion concerns the situation where the perturbation � iscomposed of a large number of independent blocks in parallel, i.e. wi =�izi. It appears to be di�cult to make use of the fact that multiple pertur-bations really must solve decentralized control problems in order to makethe dissipation inequality fail. In short, we restrict the energy and otherresources available to �; not the information.Re�ning the storage bounds �it > W (�t;�ri)The idea in theorem 71 is that we keep track of how much storage is presentin the perturbation � through the bounds�it > W (�t;�ri) :The dynamic equation d�it = �ri dt simply states that if we supply aquantity to �, then the storage in � may increase with this quantity butno more.In some applications it may be essential to incorporate additional knowl-edge about � such as time constants. For instance, consider a weldingrobot which �rst moves the arm into correct position with large and fastmovements after which the welding process begins and the welding seamis to be followed slowly and accurately. The perturbation � is parasitichigh-frequency dynamics in the robot arm; the storage in � is mechanicalenergy. During the initial rough placement of the robot arm it is likelythat large amounts of energy is supplied to the perturbation. It is thenimportant for the analysis that this energy cannot be hidden in � andthen released much later, during the �ne movements of the actual weldingprocess. In such a situation one may replace the dynamic equation for �itwith d�it = (� 1T� �it � ri) dtwhere T� is the time constant of the perturbation. Of course, also otherforms of decay can be used, for instance if physical reasoning gives bounds
6.5 Performance of perturbed systems 137to the storage which � is capable to keep. In general, these issues are im-portant if some phases of the system operation are more critical or sensitivethan others.The idea of bounding the storage in the perturbation has applications farbeyond the robustness analysis which we concentrate on here. For instance,a supervisory system may keep track on-line of the storage in the perturba-tion using the dynamic equation of �it as well as on-line measurements fromthe system. A large storage may provoke an alarm, or pause the controlmission until the storage in the perturbation decreases to an acceptablelevel. For the welding robot above, this means to stop welding until weare con�dent that parasitic oscillations in the arm have died out. On theother hand, if the bound �it ever goes negative then it can be concludedthat the model is inconsistent with the measurements which may triggera change of control strategy. The reference [88] describes an approach toadaptive H1 control based on a �nite number of models and this type ofmodel validation.6.5.1 Guaranteed H2 performanceConsider now the block diagram in �gure 6.2 where the system � has inputswt, �t and vt and is given by the model� : dxt = f(xt; wt) dt+ �t g(xt) dBt + vt b(xt) dt (6.14)with outputs yt = c(xt), �t = �(xt), and zt = h(xt). We make the followingassumptions about the perturbations � and �F :� is passive and small L2-gain, i.e. dissipative w.r.t. �r1 = hw; zi and�r2 = jzj2 � jwj2. This could for instance represent unmodelled parasiticdynamics.�F is small L2-gain, i.e. dissipative w.r.t. �r3 = j�j2 � j�j2. This impliesthat �t dBt=dt is a white noise signal which grows in intensity with thevariance of �t, i.e. a �nite signal-to-noise ratio disturbance.To evaluate the strong H2 performance index of the total system, we followour de�nition 66 and replace the input vt in (6.14) with a white noise term�t dWt=dt, thus obtaining~� : dxt = f(xt; wt) dt+ �t g(xt) dBt + �t b(xt) dWt : (6.15)



138 Chapter 6. Robust performance of stochastic systemsz���Fwv � � yFigure 6.2: Nominal system and perturbationsAssume now that ~� is stochastically dissipative w.r.t. 
2j�j2 � jyj2 +P3i=1 diri for some 
 � 0, di � 0 and that V is a corresponding storagefunction, then it follows from corollary 72 that the overall interconnectionis dissipative w.r.t. 
2j�j2�jyj2; a storage function is V +Pi diWi. Hence,an upper bound on the square of the strong H2 performance index ismin
2 ;di;V 
2 s.t. V a storage function for (6.15) w.r.t. 
2j�j2�jyj2+ 3Xi=1 diriwhere 
 � 0 and di � 0. This in�nite-dimensional optimization problem isconvex according to proposition 53; if the state x has low dimension it maybe solved be restricting V to a �nite-dimensional subspace as outlined onpage 117.If the right hand side of the governing equation (6.14) is linear in (x;w; v; �)then V can be taken to be quadratic and the optimization problem reducesto a linear matrix inequality problem:Theorem 73: Let the system � be given by the linear SDE� : dxt = (Axt + �wt +Bvt) dt+ �t G dBtand the output equations zt = Hxt, yt = Cxt, �t = Jxt, and let w = �zand � = �� where � and �F are as above. Then an upper bound on thesquare of the strong H2 performance index of the interconnection isminP;d1 ;d2 tr B0PB s.t. P � 0; di � 0; � Y P�+ d1H0�0P + d1H �d2I � � 0
6.5 Performance of perturbed systems 139where Y is shorthand for Y = PA+ A0P +C 0C + d2H 0H + J 0J tr G0PG.2Proof: The proof is merely a veri�cation that, given feasible P and d1; d2,the quadratic form V (x) = x0Px is a storage function of systemdxt = (Axt +�wt) dt+ �t B dWt + �t G dBtwith respect to the supply rate 
2j�j2�jyj2+P3i=1 diri with 
2 = tr B0PBand d3 = tr G0PG.This upper bound can be computed with standard software for linear matrixinequalities such as [38, 32]. Notice that if one removes the FSN disturbance�t g(xt) dBt=dt in (6.14) and applies the condition in theorem 27 on page 61for robust H2 performance in the deterministic sense, then one recovers thecondition of theorem 73. On other words, if one is after su�cient conditionsfor robust H2 performance of linear systems, then it is inessential if oneuses the stochastic or the deterministic interpretation of H2 performance.6.5.2 Robust estimates on the risk of failureConsider a system� : dxt = f(xt; wt) dt+ g(xt; wt) dBt ; zt = h(xt) (6.16)connected in feedback with a deterministic perturbation � : z ! w whichdissipates the p supply rates �r1; : : : ;�rp. Let the initial condition x be inan open domain D �X, let the boundary @D be divided into two disjointsets A and B; corresponding to success and failure, respectively.As before, we let �� denote the system � appended with the states �it withd�it = �ri dt.Theorem 74: Assume that �� is regionally dissipative onD�Rp+w.r.t. thesupply rate 0 with a regional storage function U (x; �) which is continuouson �D � �Rp+ and such that U (x; �) � 1 whenever x 2 B and �i � 0. Thenwe have the following bound on the risk of failureP x;�fx�D 2 Bg � U (x; �)where �i = W (�;�ri). 2



