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Summary

The topic of the present dissertation is robustness and performance issues
in nonlinear control systems.

The control systems in our study are described by nominal models consist-
ing of nonlinear deterministic or stochastic differential equations in a Eu-
clidean state space. The nominal models are subject to perturbations which
are completely unknown dynamic systems, except that they are known to
possess certain properties of dissipation. A dissipation property restricts
the dynamic behaviour of the perturbation to conform with a bounded re-
source; for instance energy. The main contribution of the dissertation is a
number of sufficient conditions for robust performance of such systems.

Since the perturbations in these uncertain models possess several dissipa-
tion properties simultaneously, we study fundamental properties of such
multi-dissipative systems. These properties are related to convexity and
topology on the space of supply rates. For instance, we give conditions
under which the available storage i1s a continuous convex function of the
supply rate.

Dissipation theory in the existing literature applies only to deterministic
systems. This is unfortunate since robust control applications typically also
contain uncertainty which is better modelled in a probabilistic framework,
such as measurement noise. This motivates an extension of the theory
of dissipative dynamic systems to stochastic systems. This dissertation
presents such an extension: We propose a definition and generalize funda-
mental results from deterministic dissipation theory to stochastic systems.

Furthermore, we argue that stochastic dissipation is a natural fundament
for a theory of robust performance of stochastic systems. To this end, we
present a number of performance requirements to stochastic systems which
can be formulated in terms of dissipation, after which we give sufficient
conditions for these requirements to be robust towards multi-dissipative
perturbations.

A final contribution of the dissertation concerns the problem of simulta-
neous Mo, control of a finite number of linear time invariant plants. This
problem is a prototype of robust adaptive control problems. We show that
the optimal (minimax) controller for this problem is finite dimensional but
not based on certainty equivalence, and we discuss the heuristic certainty
equivalence controller.

Resumé (in Danish)

Emnet for denne athandling er robusthed og ydelse (performance) af ikke-
lineare reguleringssystemer.

Reguleringssystemerne er beskrevet af nominelle modeller bestaende af
ikke-linezere deterministiske eller stokastiske differentialligninger 1 et eu-
klidisk tilstandsrum. Disse nominelle modeller underkastes perturbationer
som er ukendte dynamiske systemer om hvilke det dog vides at de besidder
visse dissipationsegenskaber. En dissipationsegenskab indskraenker pertur-
bationens dynamiske opfgrsel ved at patrykke en begraenset ressource, for
eksempel energi. Hovedbidraget i1 denne athandling er et antal tilstrakke-
lige betingelser for robust ydelse af sadanne systemer.

Eftersom perturbationerne 1 disse usikre modeller besidder flere dissipa-
tionsegenskaber samtidigt, studerer vi fundamentale egenskaber af sadanne
multi-dissipative systemer. Disse egenskaber omhandler konveksitet og
topologi pa rummet af tilforselsrater (supply rates). For eksempel opstiller
vi betingelser under hvilke det tilgangelige lager (available storage) er en
kontinuert konveks funktion af tilfgrselsraten.

Den eksisterende litteratur beskriver kun dissipationsteori for determin-
istiske systemer. Det er uheldigt fordi anvendelser af robust regulering
typisk ogsa indeholder usikkerhed som bedst modelleres sandsynligheds-
teoretisk, sasom malest@g]. Det er motivationen for at denne afhandling
udvider dissipationsteorien til stokastiske systemer: Vi foreslar en defini-
tion og generaliserer nogle af de grundliggende resultater fra deterministisk
dissipationsteori til stokastiske systemer.

Derefter argumenterer vi for at stokastisk dissipation er et naturligt udgangs-
punkt for en teori for robust ydelse af stokastiske systemer. Til dette formal

opstiller vi et antal kvalitetskriterier for stokastiske systemer som kan for-

muleres som dissipationsegenskaber, og derneest angiver vi tilstrakkelige

betingelser for at disse kriterier er robuste overfor multi-dissipative pertur-

bationer.

Herudover behandler denne afhandling ogsa problemet om simultan H .,
regulering af et endeligt antal linezre tidsinvariante anlaeg. Dette prob-
lem fungerer som en prototype pa robust adaptiv regulering. Vi viser at
den optimale regulator (d.v.s. minimax-regulatoren) for dette problem er
endelig-dimensional men ikke bygger pa certainty equivalence. Derudover
diskuterer vi heuristisk certainty equivalence regulering.
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Chapter 1

Introduction

The subject of this dissertation lies within the field of mathematical control
theory.

In this chapter we give a broad introduction to the field of mathematical
control theory. Those among the readers who are more interested in the
specific contributions of the dissertation may prefer to jump to section 1.5,
which outlines the dissertation, and from there to the succeeding chapters
which presents the new material.

1.1 What is control theory?

The subject of control theory is the interconnection of the dynamic systems
¥ and K in figure 1.1. Here ¥ is a given dynamic plant (a mathematical
model of a physical system) and K is the controller (which is also a math-
ematical model of a physical system). The objective is to design the con-
troller K, i.e. to find a suitable K, such that the interconnection has some
desirable properties. These properties typically describe how the intercon-
nection responds to an exogenous input w and are quantified through the
output z. The controller affects the response by choosing the control signal
u. The controller has at least partial access to information about the state
of the plant, quantified by the measurement signal y.

11



12 Chapter 1. Introduction

K

Figure 1.1: A control problem

The questions addressed by control theory are analysis questions and syn-
thesis questions. Analysis questions investigate properties of the intercon-
nection for a given controller K, while the synthesis question is how to
choose the controller K such that the interconnection has certain proper-
ties. The motivation for considering analysis questions is twofold: First,
analysis questions are most often much easier to answer than synthesis
questions,; but good answers to analysis questions often enable the control
theorist to find answers to the corresponding synthesis questions. Second,
the control engineer may have found a candidate controller by solving one
specific synthesis question and then wish to know if this controller provides
satisfactory answers to other analysis questions.

In order to answer analysis as well as synthesis questions, control theory
employs several disciplines from the field of applied mathematics. Qual-
itative and quantitative theory for deterministic and stochastic dynamic
systems is essential as is optimization theory. In addition, statistical infer-
ence or deterministic estimation theory is necessary to address problems
where the measurements y contain only incomplete information about the
state of the plant X.

The resulting theory depends greatly on the specifics of the interconnec-
tion in figure 1.1: If the systems are linear or nonlinear, deterministic or
stochastic, and if the dynamic systems are described in continuous or dis-
crete time. The next section describes these differences in some further
detail, as well as clarifies and motivates how the present dissertation is
placed in this discourse.

1.2 Paradigm and state of the art 13

1.2 Paradigm and state of the art

Robustness or performance?

While most control theorists and engineers agree that robustness and per-
formance are desirable properties of a controlled system, and that as a
result analysis and synthesis must address these issues, there is much less
consensus regarding the exact meaning of these properties and their rela-
tion.

Performance measures the quality of the controlled system: How fast, how
accurate or how effective is the system. In this work we use the term per-
formance to describe how a cost, accumulated during the operation of the
system, depends on the initial state of the system, or on exogenous deter-
ministic or stochastic disturbances. The lower cost, the better performance.

The issue of robustness arises because the mathematical model, which is
the object of the mathematical analysis, never fully describes the physical
control system. Loosely, robustness means that the mathematical analysis
predicts the behaviour of the physical system with sufficient accuracy. We
assign a much more precise meaning to the word robustness: We model the
physical system by a family of mathematical models (typically obtained as
an interconnection of a nominal model and an unknown perturbation), and
say that a property is robust if 1t holds for any model in this family.

An often heard statement is that one must trade off robustness and per-
formance: For instance, if one wishes a fast response of a servo system,
one must accept that the system is sensitive to parasitic dynamics. We
do not disagree that such trade-off considerations between sensitivity and
nominal performance are helpful. However, we prefer to discuss the issue:
How fast a response can we obtain in presence of parasitic dynamics? Thus
the objective is to guarantee a level of performance which is robust towards
a given family of perturbations. In summary, the question Robustness or
performance? should be answered: Robust performance!

Linear or nonlinear theory?

A seemingly never-ending controversy among control theorists concerns lin-
ear versus nonlinear theory. Advocates of nonlinear theory emphasize that
nonlinear models provide more accurate descriptions of technical systems
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which makes it plausible that better control systems can be obtained with
nonlinear theory. On the other hand, nonlinear theory quickly becomes
so involved that the designer can be forced to oversimplify the problem,
for instance by neglecting certain dynamics, and in these situations it is
plausible that linear theory is more effective. Also, in industrial applica-
tions 1t cannot be neglected that nonlinear control theoretic investigations
consume great resources which perhaps would be more beneficial if allo-
cated to complete different parts of the design project. A fact that keeps
the controversy going is that some fields of applications manage quite well
with linear models whereas nonlinearities are essential to the problems of

other fields.

Tools for analysis and design of controllers for linear plants are well devel-
oped and implemented in commercial software packages such as MATLAB.
The engineering appeal of frequency domain techniques is an important
factor, as is the fact that it is possible to give standardized recipes which
work for most linear problems. There is an abundance of methodologies,
ranging from parameter tuning in PID-controllers to p-synthesis [128]. For
engineers who wish to pose their own non-standard design criteria, the
framework of linear matrix inequalities is an option [20, 19]. Important
open problems within the linear paradigm, which are topics of current
research, concern mixed and multi-criteria problems, the problem of de-
signing controllers of fixed structure, and interdisciplinary topics such as
simultaneous design of system and controller.

Regarding nonlinear control theory significant progress has been made but
a fully operational general theory is still far away; indeed 1t 1s plausible
that such a theory is utopian. The field of Lyapunov stability [74, 59]
illustrates the hurdle: The theory is fairly complete from an analytical point
of view, but the problem of computing Lyapunov functions for a general
system is overwhelming. The same discussion applies to optimal control and
differential games where it is known as Bellman’s curse of dimensionality:
The computational complexity grows exponentially with the dimension of
the underlying state space. Despite increased computational power and
improved numerical methods [65, 11] we cannot expect to be able solve all
control problems by direct solution of partial differential equations on state
space: It is not unusual for technical control problems to have 75 states as
n [18]. One may imagine the effort required to compute, implement and
understand a nonlinear controller feeding back a state of this dimension.

As a consequence a myriad of special cases have been investigated and

1.2 Paradigm and state of the art 15

sometimes the special structure enables progress. For instance, within the
last decades the differential geometric framework [51] has evolved. The
associated tools such as feed-back linearization are valuable, although they
are prone to robustness problems and require special structure. Backstep-
ping [63] and other recursive design techniques provide a methodology for
systematic design, but requires considerable computational effort and a
certain skill of the designer. Inverse optimality [36] is another promising
concept; with this approach one solves the linearized problem at first and
then constructs a nonlinear control law such that certain robustness prop-
erties of the linearized system hold globally for the nonlinear system.

With this state of the art, researchers and engineers must in each project
choose pragmatically between the linear and the nonlinear paradigm. There
is little doubt that nonlinear theory is becoming increasingly important as
models grow in fidelity and complexity, as desired operating regions grow
larger, and as better controller hardware allows more complex controller
algorithms to be implemented. What is more, many concepts and ideas
are clearer for nonlinear systems than for linear systems where matrix ma-
nipulations tend to obscure the picture; this is perhaps most evident in the
field of stability and of optimal and H, control. Therefore, our ambition
in this dissertation 1s to develop control theory which is based on principles
applicable to general nonlinear systems.

Time domain or frequency domain?

Within the linear paradigm, a great strength of control theory is the ability
to combine considerations in frequency domain and time domain. Unfortu-
nately, frequency domain tools are less than effective in a general nonlinear
context where even the elementary concept of bandwidth is problematic.
It remains a formidable project to find suitable substitutes.

Therefore, this dissertation considers systems in time domain exclusively.
Without making a virtue out of necessity, an advantage of time domain
techniques is that they appeal to that intuition for dynamic systems which
engineers develop by studying physical systems. Not only does this facili-
tate the study and teaching of control theory, but it is also advantageous in
industrial environments where a sharp distinction between controller and
plant cannot be maintained, and where the control engineer works in an
interdisciplinary team. A splendid example where experience from physics
is of great value in control theory is the field of Lyapunov stability [74],
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calculus of variations and dynamic optimization [41, 3], which originately
concerned mechanical and in particular astronomical systems, but which
in the last decades have been developed by control theorists [12, 21, 122].

Deterministic or stochastic representation of uncertainty?

The explicit consideration of uncertainty lies at the core of control theory.
Uncertainty may be represented by unknown parameters, unknown inputs
or uncertain dynamical elements, and although much recent work [26, 60,
68, 69, 86, 98, 106, 129, 132] is devoted to mixed problems combining two
or more types of uncertainty, there does not yet exist a general operational
framework within which all these representations of uncertainty can be

embedded.

Models of uncertainty can be divided into two groups: The stochastic ones,
i.e. those that build on an underlying probability space, and the deter-
ministic ones, which typically result in worst-case considerations. It is not
uncommon for control theorists and engineers to have a very firm prefer-
ence for one of the two groups, and occasionally this results in attempts to
demonstrate that the one group can cover all models of uncertainty.

This dissertation is based on the pragmatic point of view that control theory
should, to the widest extent possible, allow for both groups of uncertainty.
With such a theory at hand, the control engineer can in each application
choose to use deterministic or stochastic models, or both. This becomes
increasingly important as control objects grow in complexity, since a com-
plex control problem may contain both elements which require stochastic
descriptions and elements which are suited for deterministic worst-case con-
siderations.

1.3 Two recent advances in control theory

In this section we outline two recent developments in the field of control the-
ory which have, too, provided background for the present work: Nonlinear
Hoo control theory and semidefinite programming. In short, nonlinear H .,
theory is an analytical framework for addressing issues of robustness of non-
linear systems towards dynamic uncertainty. Semidefinite programming is
a special case of convex optimization which can be used as a computational
tool in control problems.

1.3 Two recent advances in control theory 17

1.3.1 Nonlinear H., control

One of the important products of control research of the 1980’s was the for-
mulation and solution of the linear ., control problem. The background
for this work was the robustness of LQG (Linear dynamics, Quadratic cost
functions, Gaussian noise distributions, [66, 2]) controllers - robustness is
here in the sense of the classical gain and phase margins. It was known that
linear quadratic state feedback regulators provide universal robustness gain
margins of (%, oo) and phase margins of +60 degrees [1, 93]; an impres-
sive result which can be generalized in several directions, [118, 120]. This
led to the question if similar universal margins existed for LQG controllers
where the state 1s not available for feedback. Unfortunately, this is not the
case [27]; optimal controllers are not necessarily robust. This motivated the
formulation [127] of the H o, control problem. Here the design objective is to
guarantee stability in presence of perturbations with H., norm less than a
specified number; this definition of robustness implies gain and phase mar-
gins, but is more general and more appealing from a mathematical point of
view. A later generalization was the p superstructure which allows several
uncertain elements at different places in the closed-loop system; see [128]
and the references therein.