140 Chapter 6. Robust performance of stochastic systemsProof: Let �i > W (�;�ri) and let xt, �t be the trajectories of �� whenconnected in feed-back with �, corresponding to the initial conditions x, �and �. We claim that the process U (xt^�D ; �t^�D ) is a continuous super-martingale. Continuity is clear since xt and �t are continuous processes andU is a continuous function. To see that the process is a supermartingale,notice that �it > W (�t;�ri) � 0, and hence regional dissipativity w.r.t. thesupply rate 0 yields Ex;�U (xt^�D ; �t^�D ) � U (x; �) :This allows us to pose the probability boundP x;�fx�D 2 Bg � P x;�fsup0�t U (xt^�D ; �t^�D ) � 1g � U (x; �) :Here, the �rst inequality holds because x�D 2 B implies that U (x�D ; ��D ) �1 and hence sup0�tU (xt^�D ; �t^�D ) � 1. The second inequality is thesupermartingale inequality.We have thus shown that P x;�fx�D 2 Bg � U (x; �) for any � such that�i > W (�;�ri). Now let �i !W (�;�ri) from above and use continuity ofU to see that the same bound holds with �i =W (�;�ri).A similar conclusion is obtained if we follow corollary 72 and replace thehypothesis with � dissipating Pi diri for non-negative weights di, with acontinuous storage function V such that V jB � 1. However, in this casethe resulting bound isP x;�fx�D 2 Bg � V (x) +Xi diW (�;�ri)which is seen to be quite conservative for large amounts of initial stor-age in the perturbation �; in fact the upper bound may then becomeP x;�fx�D 2 Bg � 1 which is not very informative. In this situation the-orem 71 is of much more use; at least for large amounts of initial storagein the perturbation. In other words, it may well be very conservative toconsider only regional storage functions U (x; �) which are a�ne in �.6.6 ConclusionThis chapter has demonstrated that problems of robust performance ofstochastic systems can be addressed with the notion of stochastic dissipa-tion. The three steps in this procedure are:
6.6 Conclusion 1411. Model the physical system as an interconnection of a nominal system� and a perturbation �, where � is dissipative w.r.t. the supplyrates �ri, i = 1; : : : ; p.2. Formulate the performance property as one of stochastic dissipation,i.e. �nd the supply rate r such that the overall system has satisfactoryperformance i� it dissipates r.3. Perform dissipation analysis on � using theorem 71 or corollary 72,i.e. investigate if �� dissipates r regionally, or if � dissipates r+Pi dirifor non-negative weights di.Regarding the �rst item, the dissipation properties of � will typically bethe same as in a deterministic analysis, such as passivity or small gain.We have also demonstrated that Skelton's �nite signal-to-nose ratio (FSN)models can be incorporated in this framework.Regarding the second item, we have shown that stochastic L2 gain, H2performance, risk of failure and expected time to complete a mission areexamples of performance objectives which can be stated in terms of stochas-tic dissipation. While it is hardly surprising that the stochastic L2 gain isrelated to dissipation, it is an innovation that H2 performance is expressedin this framework. We believe that nonlinear H2 control, both nominaland robust, is a fruitful �eld of future research. The two last performancemeasures, risk of failure and expected time to complete a mission, are wellstudied in the classical literature on stochastic analysis and control, but itis a novelty that they can be embedded in the framework of dissipation andthus subjected to a robustness analysis.Regarding the last item, the idea of searching through convex conic com-binations of supply rates was also employed (in a deterministic context) inchapter 3 and in the recent reference [126], but it is a new observation thatthis idea is a special case of regional dissipation analysis of the extendedsystem ��; i.e. that corollary 72 follows from theorem 71.The practical applicability of our suggested framework depends on twofactors: First, we need numerical methods for performing (regional) dissi-pation analysis on general nonlinear systems - here it would be interestingto develop the LMI based procedure suggested on page 117 and apply it tosome benchmark problems. Second, recognizing that these numerical meth-ods will not be applicable to systems with high-dimensional state spaces