Although the H., framework originated in the frequency domain,' the
celebrated DGKFT solution [29] exploited the fact that the Ho, norm of a
transfer function is also the £o-gain of the associated input/output operator
and thus relied on time-domain techniques, in particular completion of the
square under an integral. This solution hinted towards two-player zero-sum
differential games, thus suggesting that it would be possible to extent the
Hoo problem to nonlinear systems. An early development in this direction
was [6]; the textbook [9] contains a large number of such results, mainly
as extensions to the linear theory and focusing on different patterns of
information available to the players.

Further insight into the nonlinear H., problem was achieved in [119, 120]
by stressing the connection to the theory of dissipative systems [124] and
to that of Hamiltonian dynamics [3]. This also brought the field in touch
with that of passive systems which has played a central role in modern
control theory; bounded £;-gain and passivity constitute by now the most
carefully investigated dissipation properties.

I The symbol H s refers to the Hardy space [50] of transfer functions G : C — Cm X7
which are analytical in the right half plane, equipped with the supremum norm ||G||cc =
sup, e 3G (iw).
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At the time of writing, there exists a well-established solution to the state
feed-back nonlinear Ho, control problem in terms of a Hamilton-Jacobi-
Isaacs partial differential equation or inequality, which results from apply-
ing dynamic programming to the differential game. Nevertheless, issues
related to the smoothness and properness of the value functions have yet
to be worked out; here the notion of viscosity solutions [23] to partial differ-
ential equations has proved effective [7, 105]. Also, the numerical burden of
actually computing bounds on value functions is still prohibitive except for
problems with very low-dimensional state spaces; up to four, say, depending
on the system at hand. Thus Bellman’s curse of dimensionality also applies
to these problems. As the paradigm of robust control includes a use of high-
order dynamic weights we conclude that there is a need for heuristics and
sub-optimal strategies which can deal with higher-dimensional problems.

Another remaining obstacle for the practical application of nonlinear H
control theory is the design of state estimators in the situation where the
state is not directly measurable, rather the controller is a causal map from a
measured signal y to the control signal u. While static or finite-dimensional
controllers may be optimal in special situations, [120, 121], it does not in
general suffice to make use of a state observer of the same dimension as
the control object [120]. In fact, general output feedback problems are very
difficult and not fully resolved; not with respect to theoretical analysis and
certainly not with respect to practical implementations. The most general
framework for approaching these problems is that of the information state,
see [55] and, in the context of stochastic optimal control problems on finite
state spaces, [16]. With this technique the output feedback problem is first
reduced to a state feedback problem. The state in this reduced problem is
the information state which is a real-valued function on state space (termed
the cost-to-go function by other authors, e.g. [25, 120, 9]) and hence the
new problem requires infinite-dimensional dynamic programming.

In some situations the information state can be restricted to a finite-
dimensional function space which facilitates the problem, see e.g. [56] or
chapter 4 in this dissertation. In other situations one can @ prior: guarantee
that a certainty equivalence principle holds [54, 14]. This reduces the com-
plexity of the solution so that only two partial differential equations must
be solved; one off-line (which governs the original problem with full state
information) and one on-line (which governs the state estimation problem).
While certainty equivalence principles thus simplifies control problems, it
can be argued that certainty equivalence architectures lack the most in-
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triguing feature of control with incomplete information: That additional
information can be obtained by proper use of the control signal. This is
the effect of probing, or duality.

1.3.2 Semidefinite programming and LMIs

A framework which has attracted much attention among control researchers
relies on numerical solution of a special type of convex optimization prob-
lems, namely semidefinite programs. These optimization problems consist
of optimizing a linear functional

inf e’z
xr

over all x € R™ which satisfy a linear matriz inequality (LMI) constraint
A(x) <0, (or A(z)<0 )

where ¢ € R™ is a fixed co-vector and A : R™ — R™*™ ig an affine function
taking symmetric matrix values. Such semidefinite programs are convex?
and 1t is feasible to solve them numerically; powerful polynomial-time algo-
rithms based on interior-point methods exist [82]. See also [13] for further
references.

The surprising fact is that a large number of performance requirements
in linear control theory can be formulated as linear matrix inequalities,
see [19]. Thus semidefinite programming can be used to solve especially
analysis problems but also some of the classic design problems, notably
Ho and H., synthesis. The simplest example is the well-known stability
result [74] that, given a real matrix A € R™*" the existence of a real
symmetric Lyapunov matrix P = P’ such that

-P 0

0 pAtap | <Y

is necessary and sufficient for A to have all eigenvalues in the open left
half of the complex plane. In chapters 3 and 6 we demonstrate that linear
matrix inequalities provide the natural tool to deal with robustness analy-
sis in linear systems where uncertainty is represented by multi-dissipative
perturbations and finite signal-to-noise ratios.

?Meaning, we minimize a convex functional over a convex set.
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The limitation of the LMI approaches to control design is that for the ma-
jority of controller design problems it is difficult or impossible to make the
problem convex by variable substitutions. Rather, the resulting problems
are bi-linear matrix inequalities which in general are non-convex. Numer-
ical solution of bi-linear matrix inequalities is a topic of current research;
see [13] and the references therein.

Finite-dimensional convex optimization, and in particular linear matrix
inequalities, can also be employed as a computational tool for nonlinear
control problems. Consider as an example the problem of finding a non-
negative function V' : R® — R which satisfies the Hamilton-Jacobi inequal-
ity on R"™

oV

S @gla)w — Juf? + (@) <0

sup 6—V(l‘)f(l‘) +

weR™ 6l‘

The existence of such a storage function V implies (and is under certain
conditions equivalent to) that the system

#(t) = f(2(t)) +g(e())w ,  z(t) = h(z(1))

has Lo-gain less than or equal to 1. Here f(z) € R™ and g(x) € R"*™.
The set of those functions V' which satisfies this inequality i1s convex; in
fact the inequality is equivalent to

leA% 2 18V

S+ 5559

TR <0 . (1.1)
3(5:9) -1

A computational strategy for this infinite-dimensional convex feasibility
problem is to search for a V' of the form

Vix) = Z a; Vi(z)

where V; are basis functions, and require that the inequality (1.1) and V" > 0
holds only at a finite set of points x;, j = 1,..., M. Inserting V =>", oy V;
in (1.1) and evaluating at #; leads to M linear matrix inequalities in «;

N N
Dim1 O %‘;’f‘F IR DAY %‘;lg ]

N
3(Ci i 5rg) —1
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which must holds together with with the M constraints

N
> aiVi(z) >0
i=1

Thus LMI solvers such as [38, 32] may be used to search for storage func-
tions V', and hence to compute the £o gain of nonlinear systems. It can
be argued that other numerical methods based on partial differential equa-
tions would be at least as effective for this particular problem of L5 gain
analysis, but this dissertation contains numerous examples of nonlinear
analysis problems which can be solved by convex optimization but not
with equations. Admittedly, realistic control problems quickly lead to so
large problems that the existing numerical tools for semidefinite programs
will be ineffective, but as these tools are improving rapidly we expect that
the approach may have practical applicability in the not so far future.

1.4 Problem formulation

Consider the control problem depicted in figure 1.2. The problem is to find
a controller K in some set which maps measurements y to control signals
u such as to achieve some design specifications on the output z. X(6)
is a plant which may be nonlinear and stochastic. The exogenous input
w, the parameters 6, the dynamic perturbation A and the static nonlinear
function ¢ represent uncertainty. All these uncertain elements are unknown
but known to belong to some specified set. Additional uncertainty may be
introduced by stochastic disturbances internal to X(9).

With the current state of the art, this control problem is much too am-
bitious. The far more modest objective of this dissertation is simply to
develop a framework within which this control problem can be formulated.
Furthermore, to approach various subproblems, for instance by excluding
some of the uncertain elements and considering analysis problems rather
than synthesis problems.

As a starting point the theory of dissipative systems (in the sense of
Willems [124] and Hill and Moylan, e.g. [46]) was adopted. See section 2.2
on page 28 below for an introduction and further references to dissipation
theory. This is a natural choice in that problems of robust performance are
easily formulated in terms of dissipation. Furthermore, dissipation theory
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Figure 1.2: The ultimate control problem

assisted major theoretical achievements reached during the first half of the
nineties in the field of nonlinear H ., control, which can indeed be seen as
one of the subproblems mentioned above (see section 1.3.1 above).

Our research concentrated on three subproblems:

1. The problem arising by only considering a dynamic perturbation A
which 1s known to possess several dissipation properties.

2. The problem arising when only considering uncertain parameters and
robustness in the H .. sense.

3. The problem of incorporating stochastic noise signals in a dissipation-
based framework for robustness.

The first item led to the study of multi-dissipative dynamic systems, see
chapter 2, and to the study of robustness towards multi-dissipative pertur-
bations, see chapter 3. The second item is that of adaptive Ho, control or
robust adaptive control; a topic which has been researched intensively over
the past few years by several groups. Chapter 4 presents some new contri-
butions to this topic, especially regarding the role of certainty equivalence,
which were obtained by making the further simplification that the param-
eter 6 belongs to a known, finite set. Finally, the last item motivated the
notion of dissipative stochastic systems, a class of systems which is defined
and investigated in chapter 5, and the investigation of a class of robust
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stochastic control problems, namely those which involve multi-dissipative
perturbations, see chapter 6.

1.5 Outline of the dissertation

The dissertation is divided into two parts. The first concerns determin-
1stic models. This means that the nominal models are deterministic, i.e.
ordinary, differential equations, and that uncertainty is represented by per-
turbations which belong to a specified set. The primary novelty of this
part 1s the study of systems, in particular perturbations, which are dissi-
pative with respect to several supply rates. Although dissipative systems
are well-studied objects [124, 53, 122], multi-dissipative systems have not
been discussed previously.

In part I, chapter 2 on multi-dissipative dynamic systems is devoted to
fundamental properties of these systems; these properties concern convexity
and continuity associated with the supply rates. Chapter 3 on robustness
towards multi-dissipative perturbations develops sufficient conditions for
robust stability and performance of systems subject to such perturbations.
The conditions involve certain weights, or multipliers, associated with the
dissipation properties and the results are shown using state-space time-
domain techniques in the tradition of Lyapunov [74, 59]. The results have
some conservativeness inherent which is illustrated by a simple example
where non-conservative conditions can be obtained using an input-output
approach. Chapter 4 on simultaneous He, control assumes that the plant
to be controlled is unknown, but belongs to a given finite collection. This a
prototype of an adaptive H ., control problem and contains the problem of
duality which remains a hurdle in stochastic adaptive control. We obtain an
implicit solutions in terms of a partial differential equation, and discuss the
structure of its solution as well as heuristic certainty equivalence control.

Part II concerns stochastic models where the nominal systems are described
by stochastic differential equations in the sense of It6. The aim of this part
is to develop tools for problems which include both stochastic and deter-
ministic representations of uncertainty. To this end, we develop in chapter 5
a theory of dissipation in stochastic systems, generalizing the framework of
Willems [124]. We show that dissipative stochastic systems are as well-
behaved as their deterministic counterparts; for instance dissipation has
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implications for stability and is preserved under interconnections of sys-
tems. This is exploited in chapter 6 on robustness of stochastic systems,
where performance as well as uncertainty is described in terms of stochas-
tic dissipation properties. Examples include H, performance as well as
disturbances with finite signal-to-noise ratios in the sense of Skelton [103].
The perspective of this framework is that 1t allows a modular approach to
robustness analysis, using convex optimization as a numerical tool.

Concluding remarks and suggestions for future work are given in chapter 7.

Appendix A concerns autonomous stochastic differential equations and de-
rives a formula for the conditional expectation of first passage times. The
conditioning is here on a specified part of the target set being reached be-
fore the remainder. Such conditional expectations are natural performance
measures for control systems in certain applications. Nevertheless, the ma-
terial is somewhat peripheral to the robust performance questions which
are the main topic of the dissertation; hence it has been placed in appendix.

Appendix B contains a few technicalities. These are long but elementary
computations needed in proofs in the body of the dissertation. Appendix C
contains tables of frequently used symbols and acronyms.

The appendices are followed by a bibliography and an index.

1.6 Prerequisites of the reader

Part I in this dissertation assumes that the reader has had some exposure
to system theory, linear H, control and nonlinear deterministic optimal
control, e.g. at the level of [67, 128]. Part IT assumes in addition some
familiarity with stochastic differential equations, e.g. [83].

Part 1

Deterministic models

25



Chapter 2

Multi-dissipative dynamic
systems

We consider deterministic dynamic systems with state space
representations which are dissipative in the sense of Willems [124]
with respect to several supply rates. This property is of inter-
est in robustness analysis and in multi-objective control. We
show that under certain assumptions, the dissipated supply
rates form a closed convex cone. Furthermore we show con-
vexity and semi-continuity properties of the available storage
and required supply as functions of the supply rate.

2.1 Introduction

Dynamic systems which are dissipative in the sense of Willems [124] appear
in several areas of control theory. Roughly speaking, a system 1s dissipative
if it 1s unable to produce a specified quantity, such as energy. The frame-
work 1s applicable to large-scale systems and robustness problems because
dissipativity is preserved under interconnections of systems and because
dissipativity for autonomous systems implies stability. Indeed, the frame-
work is a natural extension of Lyapunov theory to input/output systems.
Although the notion of dissipativity is a quite general one, most attention

27
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has been given to two special cases: passive systems and systems with

bounded L5 gain.

In this chapter we consider deterministic dynamic systems which are dissi-
pative in the sense of [124] with respect to several supply rates. Such multi-
dissipative systems are interesting from a control perspective for two rea-
sons: It may be a destgn objective that a system should be multi-dissipative,
for instance that the closed loop has small gain and that the controller is
passive. Secondly, uncertain dynamic elements in the system may be mod-
eled as multi-dissipative perturbations. For instance, consider a mechanical
system containing two parasitics, each of which is passive and has small
Lo gain. This results in a total of four dissipation properties which the
parasitics satisfy together. Such information can be used to show robust
stability and performance of the overall system.

Although much literature has been devoted to the topic of systems which
are dissipative w.r.t one supply rate, it appears that simultaneous dissipa-
tion properties have not been studied. In this contribution we show that
convexity properties appear nicely when several supply rates are considered
at once; for instance, the set of supply rates w.r.t. which a system is dissi-
pative is a convex cone, and for a fixed initial state, the available storage
is a convex lower semi-continuous function of the supply rate (see below
for definitions and exact statements). These properties are important both
from an analytical and a computational point of view.

The chapter is organized as follows: In section 2.2 we summarize some
definitions and properties associated with dissipative systems, mostly fol-
lowing [124]. Section 2.3 presents our new results for systems which are
dissipative with respect to several supply rates while section 2.4 offers some
conclusions.

2.2 Preliminaries

We consider dynamic systems X defined by ordinary differential equations
in state-space:

N/
&3-
—_
o~
=

|

f(z(t), w(t)) (2.1)
2ty = glz(t), w(t))

Here, the system has input w(t) € W, output z(t) € Z and state z(t) € X,
and the spaces X, W and Z are Euclidean. We restrict the input signal
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w(-) to a signal space W which is chosen such that the differential equation
defines a state transition map ¢(z, ¢, w(-)): If z(-) solves the equation, then

(t) = ¢(x(0), ¢, w(-)).
Associated with the system we have a supply rate s © W x Z — IR which

describes a flow of some quantity into the system. When the initial state
zg and the input w(-) is clear from the context we use the shorthand

s(1) = s(w(t), 9(¢(xo, 1, w(-)), w(t)))

We do not wish to dwell on technicalities regarding existence, uniqueness
and regularity of state trajectories and supplies. We hence simply as-
sume that the input space W is chosen such that ¢(xg,t, w(-)) is a well
defined semi-group, continuous in ¢, consistent with zg, causal in w(-) and
such that all resulting signals are measurable locally bounded functions'
of time. Furthermore W must be closed under switching to guarantee
that the principle of optimality holds. These assumptions are for instance
met if f: X x W — TX is Lipschitz continuous, ¢ : X x W — Z and
s: W x Z — R are locally bounded and measurable, and if W is the set of
piecewise continuous locally bounded signals.

We remark that one could avoid the differential equations all together and
define the dynamic system by ¢, see [124]. One can also define dissipation
for input-output systems, see [47].

Our notion of dissipation is the original one of Willems [124]:

Definition 1: A dynamic system X is said to be dissipative with respect
to the supply rate s if there exist a storage function V : X — R, such
that for all time intervals [0, 7], initial conditions zo and inputs w € W the
dissipation inequality

V(z(T)) < V(x(0)) +/0 s(t) di (2.2)

holds. ad
We use the following formulations interchangeably: X is dissipative w.r.t.
s; X dissipates s; s is dissipated by X.

The reader is encouraged to always keep the energy interpretation in mind:
s denotes an (abstract) energy flow into the system and V' denotes the
energy stored in the system.

LA function is said to be locally bounded if the image of any bounded set is bounded.
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We remark that James has proposed a slightly different definition in [53]
where the storage function is required to be locally bounded. It is then
possible to restrict attention to lower semi-continuous storage functions
which are shown to be exactly the non-negative viscosity solutions in the
sense of [23] to the differential formulation of the dissipation inequality

Yw e W: Vi(z)f(r,w) < s(w,g(z,w)) (2.3)

which must hold for all # € X. The two definitions coincide when the system
is locally controllable; then all storage functions are continuous [47, 7].

In many situation it is possible to use the storage function as a Lyapunov
function to show various stability properties [124]. For instance, assume
that V" attains an isolated local minimum at some point z; and is continuous
in a neighbourhood of zy and that w(-) is chosen such that s(-) < 0, then
z(-) = xp is a Lyapunov stable solution.

v Y
2

)

Figure 2.1: Feedback interconnection of dissipative systems

If a collection of dissipative system components are connected in a suitable
fashion, then the resulting system will be dissipative as well; as storage
function one can use the sum of the storage in each component. This
statement seems obvious if one keeps the energy interpretation in mind;
however there are a few technical requirements [124]. The simplest such
statement is as follows: Assume that the system X; in figure 2.1 dissipates
the supply rate si(v,y) + s2(w, z) and that Xy dissipates —ss(w, z), then
the interconnection (X1, Xs), which is a system with input v and output
y, dissipates s1(v,y). Here we have assumed that the interconnection is a
well defined dynamic system with a state space representation. In fact a
repeated use of this simple statement is sufficient for our purposes.

Sometimes it 1s useful to consider strict dissipation inequalities,; i.e. to ask
if the system is dissipative w.r.t. s(w,z) — a(z) for some suitable non-
negative function . This is particularly relevant when one is interested in
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time constants associated with the system, in robustness w.r.t. perturba-
tions in dynamics or in supply rate, or in stronger stability properties than
Lyapunov stability. In particular we follow [99] and say that the system is
strictly output dissipative w.r.t. the supply rate s iff 1t is dissipative w.r.t
s —¢|z|? for some constant ¢ > 0. This property is of interest in Lo stability
and performance analysis.

The available storage and the required supply

A dissipative system will in general have many different storage functions
for each supply rate, but two are of special interest. First we follow [124]
and define the available storage

T
Va(z) = sup / —s(t) dt
w(-),TJ0

where the integral is along the trajectory starting in z and corresponding
to w(-). Tt is easy to see [124] that the available storage is finite everywhere
if and only if the system is dissipative, in which case it is in itself a storage
function and satisfies V,(z) < V(x) for any other storage function V(-).
Furthermore, the available storage has infimum 0 (to see this, let V' be a
storage function, then so is V(2) —inf; V'(£) which implies V,(z) < V(z) —
inf, V(€) and hence inf, V,(2) = 0). On the other hand, the infimum needs
not be attained; consider as an example a system of two electrons moving
frictionless in space subject to an external input force u. The supply is
the energy delivered by u, the unique storage function is the energy in the
system. Minimum storage is found in the limit as the electrons come to
rest infinitely far from each other.

Secondly, we define the required supply as the least possible supply which
can bring the system from a state of minimal available storage to the desired
terminal state. More precisely:

T
Vi(z) = 1nf / s(t) dt
( ) v()w(),T 0 ()
where the trajectory x(-) must be consistent with w(-) and furthermore
satisfy V4 (2(0)) = 0 and #(7") = #. When no such trajectory exists we
define V. (z) = oo. The required supply satisfies V. (z) > V(z) for any
storage function V' which has been normalized so that V(z) = 0 whenever
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Va(x) = 0. Furthermore, if V() is finite everywhere (i.e. the system is
dissipative, there exists at least one point of minimum available storage and
any state is reachable from such a point) then V;(z) is in itself a storage
function.

We remark that it is possible to give a more general definition which does
not assume the existence of a point of minimum available storage; we shall
not pursue this. Also, the reachability assumption will be used frequently
in the following. In some situations where it does not hold it may be
advantageous to redefine the state space of the system to contain exactly
those states which are reachable.

Our definition of the required supply differs slightly from the one of Willems
[124]: In this reference infimum is taken over trajectories which start in a
fixed, specified point z(0) = «* with Vg(2*) = 0. In contrast, we allow
z(0) to vary as long as V4 (2(0)) holds. We believe our definition is more
suitable when multiple points of zero available storage exist, for instance
several equilibrium points. A consequence of our definition is that any x

which satisfies V,(#) = 0 also satisfies V; (z) = 0.

Sometimes we use the notation Vg (x, s) and V. (z, s) to stress which supply
rate we are referring to. We remark that the availabe storage and the
required supply are viscosity solutions to differential dissipation equalities
corresponding to the inequality (2.3), provided that they are continuous
and under certain assumptions [7]. See also the example in section 5.7 on
page 116 below.

2.3 Properties of multi-dissipative dynamic
systems

In this section we consider a system X of the form (2.1) which is dissipative
with respect to more than one supply rate. We investigate the set of supply
rates which are dissipated by the system and we show several properties
which are related to the convexity of this set.

It was noted already in [124] that the storage functions for a dynamical
system with respect to a single supply rate form a convex set. For multi-
dissipative systems this fact extends easily to the following:

Proposition 2: Let V be a linear space of functions X — R and let S
be a linear space of supply rates W x Z — R. Then those pairs (V,s) for
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which V is a storage function w.r.t. the supply rate s form a convex cone,
le.

{(V,s) € VxS |V >0 and (V,s) satisfy the dissipation inequality (2.2) }

1s a convex cone. Furthermore this set is closed with respect to pointwise
(in X) convergence of storage functions V' and local uniform convergence
(over W x Z) of supply rates s. A

Regarding the last closedness statement, one could have considered several
different topologies on the space 8§ of supply rates. Throughout, we shall
restrict attention to the topology corresponding to local uniform conver-
gence over W x Z; this mode of convergence appears to be most useful in
applications. We recall the standard definition:

Definition 3: We say that s; — s locally uniformly if, for every compact
subset ©Q of W x Z and every € > 0, there exists an N > 0 such that
SUP(y,z)eq |8i(w, 2) — s(w, z)| < e fori > N. O
We remark that if s; — s locally uniformly, then sup,¢po 7y [5:(t) —s(t)] = 0

for any finite T' and any trajectory which satify our standing assumption
that all signals are locally bounded functions of time.

The proof of proposition 2 is a quite straightforward exercise of the machin-
ery of dissipation theory; we include it for the convenience of the reader.

Proof: [of the proposition] Too see that the set is a convex cone, let
the system be dissipative w.r.t. the supply rates s; and s» with storage
functions Vi and V5, respectively. We must then show that A1 V) + A Vs
is a storage function with respect to Ay1s; + Agsa for any A, Aa > 0. To
this end, let the initial state #(0), the input w(:) and the final time T be
arbitrary; then the dissipation inequalities

Vi@ (T)) < Vi(2(0)) + / si(t) dt

hold for ¢ = 1,2. Multiply these inequalities with A1, Ay > 0 and add the
two to obtain

2

> AVi((1) < ZAM(r(O)H/O D Aisilt) dt

i=1 i=1 i=1

which says that A1 V1 4+, V5 is a storage function with respect to Ays;+Aoss.
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To see that the set is closed, let V; — V pointwise in X and let s; — s
locally uniformly over W x Z. Consider an arbitrary trajectory such that

Vi(a(T)) < Vi(x(0)) + / (1) dt

Then we have fOT si(t) dt — fOT s(t) dt due to local uniform convergence
of s; since all signals by assumption are bounded on the bounded interval
[0,T]. Combining with pointwise convergence of Vj(xz(-)) we get

V(z(T)) < V(x(0)) +/0 s(t) di

which should be shown. [ |

We see from proposition 2 that if the system dissipates any supply rate in
a given set S C §, then it 1s dissipates any supply rate in the convex conic
hull of S. This was also noted in [45].

An interesting question is if the set of dissipated supply rates is closed
under some given topology on the space & of supply rates. For instance,
in £»-gain analysis one considers supply rates s, (w, z) = v*|w|* — |z|? and
define the La-gain 4* as the infimum over all numbers v > 0 such that the
system is dissipative w.r.t. s,. The question if the system is dissipative
w.r.t. sy« hence arises naturally. In this case it is [120], but the question
has not been considered for more general families of supply rates. Notice
that the closedness shown in proposition 2 does not answer this question.

A first result in this direction is obtained with the notion of a cyclo-
dissipative system:

Definition 4: The system X is cyclo-dissipative w.r.t. the supply rate s

if
T
/ sty dt >0
0

for any T' and any pair w(-), z(-) such that #(0) = «(T). a

This definition deviates slightly from the one in [47] where the inequality
is required to hold only when #(0) = #(T) = 0; here, we have no reason
to discriminate the state x = 0. A dissipative system is obviously cyclo-
dissipative whereas the converse implication does not hold in general [47].
We can now pose the result:
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Proposition 5: Assume that X is cyclo-dissipative w.r.t. s;, ¢ € N, and
that s; — s locally uniformly as i — co. Then X is cyclo-dissipative w.r.t.

s. A

Proof: Let w(-),z(-) be any trajectory such that z(0) = z(7"), let z(-)
be the corresponding output. Since all signals by assumption are locally
bounded, there exists a bounded set € W x Z such that (w(t),z(t)) € ©
fort € [0,T]. Let € > 0 be arbitrary and let ¢ be sufficiently large such that
SUP(u,2)eq |si(w, z) — s(w, z)| < €. Then

T T
/ s(t) dt > / si(t) dt — €T > —€T
0 0

since the system is cyclo-dissipative w.r.t. s;. Letting ¢ — 0 yields the
desired conclusion. ]

It follows that the set of cyclo-dissipated supply rates is a closed convex
cone. An appealing conjecture is that the same statement holds if one
replaces the word cyclo-dissipated with dissipated. This is not the case,
however, as the following example demonstrates.

Example 6: Consider a scalar integrator, i.e. a system with state space
X = R and dynamics

and let the space & of supply rates be the span of the two rates wz and
z3w. Consider a sequence of supply rates

4
si(w, 2) = —2wz + =2 w
i

It is then easy to see that the system is dissipative w.r.t. s;; the available
storage 1s .

i

4

In fact the dissipation inequalities always hold with equality (in the termi-
nology of [124] the system is lossless w.r.t. s;). The supply rates s; converge
locally uniformly to s(w, z) = —2wz and it is easy to see that the system
does not dissipate s: For the dissipation inequality to be satisfied the stor-
age function must necessarily be in the form V(z) = —z? + K and no K
exists such that V' is non-negative. However, the system is cyclo-dissipative
w.r.t. s in accordance with the previous result. a

1
Vale,si) = =2 + —2* +
1
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In order to get the desired result we need an additional assumption on the
states of zero available storage:

Proposition 7: Let s;, i € N, be a sequence of dissipated supply rates
which converges locally uniformly to the supply rate s. Assume that the
set of minimal available storage {z | V,(#,s;) = 0} is independent of ¢ € N
and non-empty, and that the entire state space X is reachable from this
set. Then the system is dissipative w.r.t. s. A

Proof: Consider an arbitrary trajectory such that V,(z(0),s;) = 0 and

define
T
J ::/ s(t) dt
0

where T > 0 1s arbitrary. Let € > 0 be arbitrary and choose ¢ sufficiently
large such that |s;(t) — s(t)| < € for t € [0,T]; this is possible since all
signals are bounded on [0,7] and s; — s locally uniformly on W x Z. Tt
follows that

T
OS/ si(t) dt < J 4 €T
0
where the first inequality holds because the trajectory starts in a point of

zero available storage w.r.t. s;. Since € > 0 was arbitrary we conclude that

J > 0.

Now consider any continuation of the trajectory starting at time 7" in the
state #(7T') and ending at time 7" > T'. Repeating the above argument we

see that
TI
/ s(t) dt >0
0

which in turn implies that

/T’ o) dt <

We conclude that V,(z(T),s) < J < co. Now notice that the point z(7)
can be chosen arbitrarily since the entire state space is reachable; it follows
that the available storage w.r.t. s is finite everywhere. We conclude that
the system is dissipative w.r.t. s. [ |

The hypothesis that the set of zero initial storage is independent of ¢ fails
in example 6 above. In this example we have V,(z,s;) =0 & |2] = /1/2.
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In many applications there is only one set which can be a set of minimal
available storage, for instance a single zero-input equilibrium point. In
these situations we conclude that the dissipated supply rates form a closed
convex cone.

One can also derive closedness properties using theory for partial differential
equations, rather than system theory, for instance following [23, 53]. We
point out that in comparison with this approach, proposition 7 has the
strength of not imposing local boundedness, continuity, or other regularity
requirements on the storage functions.

The previous results clarifies the structure of the set of dissipated supply
rates. We now turn to the properties of the available storage and required
supply, seen as functions of the supply rate.

Proposition 8: Let S be a convex set of dissipated supply rates and let
z € X be fixed. Then V,(z,s) is a convex lower semi-continuous function
of s € S. If furthermore the set {z|V,(x,s) = 0} is independent of s € S
and non-empty, and if the entire state space is reachable from this set, then
Vi (#, s) is a concave upper semi-continuous function of s € S. A

Proof: First we show that V;(z,-) is convex in the supply rate: Fix the
initial condition 2(0) and define the functional J, on W x Ry x § by

Ja(w(:),T,s) :/0 —s(t) dt

where the integrand is evaluated along the trajectory starting in 2(0) and
corresponding to w(-). Notice that J, is convex in s; even linear. Hence

Va(2(0),s) = ws(%pT Ja(w(:),T,s)

1s also convex since the supremeum of any family of convex functionals is
convex.