142 Chapter 6. Robust performance of stochastic systemsdue to the curse of dimensionality, we need analytical procedures for sim-plifying the dissipation analysis using information about the structure ofthe system. Modularity is one such procedure; time-scale separation wouldbe another interesting issue to investigate.6.7 Notes and referencesMixed H2/H1 problemsThe literature contains several di�erent statements of mixed H2/H1 anal-ysis and control problems, [26, 60, 68, 69, 86, 98, 106, 129, 132]. Much ofthis work concerns posing an H2 bound on one closed loop transfer func-tion and an H1 bound on another. Problems of robust H2 performance ofa linear system in presence of one H1 bounded perturbation are treatedin [106, 86]. The setting there is much alike the one used in section 6.5.1;however the object of analysis in these references is a family of Riccatiequations rather than a linear matrix inequality. The parameter in thisfamily corresponds to our weight d1. The �nal numerical strategy is thento search over this weight, solving a Riccati equation for each d1. Thisapproach is di�cult with more than one dissipation property of the per-turbation, since it is not clear how the solution of the Riccati equationdepends on the d-weights. We have in [113] presented a numerical exam-ple with two dissipation properties; for this example a convexity propertymakes numerical optimization over the d-weights feasible.Stability of FSN systemsThe simplest FSN model, according to our suggested de�nition, isdxt = f(xt) dt+ g(xt)�t dBt ; yt = c(xt)where �t = �yt; here � is a deterministic system with L2 gain less than orequal to one. This corresponds to (6.7) where the signal-to-noise ratio �1is 1, and �0 = 0. A su�cient condition for this system to be stable is thatthe stochastic L2 gain from �t to yt is less than one; this is equivalent tothe system mapping vt to yt given bydxt = f(xt) dt+ g(xt)vt dt ; yt = c(xt)
6.7 Notes and references 143having strong H2 performance index less than 1. This is a small gain typeresult for nonlinear FSN systems.Earlier joint work with R.E. Skelton [110], for linear FSN systems, con-cluded that this condition was su�cient and necessary. Furthermore, forthe situation with several FSN disturbances, a necessary and su�cientcondition was given in terms of the spectral radius of a certain matrix, theelements of which were obtained by H2 analysis on the nominal system. Itis in fact possible to give a similar su�cient condition for stability of non-linear FSN systems with several FSN disturbances, employing corollary 72.This result will be reported elsewhere.



144 Chapter 6. Robust performance of stochastic systems Chapter 7ConclusionWe have in this dissertation contributed to the mathematical theory of ro-bust performance of control systems in presence of parametric uncertainty,dynamic perturbations, and deterministic or stochastic exogenous distur-bances.There are four threads in our work. The �rst is the opinion that controltheory should employ notions which have some general validity and notonly, for instance, make sense in a deterministic linear setting. We believethat our dissipation based framework for robust performance of stochasticsystems ful�lls this requirement.The second thread is the opinion that control theory should maintain aclose connection to physics. This is partly because many techniques fromphysics, such as Lyapunov stability, has proven to be valuable to controltheorists, but also because a sound knowledge of the physics in a controlsystem will assist the control engineer in posing the right mathematicalproblems.Thirdly, we consider the uncertainty associated with a nominal mathemat-ical model to be equally important as the nominal model itself. The rep-resentation of uncertainty determines the strategy for analysis and design,and the more detailed the information about the uncertainty, the sharperconclusions. Both the simultaneous H1 controller of chapter 4 and therobust performance analysis of chapter 6 uses explicit quantitative evalu-145



146 Chapter 7. Conclusionation of the uncertainty, in terms of the residuals and the storage of theperturbations.Lastly, we believe that tools for analysis of control systems are as impor-tant as tools for synthesis. Good analysis tools, which for instance couldbe based on dissipation analysis on a closed loop system, can be of greatpractical value, not only for the theorist but also for the practicing engi-neer. For instance an inspection of storage functions may conclude that aheuristic controller, although not optimal, solves the control job nicely, orit may identify a weakness in the design of the plant.In the remainder of this chapter we brie
y summarize the precise nature ofour contributions, and point out a number of issues which deserve furtherattention.7.1 Summary of contributionsThe purpose of this section is to provide a concentrated overview of theresults which were obtained during the Ph.D. study and reported in thisthesis.The introductory chapter 1 does not present new results, although the ob-servation that LMIs can be used to compute storage functions for nonlinearbut input a�ne-quadratic systems seems to be new.Chapter 2 presents fundamental properties of deterministic systems whichare dissipative w.r.t. several supply rates. The convex conicity of theset of dissipated supply rates is mentioned in passing in [45]; this simpleproperty is what enables the robustness analysis of the succeeding chapter.New results are that the set is also closed and that the available storageis a continuous function on this set. These properties are important for anumerical analysis and contribute to the general understanding of multi-dissipative systems.The contribution of chapter 3 is to demonstrate that analysis of controlsystems can be done by explicit consideration of the multiple dissipationproperties of unknown system components. It is fair to say that this ideais also present in approach of Integral Quadratic Constraints, but severaldi�erences exist between this framework and the one of multi-dissipation asexplained in section 3.1. The chapter also contains several more technical
7.1 Summary of contributions 147contributions which can be seen as exercises in Lyapunov techniques - inthis type of work, the devil is in the details. The results for linear-quadraticsystems are obtained using standard methods for linear matrix inequalities.The importance of these results is to demonstrate that problems with suchmixed uncertainty models lead to convex optimization problems, namelyLMIs.Chapter 4 contributes to the theory of adaptive H1 control by pointingout that certainty equivalence based minimax controllers for this problemis not the generic situation. Although the characterization of the minimaxcontroller is done with existing ideas, viz. the information state machinery,the literature contains few applications of this machinery, and the detailsare by no means trivial. One such detail is the characterization of the valuefunction as the viscosity solution to the HJI-PDE. In a given applicationit will be a cumbersome a�air to construct the minimax controller, butit is quite straightforward to synthesize the heuristic certainty equivalencecontroller, and this design may have direct practical applicability.Chapter 5 contains a generalization of dissipation theory to stochastic sys-tems. In the existing literature, dissipation techniques have only been usedto perform analysis of stochastic systems in special cases; it appears to bea new observation that the framework is applicable and operational in gen-eral. The results of the chapter essentially say that many of the attractivefeatures of deterministic dissipative systems apply to stochastic dissipativesystems as well; these are the inherent convexity, the r^ole of the availablestorage, the closedness under interconnections, and the implications forstability. The strictly positive real lemma for wide-sense linear stochasticsystems is new; passivity of stochastic systems has to our knowledge notbeen investigated previously.Chapter 6 constructs a framework for robustness of stochastic systems,based on the theory of stochastic dissipation. A minor contribution is theobservation that stochastic performance measures such as the risk of failurecan be formulated in terms of dissipation. It is more innovative that thesame applies toH2 performance and �nite signal-to-noise ratio (FSN) mod-els. The idea of expanding the system with extra states, which keep trackof the storage in the perturbation, is new. This idea leads to quite sharpsu�cient conditions for robust performance; for general nonlinear systemsthese conditions are more natural than the multiplier-based approach ofchapter 3. The idea may also have further applicability in other �elds ofcontrol theory such as supervision and model validation.



148 Chapter 7. Conclusion7.2 Perspectives and future worksAs is so often the case, each of the answers in this dissertation leads toseveral new questions. Many of the results could be re�ned or generalized;the notes and references ending each chapter contains such detailed sug-gestions for future works. At this point we take a step back and outlinesome �elds of research which we believe to be fertile.The problem of adaptive H1 control remains largely open. As stated inchapter 4, we cannot expect the minimax controller to be based on certaintyequivalence or �nite dimensional (when there is more than a �nite numberof possible parameter values). In this situation there is a great need forclever heuristics and sub-optimal strategies as well as for studies of specialsituations, and although much work has been done in this direction, thereare many questions that remain unaddressed. A fundamental question is ifthe problem formulation itself is a sign of prudence or paranoia. In otherwords, should we impose some further constraints on those disturbancesfor which the dissipation inequality must hold, or is it reasonable to antici-pate disturbances which in some clever way attempt to confuse the controlsystem?We have, in the notes at the end of chapter 5, mentioned the possibilityof extended the theory of stochastic dissipation to a more general class ofstochastic di�erential equations than It^o di�usions. A related interestingproject would be to extend the theory of stochastic dissipation to in�nite-dimensional systems, i.e. systems given by stochastic partial di�erentialequations. Initial results in this direction are probably obtained quite eas-ily, following [124] where many results hold for in�nite dimensional systems,but we expect it to be quite complicated to obtain more explicit results. Agood starting point for such a project would be the corresponding deter-ministic problem, see [61] and the references therein.As we have already mentioned on several occasions, numerical methodsfor analysis and control of nonlinear systems remains the hurdle for thepractical applicability of the theory, and is a natural subject of futureinvestigations.After the robustness analysis results of chapter 6, an obvious next step is todevelop a theory of control for stochastic dissipation. The objective of sucha theory is to provide techniques for �nding a control law, a storage func-tion, and possibly also a supply rate in a given set, which together satisfy
7.2 Perspectives and future works 149the dissipation inequality. In principle, this can be done by value-policyiteration but we expect that much more explicit results can be obtained,at least if some generality is sacri�ced.A special case of such a theory is nonlinear H2 control building on thede�nition of strong H2 performance index of chapter 6. The term nonlinearH2 control is most often used in the deterministic meaning, where thecost is evaluated from the response to initial conditions, and is thereforeunable to conclude on the response to white noise. Similarly, stochasticnonlinear optimal control is most often used with �xed noise intensities, anddoes therefore not provide information about the response to other noiseintensities. In some applications it is quite sensible to take a worst-caseview on the noise intensity (as in our de�nition of strong H2 performance).It also embeds nicely in a dissipation-based robustness framework - noticethat �xing the noise intensity (or just bounding it way from zero) leadsto supply rates which are not regular and thus weakens the dissipationtheory. In short, we believe dissipation-based nonlinear H2 control to be apromising �eld.



150 Chapter 7. Conclusion Appendix AConditional Expectationsof First Passage TimesWe consider an It^o di�usion evolving on a domain in Euclideanspace, the boundary of which is divided into two components, Aand B. We then ask the question: What is the expected time topass before the set A is reached, conditioned on A being reachedbefore B?We derive a partial di�erential equation which governs this con-ditionally expected �rst passage time, seen as a function of theinitial state. We also provide a generalization which involvesother functionals than the �rst time of exit, and we show howa partial di�erential inequality can be useful for establishingbounds.A classical question concerning It^o di�usions evolving in Euclidean spacesis: If the di�usion starts at a point x in some open set 
, what is theexpected time Ex�@
 to pass before it reaches the boundary @
? It iswell known that under suitable technical assumptions this expected �rstpassage time, seen as a function of the initial state x, is the unique solutionto the second order semi-elliptic partial di�erential equationL� = �1; �j@
 = 0151