Next we show that V,(x, ) is lower semi-continuous: Let s € S and let s;
be a sequence in S which converges locally uniformly to s; we must then
show that

liminfV,(z, s;) > Va(z, s)

1— 00

Choose € > 0 and let z(-) be a trajectory with z(0) = # such that

/T —s(t) dt > Vy(z,s) — ¢
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Now choose i sufficiently large such that |s;(t) — s()| < €¢/T on [0, T1]; then

/OT —si(t) dt > /OT —s(t) dt —e > Vy(z,5) — 2¢

which implies that Vg (z,s;) > V, (2, s) — 2¢ for { sufficiently large. Now let
€ — 0 to obtain the desired conclusion.

To show concavity of V,.(#,-) under the additional assumptions, we follow
the argument above: Let Q denote those (w(-), o, T) in W x X x R for
which V,(zg,s) = 0 for s € S, and for which the trajectory starting in xg
and corresponding to w(-) satisfies #(7T") = Z. Now define the functional J,

on 2 x § by
T
Je(w(), o, T, 8) = / s(t) dt
0
which is concave, in fact linear, in s. Now notice that V;.(Z, s) is the infimum
of J, over the set 2 and hence concave.

Finally we show upper semi-continuity of V,.(z, -). Choose € > 0 and let z()
be a trajectory which starts with zero available storage, i.e. V4 (2(0),s) = 0,
ends in 2(T) = z, and which satisfies

/Ts(t) dt <Vi(z,s)+e¢

Now choose ¢ sufficiently large such that |s;(t) — s()| < €¢/T on [0, 7], then

T T
/ si(t) dt < / s(t) dt + e < Vi(x,s) + 2¢
0 0

which implies that V; (z,s;) < V,(x, s) + 2¢ for { sufficiently large. Again
let ¢ — 0 to obtain the desired result. ]
With this result in mind it is natural to ask if the available storage is also

an upper semi-continuous function of the supply rate, and thus continuous.
In general, the answer to this question is negative:

Example 9: Consider the autonomous system with state space X = R
and dynamics

Let a sequence of supply rates s; be given by

L L if2miHN2 < < 90
si(2) = 0 else.
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The space § is the linear span of these s; for ¢ € N, and we take S =&. It
is then straightforward to see that

Va(x, 8;) = log2

for any > 1. On the other hand, the supply rates s; converge uniformly
to the supply rate s = 0 for which V,(#,0) = 0. Hence the available storage
Va(z, ) is not an upper semi-continuous function of the supply rate. a

However, an example of particular interest is when the set S of dissipated
supply rates 1s a convex polytope, 1.e. the convex hull of a finite collection of
supply rates. In this situation upper semi-continuity follows from convexity:

Corollary 10: Take the same assumptions as in proposition 8 and assume
in addition that S is a convex polytope. Then V,(z,-) and V;(z,-) are
continuous functions of s € §. ad

Proof: The statement follows from a standard result [92, p. 84] according
to which a convex function defined on a convex polytope is upper semi-
continuous. ]

Another situation where continuity follows is when the available storage
and the required supply coincide. This is the case for lossless systems
under certain assumptions, see [124].

We summarize and illustrate the discussion with the following simple ex-
ample concerning L»-gain analsysis of a scalar linear system.

Example 11: Consider the system
r=—-r+w, z==x

and the two supply rates s; = |w|? and s3 = —|z|? corresponding to an
analysis of Lo-gain from w to z. Let the space & of supply rates be the
span of s; and ss.

Since the system is linear and the supply rates are quadratic we know [124]
that if the system is dissipative w.r.t. the rate A;s; + Assy then there
exist a quadratic storage function V(z) = ax?. The differential dissipation
inequality then reduces to the linear matrix inequality

—2a + A o <0
(074 —/\1 -

The set of those a, A1, Ag, for which the linear matrix inequality holds,
1s a cone. Let us concentrate on the subcone for which Ay > 0. We
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may obtain a cross-section of this cone by fixing As = 1 and examine
which values a and A; result in a supply rate and a storage function which
satisfy the dissipation inequality. A little manipulation yields that this set
is characterized as

a > (2a — 1)\, > a?

1
2 bl
This set is depicted in figure 2.2. It has the structure which was predicted
by the previous results: It is convex and closed as is its projection on the
Ar-axis. Furthermore, the available storage and the required supply are
continuous functions of Ay, convex and concave, respectively. In addition
the set has the special feature of being unbounded since s; is sign definite.
O

2.4 Chapter conclusion

For a dissipative dynamic system, we have asked the question: With respect
to which supply rates is the system dissipative? We have shown elementary
properties associated with these dissipated supply rates: They form a con-
vex cone which is also closed under additional assumptions. Furthermore
we have investigated continuity properties of the available storage and the
required supply, seen as functions of the supply rate. For the important
special case of convex polytopes of supply rates, we have shown that these
functions are continuous.

Many of our results have been shown under the assumption that the sets
of zero available storage are independent of the supply rate under con-
sideration. An interesting topic of future research would be to relax this
assumption.

Our original motivation for this study was the situation where a dynamic
system contains perturbations which are known to be multi-dissipative.
In this situation the inherent convexity can be employed to obtain quite
sharp conditions for robust stability and performance by means of convex
optimization: we optimize over the set of supply rates with respect to which
the nominal system is dissipative. In the special case of linear systems
and quadratic supply rates the dissipation inequalities are linear matrix
inequalities and the numerical tool is semidefinite programming. Some
results along these lines follow in chapter 3 below.
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L2 gain analysis

Dissipation inequality satisfied

Available storage

0 0.5 1 JX5 2 2.5 3
1

Figure 2.2: A cross-section of the cone of supply rates and storage functions
which satisfy the dissipation inequality.
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Another application of the theory of multi-dissipative systems is the prob-
lem of control for multi-dissipation, i.e. find a controller in some class
such that the resulting closed-loop system is dissipative w.r.t. a family of
supply rates. For instance, one may require that the closed loop is small
gain and that the controller is passive. In chapter 4 below, which concerns
the problem of simultaneous H., control, such a problem of control for
multi-dissipation arises.

Chapter 3

Robustness towards
multi-dissipative
perturbations

We investigate the robustness of an interconnection of a nom-
inal system, described by nonlinear ordinary differential equa-
tions, and an unknown perturbation which is dissipative with
respect to several supply rates. We give sufficient conditions
for global robust stability and performance in terms of exis-
tence of solutions to nonlinear partial differential inequalities of
the Hamilton-Jacobi-Bellman type with certain extra degrees
of freedom, namely a vector of weights. We then specialize to
linear systems with quadratic supply rates where the analysis
reduces to linear matrix inequality problems.

It is popular to deal with uncertainty in control problems using the frame-
work of dissipation (in the sense of Willems [124] and the previous chapter)
because dissipativity i1s preserved under interconnections of systems and be-
cause dissipativity for autonomous systems implies stability. This makes it
practical to model uncertainty by dissipative perturbations, and to pose as
design specification that the overall system is dissipative. A common exam-
ple of a dissipation property is bounded Ls-gain. This particular property

43
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leads to linear or nonlinear H ., control, where the uncertainty is modelled
by perturbations which have bounded Ls-gain, and where performance of
the overall system is measured by its L£2-gain as well. Also passive pertuba-
tions are common; for instance stability proofs of certain adaptive control
systems employ passivity-based arguments.

In this chapter we consider robustness towards deterministic dynamic per-
turbations which are dissipative with respect to several supply rates. Sec-
tion 3.1 motivates this problem by providing examples of such multi-dissi-
pative perturbations. In this section we also compare the framework with
that of integral quadratic constraints. In section 3.2, we demonstrate that
information regarding multiple dissipation properties of the perturbations
can be included in an robustness analysis in an operational fashion. The
resulting conditions on the nominal part of the system are partial differ-
ential inequalities of the Hamilton-Jacobi-Bellman type with certain extra
degrees of freedom. Section 3.3 specializes the discussion to linear systems
and quadratic supply rates; in these situations linear matrix inequalities
becomes an efficient numerical tool with which we can also address related
problems involving parameter uncertainty, or of robust Hs performance.
Finally, section 3.4 offers some concluding remarks and points out a num-
ber of open problems.

3.1 Multi-dissipative perturbations

The aim of this section 1s to provide a few examples of multiple dissipation
properties of perturbations in control systems. The section merely summa-
rizes some ideas - some well known, others seemingly new - and does not
present new results.

For a single dynamic perturbation w(-) = Az(-), typical dissipation prop-
erties are related to gain and phase properties. For instance, linear positive
real perturbations - or more generally nonlinear passive perturbations - are
dissipative w.r.t. the supply rate s(w, z) = (w, z). Similarly A has £5-gain
(or Heo morm) less than or equal to v > 0 if and only if A is dissipative
w.r.t. the supply rate s(w, z) = ¥%|z|?> — |w|? - this can be generalized to
any £, induced norm for finite p.

When the perturbation represents parasitic dynamics, for instance oscilla-
tory modes in a mechanical or electrical system, the passivity follows from
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the fact that such oscillations cannot produce physical energy. More gen-
erally, physical conservation laws give rise to dissipation properties. Con-
servation of mass, volume, free thermodynamic energy, or momentum can
be cast as dissipation properties.

Bounds on static (memoryless) nonlinearities can also be expressed in terms
of dissipation properties, although the information that A is static is lost.
Specifically, let w(t) and z(t) be scalar and let A be given by

w(t) = (Az)(1) = o(=(1))

where ¢ : R — R is known to satisfy the inequality ¢(z, ¢(z)) > 0, then
obviously A is dissipative w.r.t. the supply rate s(w,z) = ¢¥(z,w). A
particular popular class of bounds are the linear sector bounds which are
common in the field of absolute stability, see [59] and the references therein.
For instance, if the graph of ¢ lies between the lines w = az and w = bz
for known real numbers @ < b then the corresponding function ¢ may be
taken as the quadratic form

1]
P(z,w) = (w 2) [ azﬂ o ] ( ) ) . (3.1)
It is important to examine how much conservativeness one introduces by
neglecting that the perturbation is static. When the supply rate s is
quadratic, a partial answer to this question is obtained by examining which
linear time invariant systems dissipate s.

The above examples illustrate how one may establish single dissipation
properties of perturbations. Our prime example of a multi-dissipative dy-
namic perturbation concerns parasitic dynamics which are bounded and
passive:

Example 12: [Modelling of multi-dissipative perturbations]  Consider
the spring-mass system in figure 3.1, which i1s a simple model of a one-
dimensional position regulator system. The force u is the output of an linear
time invariant controller. We consider the small mass as an unmodelled
parasitic, and the parameters associated with it to be very uncertain.

The overall interconnection of the small mass and the remaining system
may be written in the form of figure 3.2. The error signal z is then the
velocity y of the large mass while the disturbance w is the force acting from
small mass on the large mass. With this formulation, A is given by

(k + es)ms

Als) = ————
() msZ +cs+ k
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Figure 3.1: A position regulator with parasitic dynamics

The transfer function A is positive real, i.e. dissipative w.r.t. the supply
rate —s1(z, w) = zw, since this supply rate corresponds to the mechanical
energy supplied to the parasitic. It is also small gain, i.e. dissipative w.r.t.

the supply rate —sa(z, w) = ¥?2% —w? for v > ||A]|eo & km/e\/1 + ¢2/km.

- A

Figure 3.2: System and perturbation in feed-back

One can easily imagine situations where physical considerations or a few
simple experiments provide a reasonable bound on v but where we nev-
ertheless do not wish to estimate m, ¢ and k. Indeed, in many situations
we do not wish to specify the order of A. In these situations, the only
information about A we wish to make use of in the subsequent analysis is
the two dissipation properties. a

See also [33] for a discussion of this example in the context of integral
quadratic constraints.

Another way multiple dissipation properties arise is when the input z and
the output w to the perturbation A can be partitioned as
21 w1
z = and w =

Zp Wy
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and the perturbation A is block diagonal, i.e.
w=Az & w;=ANjz;, 1=1,...p

This block structure occurs when each perturbation A; is associated with a
different physical component in the system (if each block diagonal element
A; is bounded in Ho-norm, then the resulting problem is p-analysis). Tt
is clear that the total perturbation A inherits the dissipation properties
of each perturbation element A;. This may quickly lead to a quite large
number of dissipation properties of A as a realistic control problem typically
will contain uncertain elements in many different places in the control loop.

We conclude this section with an example demonstrating how one may
establish necessary and sufficient conditions for the robustness of a system
containing a multi-dissipative perturbation:

Example 13: [A non-conservative robustness condition] Continuing exam-
ple 12 above, the suitable analysis question is: When is X robustly stable
towards perturbations A which are linear time invariant and dissipative
with respect to —s; for i € {1,2} 7 Here we construct necessary and suf-
ficient conditions through frequency domain considerations. First, rescale
the system such that that v = 1. The requirement that A is linear time
invariant, passive and small gain then is equivalent to the transfer function
A(s) mapping the closed right half of the complex plane into the set A in
figure 3.3, i.e.

VscCh: A(s)cA={scC|Res>0A]s| <1} (3.2)

The interconnection is unstable if and only if the closed loop has a pole in
the closed right half plane, i.e. there exists an s € CT such that

Y(s)A(s) =1

So the interconnection is stable for all A such that (3.2) holds if and only
if 3 maps the closed right half plane into the region B in figure 3.3, i.e.

VseTH: S(s)eB:={seC| égéA} (3.3)

={seC|Res<0V]s|< 1}

An alternative characterization of the set B 1s

B={seC|3a>0: |s+a|<]|i+al}
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Figure 3.3: The subsets A and B of the complex plane

So the condition (3.3) holds if and only if there exists a map o : Ct — R
such that B
Vs € Ct @ |2(s) + a(s)] < |i+ a(s)]

The inequality in this expression can be restated as

(1 5(s)) _al(s) —els) ] ( 2(15) ) >0 . (3.4)

To recapitulate, the feedback system is stable if and only if there exists
an o : Ct — R7* such that this holds for all s € Ct. This is exactly
the type of stability conditions that appear in [57] (see also the references
therein); in the nomenclature used there A satisfies two integral quadratic
constraints (1QC’s). a

In more complicated situations, involving several perturbations or non-
linear systems, the problem of obtaining non-conservative conditions for
robustness is still untractable. In the remainder of this chapter we derive
sufficient conditions only. We shall later return to this example in order to
comment on the conservativeness inherent in our conditions.

3.2 Robustness analysis

We now turn to the interconnection of figure 3.4 where ¥ is the nominal
system, A i1s a multi-dissipative perturbation and v i1s an exogenous deter-
ministic signal. Throughout the section, x denotes a state of X while &
denotes a state of A.
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>

wi <1

) .

wo <0

Figure 3.4: Setup for robust performance analysis.

The problems we consider are generalizations of robust non-linear H, anal-
ysis problems. Several versions of these problems exist; one is the following:
The unknown perturbation A is a causal system with Lo-gain less than or
equal to 1, i.e. is dissipative w.r.t. the supply rate |z|? — |w|?. Commonly,
the interconnection is assumed to be at rest at the initial time ¢ = 0. The
aim of the analysis 1s to establish an upper bound for

/ i d

which holds for all perturbations A, all final times 7" and all inputs v()
with [ Ju]? dt < 1.