152 Appendix A. Conditional Expectations of First Passage TimesHere, L is the backward di�erential operator associated with the di�usion- see below for precise de�nitions and statements.A related question is: If we divide the boundary @
 into two disjoint com-ponents A and B = @
 n A, what is the probability P xf�@
 = �Ag thatthe process hits A before B? This probability is - again, under suitabletechnical assumptions - the unique solution to the equationL = 0;  jA = 1;  jB = 0 :One application of these results is performance analysis of a stochastic con-trol system: The control mission is completed upon passage of the boundary@
; successfully if the boundary is reached at a point in A whereas reachingB before A would be a failure. For instance, the mission could be dockingof a ship or a spacecraft. The primary performance measure for this ap-plication may be the probability of success, i.e. the function  , whereas asecondary performance measure may be the time it takes to complete themission, averaged only over those missions which are completed success-fully. In other words, the question arises: If we condition that A is reachedbefore B, what is then the expected time to reach A?Although this question seems almost as basic as the two previous ones,we have not been able to �nd it answered explicitly in the literature. Inthis note we show that - still, under suitable technical assumption - thisconditional expectation of the �rst passage time can be computed asExf�A j �A = �@
g = �(x) (x)where  is the probability that A is reached before B, as above, and where� is the unique solution to the equationL� = � ; �j@
 = 0This is our main result which is stated precisely and proved in section A.1below. In section A.2 we state a rather straightforward generalization wherea reward is released upon �rst passage; making this reward equal to the timeof �rst passage recovers the result of section A.1. In section A.3 we showhow one may obtain upper bounds if given solutions to the correspondingpartial di�erential inequalities. This is especially useful in situations wherethe partial di�erential equations have no (classical) solutions which will bethe case in many applications.
A.1 The main result 153NotationOur notation is fairly standard and follows [83]. In particular, the di�usionswe consider in this note are It^o di�usions evolving in Euclidean space X=Rn according to the stochastic di�erential equationdxt = f(xt) dt+ g(xt) dBt (A.1)which we interpret in the It^o sense. Of course, we assume an underlying�ltered probability space which we however do not refer to explicitly.We de�ne the (backward) di�erential operator L associated with the di�u-sion x in the usual way: If V :X! R is C2, thenLV (x) = Vxf + 12tr(g0Vxxg)where the right hand side is evaluated at x.If D � X is Borel then we use �D to denote the stopping time infft >0 : xt 2 Dg. P x is the probability law of xt starting at x0 = x and Exdenotes expectation w.r.t. P x.For a set A, �A denotes the closure of A.If A is an event such that P xA > 0 and y is a stochastic variable for whichExjyj <1, then Exfy j Ag denotes the conditional expectation Exfy j Agevaluated at some ! 2 A; here A denotes the �-algebra generated by A.A.1 The main resultWe make the following assumptions on the geometry and the dynamics:Assumption 75:i The initial condition x of the stochastic di�erential equation is ina domain 
 � Xwhich is open and bounded and has a smoothboundary @
.ii The drift coe�cient f and di�usion coe�cient g are Lipschitz contin-uous on the closure �
 of the domain.



154 Appendix A. Conditional Expectations of First Passage Timesiii The di�usion g satis�es the non-degeneracy condition that gg0 > 0on �
.iv The boundary @
 is divided into two disjoint components A and Bwhich have no common limit points, i.e. A[B = @
 and �A\ �B = ;.2These assumptions are standard and natural from a classical point of view:The Lipschitz continuity and the boundedness of 
 assure that there existsa unique solution of the stochastic di�erential equation at least up to the�rst time the boundary @
 is reached, see [83]. The non-degeneracy con-dition on g ensures that the �rst passage time �@
 is �nite w.p. 1 and has�nite expectation. It also implies that L is uniformly elliptic which givesus existence and uniqueness of solutions in the classical sense to the partialdi�erential equations we consider. The condition that �A and �B are disjointimplies that the probability  (x) = P xf�A = �@
g is Lipschitz continuouson @
 and hence C2 on 
.Later, we relax some of the assumptions somewhat.Our main result is the following:Theorem 76: For the di�usion (A.1) under assumption 75, we have thefollowing formula for the conditional expectation of the �rst passage timeExf�A j �A = �@
g = �(x) (x)for any point x 2 
 such that  (x) > 0. Here  (x) equals P xf�A = �@
gand is the unique solution to the equationL = 0;  jA = 1;  jB = 0 (A.2)while � :X! R is the unique solution to the equationL� = � ; �j@
 = 0 : (A.3)2Proof: It is well known [107, chpt. 3] that the assumptions imply that (x) = P xf�A = �@
g is C2 and the unique solution to (A.2); a compactexposition of the necessary results can be found in [40, sec. 3.5]. This in
A.1 The main result 155turn implies that � is well de�ned as the unique solution to (A.3). Further-more, �@
 is �nite w.p. 1 and has �nite expectation which implies that theconditional expectation is well de�ned [83, p. 239].For s 2 R, de�ne the process st = s + t. Let yt = (xt; st); then yt is theunique (up to �@
) solution to the stochastic di�erential equationdyt = � f(yt) dt+ g(yt) dBt1 dt � :We stop the process yt when it hits @
�R (i.e, at t = �@
) and de�ne thereward function for y = (x; s)�(y) = s � �A(x) = � s if x 2 A0 else.De�ne the expected reward�(y) = Ey� (y(�@
))and let y = (x; s) with x 2 
, then�(y) = Ey f� (y(�@
)) j �A = �@
g � P yf�A = �@
g+ Ey f� (y(�@
)) j �B = �@
g � P yf�B = �@
g= Exfs + �A j �A = �@
g � P xf�A = �@
g= (s + Exf�A j �A = �@
g) � (x)De�ne the (backward) di�erential operatorM associated with the di�usiony in the usual way: If W :X�T! R is C2;1 thenMW (y) = Wxf +Wt + 12tr(g0Wxxg)where the right hand side is evaluated at y = (x; s). Then M� = 0 on
 �R. Furthermore, �(x; s) = s for x 2 A and �(x; s) = 0 for x 2 B.We claim that �(x; s) = �(x) + s �  (x). To see this notice that �t(x; s) = (x). Together with M� = 0 and the boundary conditions this impliesthat �(x; 0) = �(x) on �
 from which the conclusion follows.Combining the above expressions yieldsExf�A j �A = �@
g �  (x) = �(x; s)� s �  (x) = �(x)



156 Appendix A. Conditional Expectations of First Passage Timeswhich completes the proof.Example 77: [Brownian motion] Consider the case of scalar Brownianmotion, i.e. X= R and f = 0, g = 1. Let 
 be the open interval (0; 1) andlet A = f1g, B = f0g. Then  (x) = x and �(x) = 13x(1� x2), i.e.Exf�A j �@
 = �Ag = 13(1� x2) for 0 < x � 1 : (A.4)For comparison we have the unconditional expectationEx�@
 = x� x2 for 0 � x � 1 :Notice that the conditional expectation and the unconditional expectationcoincide for x = 1=2 as symmetry predicts.Figure A.1 shows numerical results which are obtained in the followingway: For each initial condition in f0:05; 0:10; : : : ; 0:95g, we perform anumber of simulations until we obtain 100 simulations which exit to theright. Simulations are done with a sample time of �t = 0:0001. For these100 simulations we compute and plot the average �rst exit time (markedwith � in the �gure). The sample means are slightly larger than the con-ditional expectation as computed by the expression (A.4) (the solid line inthe �gure). The di�erence decreases with the sample time �t (althoughthe plot shows results for only one sample time). This is to be expected:When we only observe the di�usion at discrete points of time we only getan upper bound on the �rst exit time, and sample paths starting near x = 0are prone to misclassi�cation. 2A.2 A generalizationA way to generalize the result from the previous section is to see thatthe �rst passage time is a functional on the set of trajectories and thenconsider more general functionals. The functionals we consider in thissection consist of two components: A cumulative term, i.e. an integralalong the trajectory, and a terminal term depending on where the thetrajectory hits the boundary. More speci�cally, we obtain a formula forEx�k(x(�@
)) + Z �@
0 l(xt) dt ��� �A = �@
� :
A.2 A generalization 157
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Figure A.1: Numerical results obtained for scalar Brownian motion



158 Appendix A. Conditional Expectations of First Passage TimesAssumption 78:i : The function l : �
! R is Lipschitz continuous.ii: The function k : @
! R is Lipschitz continuous. 2Theorem 79: For the di�usion (A.1) with the reward functions k, l underassumptions 75, 78, we have the following formulaEx�k(x(�@
)) + Z �@
0 l(xt) dt ��� �A = �@
� = �(x) (x)for any point x 2 �
 such that  (x) > 0. Here  (x) is as before and � isthe unique solution to the partial di�erential equationL� = �l �  ; �jA = k; �jB = 0 : 2Proof: As in the proof for the previous theorem existence and uniquenessof a solution � to the partial di�erential equation is guaranteed; notice thatthe boundary condition k � �A is Lipschitz continuous since k is and since�A and �B are disjoint. Also, the conditional expectation is well de�ned.De�ne yt = (xt; zt) where zt solves the stochastic di�erential equationdzt = l(xt) dt :Existence and uniqueness of a solution to this equation is guaranteed sincel is Lipschitz continuous. Let z0 = z be the corresponding initial conditionand de�ne the reward �(x; z) = (k(x) + z)�A(x)and the expected reward�(x; z) = Ex;z�(x(�@
); z(�@
))Again, we de�ne the backward di�erential operator M associated withy = (x; z) in the usual way: If W :X�Z! R is C2;1, thenMW (y) = Wxf +Wzl + 12tr(g0Wxxg)
A.3 An upper bound under weak assumptions 159where the right hand side is evaluated at y = (x; z). Then M� = 0 on 
and � = � on @
. Following the proof of theorem 76, we see that �z =  on 
 and hence that �(x; z) = �(x) + z �  (x). Finally we notice that�(x; z) = Ex;zf�(x(�@
); z(�@
)) j �@
 = �Ag �  (x)which completes the proof.A.3 An upper bound under weak assump-tionsA weakness of the previous results is that the assumptions are rather re-strictive. In particular, we would like to allow for non-smooth boundaries,degenerate di�usion coe�cients and situations where �A and �B are not dis-joint (although A and B are). This means that we must obtain the desiredresults without having guaranteed existence and uniqueness of solutions tothe involved partial di�erential equations. For instance, if �A and �B are notdisjoint then  cannot be continuous on �
. This motivates us to establishresults which guarantees bounds through partial di�erential inequalities.In this section we use �xt to denote the process xt stopped at @
, i.e.�x(t) = x(t ^ �@
).Assumption 80:i : The domain 
 is open and bounded.ii : The drift coe�cient f and the di�usion coe�cient g are Lipschitzcontinuous on �
.iii : The boundary @
 is reached in �nite time, almost surely, and fur-thermore Ex�@
 <1 for all x 2 
.iv : The boundary @
 of the domain is divided into two disjoint Borelsets A and B, i.e. A [B = @
 and A \B = ;.v : k : @
! Rand l : �
! Rare Lipschitz continuous and non-negative.2