The aim of this section is to consider robustness analysis problems which
generalize this H ., problem above in several directions. The objective is

to establish a bound on .
[ ttwto a
0

where [ is a given non-negative running cost. To retrieve robust H., anal-
ysis, use I(y) = |y|*.

The following list makes precise the assumptions under which we obtain
our robustness result:

Assumption 14:

1. The interconnection of ¥ and A is well posed in the following sense:
To each initial conditions zy and &, and each input v(-) correspond
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unique state trajectories z(-) and £(-) which are continuous and de-
pend causally on v(-), and the signals w(-), z(-) are measurable and
locally bounded® functions of time, at least up to some finite escape
time.

2. The perturbation A is dissipative w.r.t. to the p measurable and
locally bounded supply rates —s;, ¢ = 1, ..., p, with available storage
Va(€o, —si) < 3; for a known set of bounds ;. Here &y is the initial
state of the perturbation A.

3. The input v(-) satisfies

T
/ sp(t) dt < 8,
0

for a known bound g, and any time 7" > 0, provided that no finite
escape time occurs before T. Here s, (v, y) is a given measurable and
locally bounded supply rate.

O

The motivation behind the first assumption is as follows: We disregard
pathological situations where non-unique or discontinuous state trajectories
occur, but we do not wish to exclude a finite escape time a prior:; rather
we wish to establish conditions under which a finite escape time cannot
occur.

Regarding the second assumption, we retrieve robust H, analysis by choos-
ing p=1, sy = |w|? - |z]%, and B, = 0. In applications, it is not always
reasonable to assume zero initial storage in the perturbations (i.e, §; = 0)
as is done in the robust H,, problem as outlined here; in order to study
robustness of transient behaviour it is essential to allow some bounded
amount of initial storage in the perturbation. (If focus is on stability or
steady-state behavior assumptions corresponding to zero initial storage may
be reasonable and are seen in the IQC literature, e.g. [T7, 58, 33]; an ex-
ception is [96]). On the other hand, the assumption that the perturbations
have bounded initial storage is often quite reasonable - although it may be
difficult to establish the exact size of these bounds. A similar discussion
applies to the assumption that the input v has a bounded resource given
by the rate s, and the bound 3, .

LA function is said to be locally bounded if the image of any bounded set is bounded.
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With this problem setup the sufficient condition for our objectives to be
met 1s that the nominal system is dissipative w.r.t. some supply rate which
matches the rates s;, s, and the running cost {. More precisely we can state
the following theorem:

Theorem 15: [Robustness implications of dissipativity] Let assumption 14
hold and assume in addition that the nominal system X is dissipative w.r.t.
the supply rate >, d;s; +d, s, — [ for some non-negative weights d;, d,. Let
V' be a corresponding storage function. Then the following holds:

1. If no finite escape time occurs, then the interconnection is dissipative
w.r.t. the supply rate dys, — (.

2. The state z(T) remains in the set

{o | V(z) < V(o) + Zdiﬁi +d,8,}

for any 7" > 0 such that no finite escape time occurs before T'.

3. If V() and 5", d;Va(-, s;) are proper® functions, then no finite escape
time occurs.

4. The performance bound
T
/ Ldt <V(xo)+ Y difli + df,
0 i

holds for any 7" > 0 such that no finite escape time occurs before T'.

O

Proof: Fix the initial states zy and &; and the input v and let 7' > 0 be a
time such that no finite escape time occurs before T'. As candidate storage
function for the interconnection w.r.t. the supply rate d,s, — [ we take
Wiz, &) = V(x)+ 5, diVa(&,—s;). It is then easy to see that W satisfies

the dissipation inequality which proves item 1. Using the non-negativeness

2A real-valued function is said to be proper iff all preimages V~!(I) of bounded
intervals I C R are bounded.
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of Vo(§, —si) and of [ we get

V((T) < W(«(T),&(T))

T
< W(xo,50)+/ dysy — 1 dt
0]

as claimed in item 2. If furthermore V and 3", d;V,(-, —s;) are proper then
this implies that z(¢) and £(¢) remain in a fixed bounded set which excludes
the existence of a finite escape time and hence proves item 3. Finally item
4 is simply a rearrangement of the dissipation inequality of item 1. [ |

A key feature of the theorem is that the characterization is convexr: The set
of those storage functions V' and weights d;, d,, which satisfy the dissipation
inequality is convex (proposition 2 on page 32 above). Furthermore, if we
wish to search for the best weights d;, d,, i.e. those that lead to smallest
available storage in a fixed initial point, then this involves minimizing a
convex continuous function (proposition 8 on page 37 above and the sub-
sequent corollary 10).

Another feature of the theorem is that 1t simultaneously addresses robust
stability and performance: Robust performance in the sense of a bound on
an integral is given in item 4. To demonstrate that item 2 can be used to
show robust stability, we first establish a useful lemma:

Lemma 16: [Bounding the state trajectory] Let € C X be an open set
and let z(¢), ¢ > 0, be a state trajectory such that #(0) € Q. Let v > 0
be such that V(z(t)) < v at least until z(¢) leaves Q. Let A be the largest
connected subset of V=1([0,+]) N Q which contains the initial state z(0).
Assume that A is compact. Then z(¢) remains in A for ¢ € [0, 00). a

Proof: Assume that z(¢) leaves Q in finite time. Let 5 denote the time
of first exit from €2 and let ¢; denote the last preceding time of exit from A.
Since A is closed and €2 is open we have t; < ta. Let ¢t € (t1,12) and define
B=AU{z(r) : 7 € [t1,t]}. Then B contains zy and is a connected subset
of V=1([0,4]) N Q of which A is a strict subset. This is in contradiction
with the definition of A. We conclude that z(¢) remains in €, hence also in
A, until a finite escape time. Since A is bounded this excludes finite escape
times; hence z(¢) always remains in A. [ ]

The importance of A being closed is illustrated in figure 3.5. Here A is not
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Figure 3.5: A pre-image A = V=1([0,7]) C Q which is not closed.

closed and hence the state trajectory can leave A and €2 simultaneously;
once the state has exited Q the bound V(z) < ¥ needs not hold.

We can now pose a result regarding robust Lyapunov stability of the inter-
connection:

Corollary 17: [Dissipativity implies robust Lyapunov stability] Take the
same assumptions as in the theorem. Let # be a strict local minimum
point of the storage function V and assume that V is continuous in a
neighbourhood €2 of x. Then there exists another neighbourhood €' C Q
of z such that the following holds: If the initial state o is in €', and if the
positive bounds 3;, 4, are small enough, then the state x(t) remains in
for t € [0,0); in addition the performance bound

0

holds. O

The proof of the corollary i1s conceptually 1dentical to standard Lyapunov
stability proofs, e.g. [59], although some extra technicalities are needed
because V(x(t)) is not necessarily a non-increasing function of time.

Proof: Set a« = V(Z). Assume without loss of generality that € is
bounded and that infycq V(2) = a: If not, then replace © with @ N B
where B is a sufficiently small bounded neighbourhood of z. Let v > «
and let A denote the largest connected subset of V=!([a,v]) N Q which
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contains &; notice that & is an interior point in A. Assume that v is chosen
such that A is closed; this is possible since z is a strict local minimum.
Assume that §; and 3, are small enough, ie. o+, d;+dy 3y < 7. Let @
be any neighbourhood of z contained in V=!([a,y — > d; B; — dy3y)) N A;
Now assume that zy € . According to item 2 in theorem 15 x(¢) remains
in V=1([0,4]) at least up to a finite escape time. Now apply lemma 16 to see
that #(t) remainsin the bounded set & C Q fort € [0, 00). The performance
bound follows from the dissipation inequality since V(z(t)) > V(Z). ]

In the proofs above the dissipation inequality does not need to hold every-
where but only along the possible trajectories. This i1s particularly useful
when studying local behaviour. Developments along these lines are reported

in [113].

3.3 Linear systems and quadratic supply rates

In this section we specialize the previous discussion to the case of linear
systems ¥ defined by ordinary differential equations in state-space:

) z(t) = Az(t)+ Bw(?)
Y1) = Calt)+ Dult) (3.5)
For systems consisting of a nominal part in feed-back with a multi-dissipative
perturbation, we show that stability and various performance properties
can be described by linear matrix inequalities (LMIs) which describes some
dissipativity property of the nominal part. Such linear matrix inequalities
can be verified directly numerically with commercially available packages
such as [32, 38]. The connection between dissipativity for linear-quadratic
systems and LMIs was noted already in [124] and has received much inter-
est during the last few years [19] due to efficient numerical algorithms for
solving LMI problems [82].

3.3.1 Robust stability

Consider the connection in figure 3.6 (a) where X is the nominal sys-
tem and A is a perturbation in a set A; both are assumed to be causal,
linear, finite dimensional, and time invariant systems. We say that the
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configuration (X, A) is robustly stable if for every A € A the configu-
ration is well posed (i.e, the dynamics of the closed loop can be written

(£(t),£(t)) = A(x(t),£(t)) for some linear A), and if furthermore 2(-) € L.

For a deterministic linear time invariant systems with quadratic supply
rates (i.e, when s(w,z) = (v 2)Q(w' 2')’), there is no loss of general-
ity [124] in assuming the storage function V to be quadratic (V(x) = #' Pz
with P = P’ > 0), in which case the differential dissipation inequality (2.3)
becomes [124]

Vee X, weW: (2 w’)q><i)§0
where ® 1s shorthand for
PA+A'P PB |0 o4 ) o I
C D

¢ = B'P 0 I D

This is a linear matrix inequality (LMI) in P.

v Yy
w z w z
A= AN

@ (b)

Figure 3.6: The two problems considered: (a) Robust stability. (b) Robust
H o performance.

Lemma 18: Assume that every A € A is linear, time invariant, and
dissipative w.r.t. —s, and that X 1s strictly output dissipative with respect
to the supply rate s. Then the feed-back configuration (X, A) is robustly
stable. ad

Remark 19: If ¥ is dissipative w.r.t. s but not strictly output dissi-
pative, and if the interconnection is well posed (which in this case is not
guaranteed by the dissipativity), and if the storage functions are (quadratic
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and) positive definite, then we have Lyapunov stability [124], but z need
not be in £». 0O

Proof: The dissipation inequalities for ¥ and A are
T
V(z(T)) < V(x(0) +/ s(w, z) = c|l2][* dt
0

W) < W@®D+ﬂ;—dwddt

Since we know that V' has a local minimum (possibly non-strict) at z = 0,
dissipativity of ¥ implies that s(w, z) — ¢€||z]|> > 0 for z = 0. Repeating
the argument for W we get that s(w,z) < 0 whenever £ = 0. Combining
the two we get that z = 0 whenever (#,€) = (0,0). Due to linearity of
the output equation of A we conclude that w = 0. This implies (using
linearity) that the interconnection is well posed, and hence the solutions
exist on [0, 00).

Adding the two dissipation inequalities and using the non-negativity of the
storage functions give

€

A|MPws1wuw»+W@@»

Since this holds for all T'; the configuration is robustly stable. [ |

Remark 20: It can be argued that the lemma is of limited interest since
1t 1s very restrictive to assume that perturbations are linear time invariant
(a similar point was also emphasized in [106]). Notice, however, that these
assumptions on A are only used to guarantee existence and uniqueness of
the state trajectories; the £o-bound on z follows directly from the storage
functions. Luckily, there exist other ways of guaranteeing existence and
uniqueness when A is nonlinear and/or time varying. For instance, local
well-posedness may be established through linearizations, algebraic loops
may be avoided by assuming that A is strictly causal, and finally including
w in z and assuming properness of W guards against finite escape times.

To avoid these details we will in the remainder of the chapter always assume
that any feedback connection which we analyse is well-posed in the sense
that there exist unique signals which solve the describing equations. We
remark that if one is willing to make the assumption that A is LTI, then
well-posedness is guaranteed by the stability conditions we derive. a
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In this remainder of the chapter we consider analysis of systems ¥ connected
in feedback as in figure 3.6 with a perturbation A, which 1s dissipative with
respect to the p supply rates

w

—si = —(w z’)Qi< ) ie{l,...p} (3.6)

z

Without loss of generality we assume that ); are symmetric. We use the
symbol A to denote this particular class of multi-dissipative perturbations,
le.

A = {A: dissipative w.r.t. —s;; i€ {l,...,p}} (3.7)

To each A € A and each supply rate —s; corresponds a storage function

W; (&) defined on the state space of A.

Specializing theorem 15 to the linear-quadratic case leads the following
result:

Theorem 21:  Given the system X defined in (3.5) and the class of
perturbations A of (3.7). The configuration (X, A) is robustly stable if the
following linear matrix inequality

PA+A'P PB] <& 0 ¢’ 0 I c
=1
(3.8)
is satisfied for some P = P >0, ¢ > 0,d; > 0 a

We emphasize that the theorem gives a less restrictive condition than e.g.
small gain criterion or positive real criterion because of the extra freedom
assoclated with d;.

Remark 22: One will often examine the following linear matrix inequality
problem in P and d in stead:

PA+ A'P PB LoTo 0 I
B'P 0]_2612'[1 D’]Qi[c D]<0’

P>0,d; >0 . (3.9)

Feasibility of this LMIP is a sufficient condition for robust stability of
(2, A) and - under weak assumptions on the data - equivalent to feasi-

bility of (3.8). O
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Proof: Given a solution pair P, d;, ¢, the function z’ Pz acts as a storage
function for ¥ with respect to the supply rate 5. d;s; — €|z|* and since any
A € A is dissipative w.r.t. — > d;s; (proposition 2 on page 32 above) we
have shown robust stability (lemma 18).

It is also easy to see that feasibility of (3.9) implies feasibility of (3.8): In
fact, given solutions P,d; to (3.9), one may find sufficiently small ¢ > 0
such that P, d;, e solves (3.8). ]

A similar result was derived independently in the recent contribution [126].

Example 23: [The conservativeness of the sufficient condition] Continuing
example 13 above, the two supply rates dissipated by the perturbation A
are —s; = zw and —ss = |z]? — |w|? corresponding to

0 -1 1 0
Q1_|:_1 0:| ’ Q2_|:0 _1:|
The sufficient condition of remark 22 is that X is strictly output dissipative
with respect to a combination of s; and ss, i.e. with respect to

salw, 2) = (w 2) [ b ] ( w ) (3.10)

— z

for some o > 0. Here we have taken d» = 1 which is possible due to the
conicity, and dy = a. This will be the case if and only if

R EEIERE

holds for all s in the closed right half C* of the complex plane. For a — 0,
we retrieve the condition that X has £y-gain less than 1, while for o — oo
the permittable circle approaches the entire left half plane, and thus we
get the condition that X 1s strictly negative real. For high order plants,
the latter condition is often difficult or even impossible to obtain, while
the former may impose too severe constraints on bandwidth. Also taking
a € (0,00) into account obviously increases the possibility of reaching a
good design.

In comparison, the sufficient and necessary condition of equation (3.4) re-
quires the existence of a function o : C* — R such that the inequality
holds. In other words, the sufficient conditions of theorem 21 and remark 22
are conservative in that they do not allow frequency dependent weights d;.

3.3 Linear systems and quadratic supply rates 59

Notice however that linearity and time invariance of A is essential to the
derivation of equation (3.4), whereas theorem 21 holds also for nonlinear
and time-varying A provided that the interconnection is well posed. a

Example 24: [A graphic interpretation] Continuing the preceding exam-
ple, we can also give a graphic interpretation of the sufficient condition that
3 is strictly output dissipative w.r.t. s, for some o > 0: Let S_, denote
the circle in the complex plane which is centered in —a € R and whose
boundary contains the point ¢ - see figure 3.7. Then X is strictly output
dissipative w.r.t. s, if and only ¥ maps the right half of the complex plane
into the interior of the circle S_,. Combining with the maximum modu-
lus theorem, the sufficient condition of remark 22 is that X is stable and
its Nyquist plot is contained in such a circle S_, for some o > 0. This
graphic criterion is reminiscent of the circle criterion for absolute stability,
see e.g. [59], except that we need only find one suitable circle in a certain
family.

disk

Figure 3.7: Permitted area for X(Ct) with a(s) independent of s

A further understanding of the conservativeness of theorem 21 and re-
mark 22 is obtained from the following observation: If ¥ dissipates s, for
some a > 0, then (X, A) is stable for any perturbation A which maps the
right half of the complex plane into the circle S,. Notice that any such
circle S, contains the original set A of figure 3.3 on page 48. The conserva-
tiveness of theorem 21 is thus illustrated by the difference between the set
A and the sphere S, which covers A. This interpretation is not restricted
to this particular example, but applies to theorem 21 and remark 22 in
general. ad
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3.3.2 Parameter uncertainty

A popular model of parameter uncertainty is that the system matrices
A, B,C and D of the system (3.5) are time varying but remain in a given

polytope:

e (2 5] imn)) o
Here Co(-) denotes convex hull. This situation covers not only param-
eter uncertainties but also non-linear systems with sector-bounded non-
linearities. In [19] a model like this is called a Polytopic Linear Differential
Inclusion, and many properties of such models are reduced to feasibility
of LMIs. It is therefore not surprising that also robustness in the pres-
ence of multi-dissipative perturbations can be guaranteed with LMIs. For
this situation, a sufficient condition for robust stability in the presence of
multi-dissipative perturbations is given by the following:

Theorem 25: Let ¥ satisfy (3.11). Assume that each of the supply rates
s; 1s concave in z and that the following LMI problem in P, d; and € is
feasible:

vie{l,...,m}:
PA;+ AP PB; ~ [0 i1, [0 I
BiP 0 _Zdl [ D | @ C; Dj

i=1 J
(04
+6[D§][c; D<o
P>0,d;>0,¢>0
Then the feed-back configuration (X, A) is robustly stable. a

Remark 26: The assumption that s; is concave in z may be written

QYT QY
Q77 <0 where @Q; = [ g g
2 — 2 QZZU} QZZZ
and essentially says, that when the input w is zero, the flow s; is zero or
directed out of the system . a

Proof: The proof consists of tedious though straightforward manipula-
tions of linear matrix inequalities and can be found in appendix B.1 on
page 167. The idea 1s that the time-varying system is strictly output dissi-
pative with respect to the supply rate ), d;s;; as storage function we use
the time-invariant function V(z) = «'Px. ]

3.3 Linear systems and quadratic supply rates 61

3.3.3 Guaranteed H,; Performance

We now expand the system with an exogenous input v(¢) and a performance
output y(t), corresponding to figure 3.6 (b) on page 55:

x = Az+ Bw+ Gu
z = Cz+4+ Duw (3.12)
= Hr+Jw

As before, we have w = Az where A € A. We use the symbol (Z, A) to
denote the closed-loop system with input v and output y. As a measure of
performance for (X, A) we use its He-norm.

When A is nonlinear and/or time-varying one needs to specify what is
meant by the Hs-norm of the interconnection, since it cannot be represented
by a transfer function. Two possibilities exist: One can use the Ls-norm
of the impulse response which we will call the deterministic Hs-norm of
the interconnection, or one can assume that v is white noise and consider
the steady-state variance of y. At this point we discuss the deterministic
interpretation while the stochastic approach is taken in the second part of
this thesis, in chapter 6 below.

Theorem 27: The H, norm of the closed loop system from v to y is
bounded above by

12, A)l3, < inf (G PG)

1%y

where the infimization is subject to

P=P >0,d >0 ¢>0
PA+ A'P PB - 0 ¢ C D
[ B'P 0 ]_Z;di[l D’]Qi[o 1]

+[§I,/][H J]+e[g][0 D]<0

O

Remark 28: Computation of the upper bound on Hs-performance i1s an
LMI problem in P, d; and e.
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Notice that if we remove A, the LMI in P reduces to PA+A'P+H'H <0,
i.e. we retrieve the standard way of computing the Hs-norms of known
system using the obervability Gramian [128]. O

Proof: Given P, d; and ¢, we know that ¥ with v = 0/ is strictly output
dissipative w.r.t. 3", d;s; — ||y||*. This implies strictly output dissipativity
w.r.t. » . d;s; and hence it is reasonable to assume well-posedness of the
interconnection of ¥ and A, cf. remark 20.

Assume that the interconnection (X, A) is at rest for t < 0 and that we at
t = 0 excite the interconnection with an impulse at v, i.e. v(t) = vgd(?)
where §(-) is the Dirac delta. We then have z(0%) = Gvg. Assume that P, d;
and € solve the LMI problem in the theorem, then the integral dissipation
inequality for the interconnection reads

T T
[l des [l a < ot 0% Paot)
0 0
(and holds because v(t) = 0 for t > 0). Hence,
/ llyl|? dt < vy G’ PGug
0

Now let v; be the jth unit vector in the input space V = R"v (v(t) € V)
and let y;(¢) be the impulse response of the interconnection (X, A) to the
input v(t) = v;6(t). We then have

I(E, A)ll3y, = Z_;/O lly; (O|IF dt < Z;UQG'PGW = trace G'PG
Since this holds for any P, d; and € that solve the LMI problem the conclu-
sion in the theorem follows. ]

3.4 Chapter conclusion

The concept of dissipation is widely used in the area of robust control
and control of large scale systems, but except for the special cases of u
theory [28, 128] or more generally integral quadratic constraints [77, 57, 97],
there has been no systematic use of the fact that systems possess several
dissipation properties at once.
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In this chapter we have reported results on the use of such multiple prop-
erties of dissipation. Our results essentially follow from the fact that the
supply rates dissipated by a given system form a convex cone. We have
derived results corresponding to robust Lyapunov stability as well as robust
performance. The framework allows generalization of several other stan-
dard Lyapunov-type results; of particular practical relevance is ultimate
boundedness, slowly varying systems and parametric uncertainty. Many
such extensions are straightforward.

The appeal of the framework is that it allows combination of information
and specifications of different types. Admittedly the resulting conditions
will be conservative in that only sufficient conditions are given. Compared
to common practice, however, where either several dissipation properties of
the involved uncertain subsystems are ignored or the uncertainty is simply
left out of the analysis, the framework is an improvement.

It is appealing that the analysis reduces to linear matrix inequalities in the
special, but very important, case of linear systems and quadratic supply
rates. For nonlinear systems the issue of numerical methods is more critical;
see the note below.

3.5 Notes and references

Comparison to the IQC framework

Consider a perturbation A which maps z(+) to w(-) and which is dissipative
with respect to a supply rate s(z,w) which is quadratic, i.e. s(z,w) =
(w' 2")Q(w' z")'. Assume that the available storage is 0 at time 0; then the
signals satisfy the integral quadratic constraint (IQC)

/0 (w'(t) 2/ (1)QUu' (1) #/ (1))’ dt > 0

for all times 7. The converse also holds: If the IQC holds for all inputs
z(+), and if the state space of the perturbation A is reachable, then A is
dissipative w.r.t. s with available storage 0 at time 0.

With this perspective, it is reasonable to compare our framework of multi-
dissipative perturbations to that of integral quadratic constraints. Clearly
the motivation behind the two frameworks are identical as is the idea of
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modularity: reducing a large complex problem to a collection of smaller
and more managable subproblems, viz. performing dissipation (or IQC)
analysis on components. The techniques used are quite different, though.

The IQC framework, in the sense of [77, 57], makes heavy use of frequency-
domain techniques. Although it is feasible to pose IQCs for specific non-
linear perturbations, see for instance [57], the resulting conditions on the
nominal system are in frequency domain and no results are given as to
how to verify these conditions for nonlinear nominal systems. The suffi-
cient conditions are less conservative than the ones we have obtained in
this chapter in that they make use of frequency dependent multipliers cor-
responding to our weights d; (c.f. examples 13 and 23 above). In order to
make use of these extra degrees of freedom 1n the linear case one needs to
consider infinite-dimensional convex optimization problems associated with
the choice of multipliers; this is the major numerical challenge. In com-
parison the hurdle in our framework of multi-dissipative perturbations is
the computation of storage functions for nonlinear nominal systems, which
also can be cast as an infinite-dimensional convex optimization problem.

Another approach to integral quadratic constraints is found in [95, 96, 97].
These papers use time-domain techniques and the approach is closer to
this chapter than is [77, 57]. Only linear nominal systems are considered
as are integral quadratic constraints corresponding to La-gain of the per-
turbations.

Numerical methods for optimal control problems

In order to verify if a given system dissipates a given supply rate one
needs to consider the optimal control problem which defines the available
storage or the required supply. Except for systems with low dimensional
state spaces or a particular structure, this is an overwhelming numerical
challenge which is the major obstacle to the practical use of the results in
this chapter.

Among the numerical methods for optimal control problems, those based
on dynamic programming rather than the maximum principle are most
natural: In fact the optimal trajectories are of less interest whereas ap-
proximations of the value functions may serve as storage functions.

For a fixed supply rate, storage functions may be approximated by dis-
cretization of the differential dissipation inequality, [52, 65] or by a spectral

3.5 Notes and references 65

method where a storage function is sought in a given finite-dimensional
space [11]. An alternative is a recursive scheme due to Lukes [73, 120, 78]
for computing the Taylor expansion of the value function around an isolated
equilibrium point.

The sufficient conditions for robustness presented in this chapter require
finding a storage function and a supply rate simultaneously which adds an
extra twist to the optimal control problem. One approach is to restrict
the storage function to a finite dimensional space and employ convex opti-
mization techniques, optimizing over the storage function and the d-weights
simultaneously. For input affine-quadratic systems, the LMI based proce-
dure described on page 20 may easily be modified to search simultaneously
for the storage function V and the set of weights d;, d; required by theo-
rem 15. Although the convexity makes a convergence analysis feasible, the
size of the optimization problems grows exponentially with the number of
states; this is Bellman’s curse of dimensionality. More heuristic approaches
may be useful. For instance we presented in [113] an example where the
d-weights first where fixed considering only the linearization of the system;
afterwards higher order terms were included using a Lukes’ scheme.

State feed-back controller design

We briefly comment on the problem of finding a state feedback controller
u(t) = p(xz(t)) such that the resulting closed loop system satisfies the suf-
ficient condition derived in this chapter.

For a fired supply rate, the problem of control for dissipation requires prac-
tically the same tools as the problem of dissipation analysis as i1s evident
in [120]. This reference treats the special problem of £3-gain analysis and
nonlinear H, control, but the discussion applies to broad classes of supply
rates: In stead of optimal control problems we consider differential games,
and the differential dissipation inequality is replaced by a Hamilton-Jacobi-
Isaacs equation. In both cases the Hamiltonian dynamics provides informa-
tion about existence of a value function. The issue of smoothness of storage
functions becomes more problematic since control strategies are found from
the partial derivatives of the value functions; see [7, 105]. Local approxi-
mations to value functions may be found by Lukes’ scheme, [120, 78].

To employ the sufficient conditions in this chapter, we need to find a con-
trol law, a storage function, and a supply rate. In the reference [113] we
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suggested to fix the supply rate in a first step (which considered only the
linearization of the system) and then apply Lukes’ scheme.

An alternative is the following value-policy iteration: In the value step, for
a fized controller, we find a supply rate and a storage function such that
the differential dissipation inequality holds. This analysis problem can for
instance be solved with convex optimization as outlined above. Then, in the
policy step we fix the supply rate and the storage function and compute
the mazimum dissipation controller, i.e. the control law which at each
point in state space maximizes the worst-case dissipation. This is a family
of static min-max problems. Then the value step and the policy step are
iterated. It is easy to show monotonicity of such an algorithm; under
suitable hypothesis this implies convergence. We have in [114] given the
details in such an algorithm for the case of linear systems and quadratic
supply rates and demonstrated it on a numerical example.

For a linear system and a quadratic supply rate it is possible to give a convex
parametrization of linear controllers (static state feedback or full order
output feedback) which make the system dissipative; this trick appeared
first in [15] for the state feedback problem, see also [37, 126]. This motivates
a two-step iterative procedure where the first step optimizes the supply
rate while the second finds a controller which makes the closed loop system
dissipative w.r.t. the current supply rate. A similar procedure is suggested
in the recent reference [126]; see also [125].

Regarding output feedback control of nonlinear plants, i1t is principle pos-
sible to combine a search over the d-weights with the information state
approach [55] to differential games. The resulting problems are in gen-
eral deterringly complex and with the present state of the art heuristic
approaches should be more fruitful; for instance, first solving the linearized
problem and then applying Lukes scheme.

Towards a nonconservative condition

The technique in this chapter is essentially the following: If V() is a
storage function for ¥ with respect to s+ . d;s; and V, (€, —s;) are storage
functions for A w.r.t. —s;, then V(2)+3>", d;V, (&, —s;) 1s a storage function
for the interconnection (X, A) w.r.t. s. One way to generalize this is to
find a function V(z, ;) such that the available storage of (X, A) is less
than V provided that V, (£, —s;) < Bi. This leads to a less conservative
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condition since we do not require V to be in the form V(z) + 3, d;3;. In
fact this condition is nonconservative in a certain sense, and can be verified
by performing dissipation analysis of an extended plant. We do not pursue
this further at this point but will return to the stochastic analogy of the
idea in part IT of this dissertation; see page 133.



68

Chapter 3. Robustness towards multi-dissipative perturbations

Chapter 4

Simultaneous H,, Control

We consider the problem of finding one output feedback con-
troller which achieves H, performance when connected to any
one of p linear time invariant plants. This is a prototype of an
adaptive H, control problem. We formulate the problem as a
non-linear H ., problem and show that the minimax controller
is finite dimensional but not based on certainty equivalence.
Synthesis of the minimax controller involves solving a partial
differential equation, namely a state feedback Hamilton-Jacobi-
Isaacs equation. We investigate the structure of the solution
and derive the heuristic certainty equivalence controller which
has a switching architecture.

4.1 Introduction

Robustness in presence of both parametric and dynamic perturbations is
an important problem which poses great theoretical difficulties. In applica-
tions, parametric uncertainty is typically effective at low frequencies, and
is often highly structured. On the other hand, less structured dynamic
perturbations always affect high frequency behaviour [128, p. 216].

With a low level of parametric uncertainty and with a ., bounded dy-
namic perturbation, linear controllers may suffice, which then can be de-
signed using u synthesis [128, 5] or quadratic stabilization [130, 39, 15]; see

69
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also [34]. For larger levels of parametric uncertainty one would expect that
improvement can be achieved by using nonlinear controllers which include
an adaptation mechanism. This motivates the field of adaptive H., control.