160 Appendix A. Conditional Expectations of First Passage TimesThe assumption that Ex�@
 < 1 is not always immediate; in these situ-ations one can use the su�cient condition that there exists a C2 function� : �
! R such that L� < 0 on �
.We start o� with an elementary lemma; many similar statements can befound in the literature.Lemma 81: Let assumption 80 hold and let � : �
! Rbe C2 and satisfyL � � 0; � � 0; � jA � 1 :Then the bound  (x) � � (x)holds. Conversely, let  : �
! R be C2 and satisfyL � 0;  � 1;  jB � 0 :Then the bound  (x) �  (x)holds. 2Proof: The assumptions imply that � (�xt) is an almost surely continuousnon-negative supermartingale. We then have the inequalitiesP xf�A = �@
g � P xfsupt�0 � (�xt) � 1g � � (x)using Doob's martingale inequality, see e.g. [83, p. 28]. The conversestatement follows similarly after noting that 1 �  (�xt) is a non-negativesupermartingale; here we must use that the process exits 
 in �nite time,almost surely.Theorem 82: Let assumptions 80 hold and let �� be a non-negative C2function �
! Rwhich satis�esL�� � �l � � ; ��j@
 � k � �Awhere � is as in lemma 81. Let  satisfy  �  on �
. Then the boundEx�k(x(�@
)) + Z �@
0 l(xt) dt ��� �A = �@
� � ��(x) (x)holds at any point x 2 �
 for which  > 0. 2
A.4 Numerical issues 161Proof: As in the previous existence of the conditional expectation isguaranteed. Let zt be the unique solution to the stochastic di�erentialequation dzt = l(xt) dtwith initial condition z0 = z 2 R. We let �z(t) denote the stopped process�zt = z(t ^ �@
).De�ne ��(x; z) = ��(x) + z � � (x)Then we have M �� = L��+ z � L � + l � � � 0for any x; z with x 2 
 and z � 0. Notice that if the initial condition z isnon-negative, then so is �zt for t � 0 since l � 0. This implies that ��(�xt; �zt)is a non-negative supermartingale with continuous sample paths, almostsurely, which in turn implies that the inequalityEx;zf��(�x(�@
); �z(�@
)) j �A = �@
g � P xf�A = �@
g � ��(x; z)holds. Manipulating the left hand side we obtainEx;zf��(�x(�@
); �z(�@
)) j �A = �@
g� Ex;zfz(�@
) + k(x(�@
)) j �A = �@
g= z +Ex;0fz(�@
) + k(x(�@
)) j �A = �@
g= z +ExfZ �@
0 l(xs) ds+ k(x(�@
)) j �A = �@
g :We have thus shown thatEx�Z �@
0 l(xs) ds+ k(x(�@
)) ��� �A = �@
� �  (x) � ��(x; 0) = ��(x)holds. The result follows.A.4 Numerical issuesUnder the assumptions 75 and 78 there exists smooth solutions to the in-volved partial di�erential equations and standard methods for their solutioncan be employed.



162 Appendix A. Conditional Expectations of First Passage TimesExample 83: [Two-dimensional Brownian motion] Consider the case n =2, dxt = dBt and let the domain 
 be
 = fx 2 R2 j kxk1 < 1 ^ kxk1 > 14gLet A � @
 be the outer boundary, i.e. A = fx j kxk1 = 1g. The operatorL is then �=2. Using a quadratic grid with a step length of 0.05, wehave discretized the partial di�erential equations using a �nite di�erencemethod. The solutions are seen in �gures A.2 through A.4. 2
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Figure A.2: 2-D Brownian motion: Probability of exit outwardsUnder the weaker assumptions 80 one has to consider carefully if the partialdi�erential equations have solutions in the classical sense. One option is toapproximate the problem with one which satis�es the assumptions 75. Forinstance when �A\ �B 6= ; one may choose to approximate �A with a function
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Figure A.3: 2-D Brownian motion: Unconditional expectation of the �rstexit timewhich is Lipschitz continuous on @
. The weak maximum principle, seee.g. [91, p. 106], is useful for establishing relations between approximatedsolutions obtained in this fashion.An alternative is to search for solutions to the partial di�erential inequal-ities of section A.3 in some �nite dimensional subspace, for instance spunby trigonometric functions or polynomials. If one only requires that theinequalities are satis�ed at some �nite set of points in �
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Figure A.4: 2-D Brownian motion: Conditional expectation of the �rst exittimeA.5 SummaryFor solutions to a stochastic di�erential equation starting is some boundeddomain, we have derived a formula for the conditional expectation of thetime of �rst exit from the domain. The conditioning is with respect tothe event that a given part of the boundary is reached �rst. The formularequires the solution of two elliptic partial di�erential equations. We havealso provided a generalization to other functionals than the �rst time ofexit, and we have established bounds which are expressed in terms of partialdi�erential inequalities.We have concentrated on classical (i.e, C2) solutions to the involved partialdi�erential equations and inequalities as well as classical conditions forexistence and uniqueness of solutions to the equations. Similar results can
A.5 Summary 165be obtained under weaker hypothesis if one employs the notion of viscositysolutions and uses the results of [84]. This is a topic of current research;the results will appear in [112].



166 Appendix A. Conditional Expectations of First Passage Times Appendix BVarious technicalitiesThis appendix contains various proofs and calculations which are not es-sential for the understanding of the results in this thesis.B.1 Proof of theorem 25 on page 60Due to the condition (3.11) we know that there exists parameters �j(t) � 0,j = 1; : : : ;m, such that[A(t); B(t); C(t); D(t)] = mXj=1 �j(t)[Aj ; Bj; Cj; Dj]; mXj=1�j(t) = 1We omit the time argument after signals and use the notationzj = Cjx+DjwOur candidate storage function for � is x0Px. We then getddtx0Px = (x0 w0) � PA(t) + A0(t)P PB(t)B0(t)P 0 �� xw �= (x0 w0)0@ mXj=1�j � PAj +A0jP PBjB0jP 0 �1A� xw �167



168 Appendix B. Various technicalities� mXj=1 �j(x0 w0) pXi=1 di � 0 C 0jI D0j �Qi � 0 ICj Dj �� � � C0jD0j � [Cj Dj ]!� xw�= mXj=1 �j  pXi=1 di(w0 z0j)Qi� wzj �� �z0jzj!= pXi=1 di0@ mXj=1�j(w0 z0j)Qi� wzj �1A � � mXj=1 �jz0jzj� pXi=1 di�(w0 z0)Qi� wz ��� �z0zWe have thus show that the time-invariant function x0Px is a strong storagefunction for the time-varying system � w.r.t. the supply rate Pi disi andhence we may conclude robust stability of the interconnection (�;�).B.2 The �lter ODE for the conditional stateestimateIn this appendix we derive the �lter ODEs (4.13) and (4.14) for the condi-tional worst case state estimate �(i; t) and the associated loss S(�(i; t); i; t).The derivation follows the general procedure of [120].The loss function S(x; i; t) is quadratic in x. This means, that the charac-terization of the worst-case conditional state estimate �(i; t) is@@xS(�(i); i; t) = 0 (B.1)and @2@x2S(�(i); i; t) > 0 :At this point we omit the x and t arguments and adopt the simpli�ednotation Sx for @@xS(x; i; t) and so forth.The cost-to-go and cost-to-come satisfy the PDEs [9, 120]:PxAix+ 12Px� 1
2GiG0i � BiB0i�P 0x + 12x0H0iHix = 0 (B.2)
B.2 The �lter ODE for the conditional state estimate 169and Rt +Rx (Aix+Biu) + 12
2RxGiG0iR0x (B.3)+12x0H 0iHix� 12
2ky � Cixk2 + 12kuk2 = 0 :The PDE (B.2) reduces to the control algebraic Riccati equation (4.5) afterguessing P to be quadratic in x for �xed i. Likewise, the PDE (B.3) is re-lated to the �lter algebraic Riccati quation (4.12): Guess R to be quadraticin x for �xed i, assume stationarity in the sense Rxxt = 0 and consider onlysecond order terms in (B.3). For each i, de�ne Qi := Rxx(x; i), then Qimust satisfy the ARE (4.12).Using S = R�P we get by subtracting (B.2) from (B.3) and rearring termsSt + 12ku+B0iP 0xk2 � 12
2ky �Cixk2 + Sx(Aix+ Biu) (B.4)+ 12
2 (Sx + 2Px)GiG0iS0x = 0 :This must in particular hold for x = �(i; t). Using the stationarity condi-tion (B.1) we then �nd the ODE for the conditional loss (4.14)ddtS(�(i; t); i; t) = 12
2ky �Ci�(i; t)k2 � 12ku+B0iP 0xk2 :If the parameter estimate ^�(t) = argmini Si(t) is well de�ned, then we mayuse the the certainty equivalence control u(t) = �B0^�(t)P 0x(�(^�(t); t); ^�(t))to obtain that the unconditional worst-case loss (for i = ^�(t)) satis�esddtS(�(^�(t); t); ^�(t); t) = 12
2ky � C^�(t)�(^�(t); t)k2and hence is non-decreasing.To obtain the observer equation (4.13), we again follow [120] and di�eren-tiate the stationarity condition with respect to t to getddtSx(�(i; t); t) = 0 , _�(i; t) = � S�1xx S0tx��x=�(i;t) :The expression for Stx is found by viewing (B.4) as a relation between x,t, u and y and di�erentiating with respect to x. Using the stationaritycondition to eliminate the terms including Sx we get:Stx + (u+ B0iP 0x)0(B0iXi) + 
2(y � Ci�)0Ci



170 Appendix B. Various technicalities+��0A0i + u0B0i 1
2PxGiGi�0 Sxx = 0which must hold for all t; u; y at x = �(i; t). Combining, we obtain_�(i; t) = Ai�+Biu+ 1
2GiG0iP 0x+S�1xx 
2C 0i(y�Ci�)+S�1xxXiBi(u+B0iP 0x) :This may also be written as (4.13):_�(i; t) = Ai��BiB0iP 0x+ 1
2GiG0iP 0x+S�1xx 
2C0i(y�Ci�)+S�1xx RxxBi(u+B0iP 0x) Appendix CFrequently used symbolsand acronymsMiscellaneousA0 Complex conjugate transpose of matrix A� A set of dynamic state space systems(perturbations)� Nominal system� Perturbation(�;�) Perturbed system; interconnection of � and ��D Stopping time; �rst exit from domain DFunctions and operatorsArgminx f(x) The set fx j f(x) = inf� f(�)g where f(x) 2 Rargminx f(x) The unique element of Argminx f(x)o(�) A function for which ko(�)k=k�k ! 0 as k�k ! 0Vx Gradient of C1 function V , @V=@xVxx Hessian of C2 function VV �1(A) Preimage of A under V , i.e. fx j V (x) 2 AgLV (x) Backwards operator of an autonomous di�usionLuV (x) Backwards operator of a controlled di�usion171



172 Appendix C. Frequently used symbols and acronymsSets and spaces[a; b]; (a; b); [a; b); (a; b] Closed, open, and half-open real intervalsR; N; Z Real, natural, integer numbersR+;R� Positive, negative real numbers�A; �R+; �R� Closure of setsAo; @A Interior, boundary of set ACo(A) Convex hull of a set A in a linear spaceX State space, typically RnTX; T �X Tangent and cotangent bundle of XL2(X;Y) Lebesque space of square integrable functionsfromXto YH1 Hardy space of complex functions, analyticalin the closed right half planeAcronymsCE Certainty equivalenceFSN Finite signal-to-noise ratioHJ Hamilton-JacobiHJB Hamilton-Jacobi-BellmanHJI Hamilton-Jacobi-IsaacsLMI Linear matrix inequalityODE Ordinary di�erential equationPDE Partial di�erential equationPDI Partial di�erential inequalitySDE Stochastic di�erential equation
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