A natural approach to adaptive H., control is to extend the state with
the unknown parameters, thus obtaining a H., control problem for a new
nonlinear plant. Then, one may apply the differential game techniques [9,
120, 55] to nonlinear H ., control. This approach has been pursued in for
instance [22, 25]. In these references uncertainty is restricted to special
parts of the system such that the minimax controller is finite dimensional
and based on certainty equivalence principles such as the one in [14].

In view of this; an immediate question is: With a dynamic game approach
to adaptive H,, control, is certainty equivalence and finite-dimensional
minimax controllers the generic situation, or a special case? To study this
question we consider the special situation where the unknown parameter a
priori is restricted to a known, finite set. Such problems of simultaneous
control can be considered as a prototype of adaptive control problems -
see e.g. [44]. Our conclusion is negative: Certainty equivalence can not
be expected to hold in adaptive H., control problems. Furthermore, the
minimax controller must run a linear H, filter for each possible value of
the parameter. Therefore we expect the minimax controller to be infinite-
dimensional when there is a continuum of possible parameter values.

Next, we show that the heuristic certainty equivalence controller guarantees
Hoo performance, provided that the minimax control input is uniquely
defined for almost all times. This weak certainty equivalence principle
emphasizes the following point: The important issue is not if the best (i.e,
minimax) controller is based on certainty equivalence, but if a certainty
equivalence based controller is good enough, i.e, guarantees that the H
design objective is met.

Besides being prototypes of adaptive control problems, simultaneous con-
trol problems have been the subject of considerable independent research.
Linear controllers are investigated in [17, 19]; in general nonlinear control
leads to improvement. Switching control is studied in [79, 80, 81] and the
references therein: These controllers consist of a bank of linear low-level
controllers and a high-level logical switch, which connects one of the low-
level controllers to the plant. One way of designing the switch is to find that
estimator which supplies the best fit with observations, and then switch in
the corresponding controller. This technique appears in [81, 79, 49].
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In this chapter we point out that this technique, when applied to the prob-
lem of simultaneous H, control, must be modified so that the switch com-
pares not just estimation errors but also a control error associated with
each controller. The resulting switching controller is exactly the heuristic
certainty equivalence controller.

A problem with switching architectures is chattering. Chattering is rapid
switching back and forth, or that unique (classical) solutions to the dynamic
equations seize to exist, depending on ones point of view. Modification of
the switch to avoid chattering are suggested in [79]; in this chapter we
suggest an alternative based on a smooth approximation of the switch.

The chapter 1s organized as follows: Section 4.2 formulates the simultaneous
Hoo control problem. Section 4.3 deals with the extended state feedback
problem while section 4.4 develops the filter for the worst-case extended
state estimate. Section 4.5 discusses the the minimax controller. Section 4.6
concerns the heuristic certainty equivalence controller. Finally section 4.7
offers some conclusions.

Notation

If P is a two-port plant with disturbance input w, control input u, mea-
surements y and error signal z, and K is a controller with input y and
output u, then (P, K) denotes the closed-loop system with inputs w and
outputs z (see figure 4.1 below).

We use the standard notion of Lo-gains, see [119] and page 17 above:

Definition 29: [Ls-gain] The £5-gain of a state-space system X (mapping
inputs w(-) to outputs z(-) through states ¢(-)) is denoted ||X]|| and is the
infimum of all numbers v > 0 such that

V(o : HM(CO) : th > tg, wE ﬁz([to,tf]) :

| R d<y? [ des v

to to
Here z(+) is the output corresponding to the input w(-) and the initial state
C(to) = Co. If no such v exists we write ||X]| = oo. a

We consider only measurable locally bounded inputs and assume that all
systems map such inputs to measurable locally bounded states and outputs.
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4.2 Problem statement

We consider systems of the form

i) = Apr(t) + Beu(t) + Geuw(t)
= Cha(t)+v(t) @)
Hgl‘t .
= (")
0 ¢ {1,...p}20

<

—_
o~

~—

Here, x 1s the state of the system, u is a control input, w is an process
disturbance, y is the measured signal, v is the measurement noise, z is the
generalized error signal. All signals take values in Euclidean spaces.

The matrices (Ag, By, Gy, Cy, Hy) are known functions of the unknown pa-
rameter 8. With Py we denote the linear system from (w,v,u) to (z,y)
obtained by fixing 6.

A

Py

A A

Y

K

Figure 4.1: Simultaneous Control Problem

Problem of Simultaneous ., Control with Stability: Given a con-
stant v > 0, find a causal control law K : y(-) — u(-) such that for any
parameter ! € ©, the closed-loop system (Py, K) from (w,v) to z has Lo-
gain less than 4 and in addition (Ps, K) is internally stable in the sense
that w(:) € £2([0,00)), v € L£2(]0, 50)) implies that z(¢t) = 0 as t = c0. ©

We adopt the following standard assumptions on the system matrices:
Assumption 30:
1. For any i € O, the triple (Cy, A;, B;) is detectable and stabilizable.

2. For any ¢ € O, the triple (H;, A;, G;) is observable and controllable.
O
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The standard discussion regarding these assumptions applies [128]: The
first part is necessary for the existence of an internally stabilizing con-
troller. The second part is mainly a technical regularity assumption, which
guarantees that any closed-loop system with finite £2-gain must be inter-
nally stable and furthermore that certain loss functions are positive definite.
As in linear H, control for a fixed plant, the second assumption can be
relaxed quite a bit but to keep the exposition simple, we shall not do this.

Adding the parameter dynamics
6(t) =0 (4.2)

we obtain a non-linear system description in the extended state (z',0)" by
combining (4.2) and (4.1). We then attack the problem of non-linear # .,
control for this system using the differential game techniques for output
feedback design presented in [9, 120]. To be specific, we consider the dif-
ferential min-max problem

min sup [/_89 (t) dt — 1373(0)/]\7936(0) — Ay (4.3)
K w00 2

where we have used the shorthand
1 1 1 1
5; = 5’72|w|2+§72|y—0il‘|2— §|U|2—§|Hil‘|2 . (4.4)

Here, the supremum is subject to the dynamics (4.2) and (4.1), and the
minimization i1s subject to the causality restriction on the controller K.
Notice that the initial condition 2(0) is chosen by the maximizing player.
If this minimax problem has finite upper value for some choice of N; and
A;, then there exists a controller (viz., the minimax controller) which guar-
antees that the closed loop from (w(-),v(:)) to z(-) has L£3-gain less than
or equal to y. The converse also holds.

In this minimax problem A; > 0 represents prior information about ; our
prior estimate of # is arg min; A; (assuming a unique minimum point). For
simplicity and without loss of generality we assume min; A; = 0.

Similarly, N; > 0 represents our confidence in the prior estimate z(0) =
0, given that # = ¢. The choice of N; influences the transients of the
state estimator but not steady-state behaviour such as the closed-loop £-
gain. The standard discussion from linear Ho, theory [42] applies; the
situation corresponds to the initialization of variances in Kalman filters.
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For simplicity, we are going to assume that the estimator starts in steady
state; see section 4.4 below.

In the following sections we approach this min-max problems, following the
general procedure of [9] closely as far as possible. It is interesting to see
that no problems are caused by the fact that our state space R?x {1, ..., p}
1s hybrid, 1.e. has a continuous as well as a discrete part. The main steps
in the procedure are:

1. The full information problem where # and @ is available to the con-
troller on-line. This problem reduces to p standard linear H., prob-
lems; section 4.3.

2. The problem of estimating # and @ using the measured signal y(-).
The solution is a bank of linear state estimators, one for each param-
eter value, which run in parallel. The final state estimate is found by
comparing residuals associated with these estimators; section 4.4.

3. In [9], a certainty equivalence principle [14] is verified at this point.
In our case, the hypothesis for this principle is not met. In stead, we
reduce the problem to a finite-dimensional full information minimax
control problem. Qur procedure is similar to the information state
machinery [55]. The minimax controller is then characterized by a
Hamilton-Jacobi-Isaacs equation. We discuss this equation and the
structure of its solution; section 4.5.

4. Finally we investigate the heuristic certainty equivalence controller;
section 4.6.

4.3 Control with known extended state

We address the subproblem where y = (z,0). A trivial but helpful obser-
vation is that this extended state feedback problem reduces to a standard
linear Mo, problem for each parameter 6. Following [128], we consider the
p control algebraic Riccati equations

1
Y

which we explicitly assume have the needed solutions:
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Assumption 31: For each ¢ = 1,...,p, the algebraic Riccati equa-
tion (4.5) admits a solution X; such that A; — B;B/X; + W%GiG;»XZ’ 1s
asymptotically stable. In addition X; is positive semi-definite. a
Remark 32: Tor the relevant theory of Riccati equations as (4.5) we refer

to [128]. We note if such an X; exists, it must be unique. Furthermore X;
must be positive definite since (H;, A;) is assumed observable. a

Well known results from linear H., theory thus immediately gives:

Proposition 33: [c.f. [128, theorem 16.9], [9, theorem 4.8]] Let the
plant (4.1), (4.2) satisfy assumption 30. Then there exists a causal control
law (6(-), z(-)) = u(-) such that the closed-loop system from w(:) to z(-) is
internally stable and has Ls-gain less than v, if and only if assumption 31
holds. In this case, one such control law is the minimax control

u(t) = —ByXpx(t) . (4.6)

The associated cost-to-go is

A 1 1 1
P(x:,0) = sup/ §|z(7')|2 — 572|w(7')|2 dr = 51‘2)(91} (4.7
w(-)Jt

where the supremum is subject to the initial condition #(¢) = #; and the
dynamic equations (4.1,4.2,4.6) governing the closed loop. A

4.4 The estimation problem

In this section we define the problem of estimating the extended state and
derive the dynamic filter of the estimator. As in [9, 25, 120], we define
the cost-to-come function (termed the information state by other authors,

e.g. [55])

Rlzeit) = inf (/Ot si(r) dr + %x’(O)Nm(O)) + A (4.8)

w(),a(
where s; is as in (4.4). The infimization in (4.8) is subject to the constraints

zt) =
#(r) = Ajz(r)+ Biu(r) + Giw(r), 0<r7<¢.
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The cost-to-go is the worst-case loss over the time interval [0,¢], given y(-)
and u(-) and assuming that z(¢) = x; and that § = ¢.

Following the notation in [120], we denote by S(z,4,t) the worst-case to-
tal cost over the time interval [0, 00) consistent with the observations of
u(7),y(r) for 7 € [0,¢] and such that x(¢t) = #, # = ¢, and subject to full
information control for 7 > ¢. Hence

S(z,4,t) = R(x,i,t) — P(x,1)

We can now define the worst-case extended state estimate:

( gg; ) = arg Hxl’iiIlS(l‘,i,t) . (4.9)
The extended state estimate is instrumental to the minimax controller: A
certainty equivalence controller [14, 9, 120] applies the full information con-
trol law (4.6) with the state x, 6 substituted with &, f. Without certainty
equivalence, we demonstrate in the following section that the problem can
be transformed into one where the extended state estimate i‘,é 1s the con-
trolled variable.

In order to derive the dynamics of the extended state estimate we split the
estimation into two parts: First a conditional state estimate which esti-
mates z conditioned on assumptions on #, and second the (unconditional)
parameter estimate. To be specific, the conditional state estimate 1s

£(i,t) = arg minS(x,4,1) (4.10)

and 1s the worst-case state estimate based on the assumption that the true
parameter equals ¢. Correspondingly the worst case parameter estimate is

0(t) = arg miinS(E’(i,t),i,t) . (4.11)

With this formulation the state estimate is #(t) = 5(@(15),15) Determining
£(i,1) for fixed 7 is a purely linear problem which can be solved as in [9, 128]:

Assumption 34: For each i = 1,... p, the filter algebraic Riccati equa-
tion

1
YiA; + AYi + GGy + Yi(z H H; — C{C)Yi = 0 (4.12)
gl

admits a positive semi-definite solution Y; such that A;—i—(v%HZ(HZ'—C’Z(C})YZ'
1s asymptotically stable. a
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By duality of remark 32, such a Y; will be unique and positive definite.
Define @Q; := 'yzYZ»_l. then @; satisfies

1
AjQi + Qi A + V—ZQiGiGQQi + H{H; —y*C{C; =0

For ease of notation we assume that the game (4.3) has been chosen such
that ; = N; for all e = 1,..., p; thus the filters start in steady-state. See
the discussion on page 74 above, and appendix B.2.

The implication of assumption 34 is that the cost-to-go 1s always well de-
fined and for each ¢ has a minimum over x which is attained at a unique
point. For the same to hold for S(x,4,t) we need S(z,i,t) to be strictly
convex in x, i.e:

Assumption 35: For each i = 1,..., p, the coupling condition
Q;—X; >0

holds. ad
Summarizing, linear H., theory gives us the following proposition:

Proposition 36: Let the plant (4.1), (4.2) satisfy assumption 30. There
exist causal controllers K; : y(-) — u(-) such that (P;, K;) are internally
stable and have Ly-gain less than ~ if and only if assumptions 31, 34 and
35 hold. Assume in addition that N; = @, then £(4,t) is well defined for
all ¢ and all w € £5([0,%]), y € L£2([0,¢]) and can be computed on-line as
the solution to the ODE

£(iyt) = (4.13)
(A +v72G,GLX; — BiBLX;) -€(i,)
+7°(Qi = Xi)TICY - (y(t) — Ci€(i, 1))
+(Qi — Xi)7'QiBi - (u(t) + BIXi£(i,1))
with initial condition £(¢,0) = 0. Furthermore the conditional worst-case
loss S(&(i,1),4,t) is computed on-line as the solution to the ODE

LS00 = 377(0) — CE( 0 — Slut) + BIXEG 07 (414

with the initial condition S(£(7,0),4,0) = A;. A
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All statements in the proposition can be found in [9, theorem 5.5] (see
also [128, theorem 16.4]) except the dynamic equations for & and S. Never-
theless, these equations can easily be derived using the method of [9, 120];
the calculations can be found in appendix B.2.

The structure of the single estimator (4, -) is illustrated in figure 4.2 where
we have omitted the subscript ¢ and used the notation

E = y72G'X

F = —-B'X

K = (@Q-X)"'QB
L = ¥Q-X)"'c’

The block diagram (and the ODEs) for the conditioned state estimate &(¢, )
is identical to estimator in the standard central H., controller [128, p.
435], except for the last term (Q; — X;)71Q;B; (u(t) + BIX;£(i,1)) (the
block K in the block diagram). This term vanishes when the control signal
is conditionally minimax (i.e, &« = 0 as will happen when é(t) = ¢ and
certainty equivalence control is used; see below) and is therefore not present
in the central H ., controller for a single linear plant. The way u affects the
dynamics of the conditional state estimate corresponds to a parametrization
of all Ho, suboptimal controllers [128, p. 420] (we will elaborate further
on this connection in remark 38 below).

We see from equation (4.14) that S(&(¢,%),4,¢) is an integrated residual
associated with the model P;. The estimation error y(t) — C;£(i,t) appears
also in residuals of stochastic system identification, but the subtraction of
the control error u(t) + B/ X;£(i,t) is a new feature due to the minimax
setting. Notice that —B; X;£(i,t) is an estimate of the full information
minimax control (4.6).

In the remainder of the chapter we will use the shorthands
& (1) :=&(i,t) and S;(t) := S(£(4,1),4,1)
The total cost function S(x,4,t) can be computed as
) 1
S(a,i,t) = 5z = &(0)(Qi = Xi)(z = &()) + Si (1)
after which the cost-to-come function can be computed as

R(x,i,t) = S(x,i,t) + P(x,1)
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Figure 4.2: Block diagram of each conditional worst-case state estimator.
The subscripts ¢ are omitted.

4.5 The minimax controller

Having derived the minimax estimator in the previous section the first thing
to verify is if the certainty equivalence (CE) principle of [14] can be applied
as in [9, 120]. This principle states that if the worst-case extended state
estimate (&(t), é(t)) is always well defined by equation (4.9) on page 76 in
the sense that the minimum exists and is attained at a unique point, then
the minimax control strategy associated with the game (4.3) on page 73 is

u(t) = —Bé(t)Xé(t)i‘(t) . (4.15)
This is a certainty equivalence controller since it applies the state feedback
law (4.6) to the estimates i‘,é. In general, a CE principle is one which
states that a CE controller is optimal (in this case minimax). If a CE
controller is applied without a justifying CE principle, then we emphasize
this by calling it a heuristic certainty equivalence controller.

We know from proposition 36 that the conditional state estimates &£(¢,)
are always well defined by equation (4.10), which implies that the minimax
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controller in the case of a single plant is based on certainty equivalence [9,
theorem 5.3]. However, the parameter estimate é(t) needs not always be
well defined by equation (4.11) since the minimum of S;(¢) over ¢ may be
attained for two or more values of 7. In fact, if é(t) 1s always well defined
then é(t) 1s a constant function of time ¢; clearly such an assumption would
be rather detrimental to the whole idea of adaptation. We conclude that
certainty equivalence does not necessarily hold.

Despite this it is possible to characterize the minimax controller implicitly
in terms of a Hamilton-Jacobi-Isaacs equation; this is the subject of the
remainder of this section. First we reduce the problem to a dynamic game
with full information. Next we derive the Hamilton-Jacobi-Isaacs equation
associated with this full information game. Finally we state a theorem and
pose a conjecture about the structure of the value function.

Reduction to a full information game

At this point we adopt a technique similar to the information state machin-
ery in order to reduce the output feedback problem to a full information
game. See [55] for the information state machinery in the context of nonlin-
ear H o, control. The corresponding approach to optimal control of Markov
chains is described in [16, ch. 4].

z (w,v) S,S Yy

< Py < 03

A A
A A

Y
Y

K K

Figure 4.3: The original output feedback problem and the equivalent full
information problem of controlling the total cost.

Use the symbol @ to denote the filter with states

(gl(t)"'"gp(t)’sl(t)""’sp(t)) )
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inputs u and y, outputs y, S; and SZ', and dynamics given by equations (4.13)
and (4.14) above. Let £ = (&1,...,&) and S = (S1,...,5p). Use the sym-

bol (®, K) to denote the interconnection of the filter & and a controller

K :y() = u(s):
(@, K)(y(-)) = (K (y(-), y(-))

The interconnection (®, K) thus has input y(-) and outputs S(-) and S()
See figure 4.3.

The important step in the reduction of the problem to one of full informa-
tion is the following proposition, which says that as control object we may
take the filter @ rather than the plant Py:

Proposition 37: Let K be a causal controller y(-) — u(-) with a state
space representation. Then the closed loop (P;, K) has L£o-gain less than or
equal to v if and only if the interconnection (®, K') dissipates the supply
rate S;. A

The proposition follows directly from the definition of the worst-case loss
Si: (@, K) dissipates S iff S;(+) can be bounded below in terms of the
initial condition, and such a bound is exactly what is needed according to
the definition of the £, gain.

The problem of controlling ® is essentially a full information problem since
the initial conditions in ® are known and all inputs to ® are available on-
line. So also the states of ® can be considered known to the controller.

Remark 38: Loosely said, (®, i) dissipates S; if and only if u + BIX¢&;
is smaller than y(y — C;&;) in L2 norm. Therefore, we can construct such a
controller K in the following way: Take a system Q with Lo-gain less than
or equal to 7. Let the input to Q be § = y — C;¢ and denote the output
@&. Now choose the control signal u such that @ = w4+ B/X;&. Thus we
have established the connection to the parametrization of H., suboptimal
controllers [128, theorem 16.5], see also [9, corollary 5.2]. O

Recall that a simultaneous H., controller was required also to be stabi-
lizing. However, under the observability assumption 30 on page 72, any
~-suboptimal H., controller is internally stabilizing:

Proposition 39: If (P, K) has Lo-gain less than or equal to v > 0 and
w(-) € L2([0,00)), v(-) € L2([0, 00)), then z(t) — 0 as t = . A

If only linear controllers K are considered, then the proposition is contained
in corollary 16.3 in [128, p. 418]. A statement which allows smooth static
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nonlinear control is [120, prop. 3.4]; however smoothness of the storage
function is required there. Given these results, there is little novelty in the
proposition. For the sake of completeness we give an elementary proof.

Proof: Let L be such that Ay + LHy 1s asymptotically stable; such an L
exists since (H;, A;) is assumed observable. Now write the state dynamics
&= (Ag+LHg)x—LHgx+ Byu+Gyw. The hypothesis implies Hyz(-) € Lo
and u(-) € Ly, so z is the state of a stable system with L5 inputs; thus
z(-) € L4. Now  is a linear combination of £ signals; hence also &(-) € L.
Finally () € £ and #(-) € L implies that #(t) — 0 as t = . ]

Notice that the proof merely uses that Lo inputs w, v, are mapped to an
Ly output z (which is somewhat weaker than finite £o-gain), and that the
causality of K is not used.

If we ignore the slight difference between obtaining an La-gain from w, v to z
less than v, and less than or equal to ~, the propositions allow us to consider
a problem of control for multi-dissipation rather than the original problem
of simultaneous M., control. The control object in this new problem is
the worst case filter ® with states &,.5, the control objective 1s to make
the interconnection (®, K) dissipate S; for ¢ = 1,...,p, and the controller
has access to both the state £, 5 and the disturbance y. In summary, we
have reduced the problem of simultaneous H ., control to a multi-objective
min-max control problem with full information.

This multi-objective problem may be reduced to a single-objective one; in
fact the interconnection (®, K) dissipates S; for all i = 1,...,p if and only
if it dissipates the supply rate

%mljn S;(t)

This supply rate is regular (i.e, for any £ and u there exists a y such that
d/dt min; S;(t) < 0) and hence the problem of control for dissipation is
equivalent to a differential game on infinite horizon:

U(£(0), 5(0)) = zl(l})) Zl/I(lf) mljn Si(00) (4.16)

for which we can a priori pose the bound

U(£(0),5(0)) € [~o0, min.S5; (0)]
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Note that the value —oo is included; the value functions in this section are
in general extended real-valued. The players are allowed to play closed loop
strategies which result in locally bounded £ signals u(-), y(-). Note also
that the limits S;(o0) = limg_, o S;(t) are well defined for all such strategies
since the filters (4.13) are stable.

The following theorem, which follows immediately from the discussion,
makes precise the statement that the problem of simultaneous H., con-
trol 1s equivalent to a full information game:

Theorem 40: The following are equivalent:

1. There exists a controller K such that (Ps, K) has £o-gain less than
or equal to vy for any @, and such that (-) = 0 for w(-), v(-) € La.

2. There exists a controller K such that (®, K) dissipates d/dt min; S;(t).

3. For each pair of initial conditions &, S, the lower value U(£,S) as

defined above is finite. -

The Hamilton-Jacobi-Isaacs equation

To study the game associated with U we follow the terminology of [120]
and define the pre- Hamiltonian

where ¢ and S are given by the filter dynamics (4.13) and (4.14) of ®. Here
A and p are co-states to € and S| respectively, i.e. Ais a row vector in RP X"
while g 18 a row vector in RP.

We also define the Hamailtonian H

H(&, S, A p) =supinf K(&, S, A\, p,w,y) . (4.18)
U Yy

We restrict attention to co-states for which >, y; > 0. Thus the Hamilto-
nian is finite, smooth, independent of .S and quadratic in &, A for fixed p.
Furthermore, the static game in (4.18) can be solved by completion of the
squares:

- 1 * 1 *
K& S, A pu,y) = H(E, S, A i) — §Zﬂz’|u—u |2+§Zﬂi|y—y ?
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so Isaacs’ condition! holds. Here y* and u* are smooth functions of &, A
and pu:
u* (€, A p) = argmaxmin K (£, S, A, p, u,y)
u oy

y 2

The functions u* and y* are linear in &, A for fixed p. It is straightforward
but unnecessary to give explicit expressions for these functions.

Tt is well known [10] that value functions of differential games, such as U,
are related to Hamilton-Jacobi-Isaacs equations, in this case

H(E, 5, ¢e(&,5),¢s(£,5) =0 . (4.19)

The results of [10] does not cover the particular games in our study, but with
analogous arguments we may obtain similar results. First we show that
if (4.19) admits a subsolution, then it provides a guaranteed cost strategy
for wu:

Proposition 41: Let ¢(¢,S) be C! and satisfy H(E, S, ¢¢, ¢s) > 0 as
well as (€, 5) < min; S;. Let the mazimum dissipation controller Ky be
specified by the state feedback law

u¥(€,5) = ut (&, ve, ¥s)

then (@, Ky) dissipates d/dt min; S;(¢). Furthermore ¢ is a lower bound
on the lower value function: ¢ < U. A

Proof: We claim that min; S; — (£, S) is a storage function, i.e. that
the dissipation inequality

T

min i (1) = $(¢(T), S(T)) < min S;(0) —(£(0), S(0)) + / %mljnSi (1) dt

0

holds. This is equivalent to ¢¥(&(T), S(T)) > (£(0),S(0)) which follows

from

b= K(E, S, v, s, u? y) > H(E, S, ve, 0s) >0

Thus dissipation is established. Furthermore, we have

min S;(T) = $(&(T), S(T)) = ¥ (£(0),.5(0))

!T.e. the game in (4.18) has saddle point u*,y* for each &, S, , u; see [10, p. 349].
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which holds for all inputs y(-) and all 7" - hence in particular in the limit
T — oo - and thus implies that U(£(0), S(0)) > ¢(£(0), S(0)). [ |

Remark 42: In the case of a single plant, p = 1, we may take ¢y =
min; S; = S1. The corresponding storage function is identically 0, and the
resulting maximum dissipation controller is v = — B/ X;&;. Thus we recover
the central controller from linear H o, theory [128, p. 419]. a

The next question is if the lower value function U, or cost bounding func-
tions corresponding to guaranteed cost strategies, must necessarily satisfy
the Hamilton-Jacobi-Tsaacs equation (4.19), or the related inequality. Here
matters are complicated by the observation that it is not reasonable to ex-
pect U to be differentiable everywhere. Within the last decade, the notion
of wiscosity solutions [23, 35] to equations such as (4.19) has become the
standard tool with which to approach these issues of non-differentiability.
The following definition is taken from [23] and specialized? to the case of
first order partial differential equations:

Definition 43: We say that «(£,S) is a viscosity supersolution to the
Hamilton-Jacobi-Isaacs equation H (£, S, ke, ks) = 0 if & is lower semi-
continuous and H (£, S, ¢¢, ¢5) < 0 holds for every &, S and every ¢(¢, S)
which is C™ and satisfies ¢ < , (£, S) = (€, S).

We say that x is a viscosity subsolution if k is upper semi-continuous and
H(E, S, ¢¢,¢5) > 0 holds for every &, S and every ¢(£,.S) which is € and
satisfies ¢ > &, ¢(£,5) = k(&, S).

We say that k is a wiscosity solution if it is both a subsolution and a
supersolution. a

If  1s a viscosity supersolution, then we also say that x solves the inequality
H(¢,S, ke, kg) < 01n the viscosity sense. Notice that viscosity solutions are
by definition continuous, and that a differentiable function  is a viscosity
solution if and only if it is a classical solution. We refer to [23] for further
discussion of viscosity solutions.

It is by now a standard exercise to show that value functions satisfy Hamilton-
Jacob-Isaacs equations in the viscosity sense. It complicates matters, how-
ever, that the inputs u, y are not restricted to bounded sets. See page 116
for an example where the value function does not solve the PDE since near-
optimal controls are unbounded. Most contributions, e.g. [70], consider only

?To see that our definition coincides with that in [23], substitute ' = —H.
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problems where the controls are restricted to compact sets. The recent ref-
erence [7] explicitly assumes that near-optimal controls are bounded before
proving that value functions are viscosity solutions, but does not discuss
how to verify the assumption for a given system.

For our system, we are able to show that the value function is indeed a
viscosity solution. The key element is, roughly speaking, that controls
leading to fast trajectories also lead to large running costs, as will be made
precise in the proof:

Proposition 44: Assume that U is finite everywhere and continuous.
Then U solves the Hamilton-Jacobi-Isaacs equation

H(€a5a¢§a¢5) :0

in the viscosity sense. A

Proof: We show that U is a subsolution only; the other statement follows
similarly. Let & and S be a fixed initial condition and let ¢ be a C'™
function such that ¢(£,S) = U(€,S) and ¢ > U. Notice that this implies
that >, ¢s,(£,S) = 1. Hence H(, S, ¢¢, ¢s5) is finite and smooth on a
neighbourhood of (&, 5).

Our proof is by contradiction: Assume that H(, S, ¢¢,¢5) < 0. Then
there exists a neighbourhood Q of ¢, S and 4§, ¢ > 0 such that >, ¢, > 20
and [ (&, S, ¢¢, ¢s5) < —¢ on Q.

Now let 7" > 0 be arbitrary, let Tq the time of first exit time from Q, and
let To, = min{T, Tq}.

Let the minimizing player use the smooth feedback strategy y = y* (&, ¢¢, ¢5).
Let p > 0 be such that the p-ball around &, S is contained in Q. Let ¢ > 0
be such that o

€+ du —u*)? > c|(€, 5)]

holds for all £, S'in € and all u. Such a c exists since €2 is bounded and since
&, S, are affine-quadratic in u. This inequality makes precise the statement
that controls leading to fast trajectories also lead to large running costs.

Thus, for any strategy for the maximizing player, we have

To

IA

Tq
—/ ¢+ SJu— (€, b, bs) [ dt
0
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To L.
—/ (E,$)] di
0

< —c-p<0

IA

which holds for any policy for the maximizing player. This implies that

sup inf ¢(&(Tq), S(Ta)) < (£, S)

u() y()
Combining this with ¢ > U we obtain

ST%I(;f)U(g(TQ),S(TQ)) <U(,9)

which contradicts the dynamic programming principle. We conclude that
the hypothesis H(E,S, ¢¢,¢s) < 0 cannot hold; in other words, U is a
subsolution in the viscosity sense. [ |

Remark 45: In the light of remark 42, it 1s instructive to consider min; S;
as a candidate solution to to the Hamilton-Jacobi-Tsaacs equation (4.19).
First, min; S; 1s a viscosity supersolution as can readily be verified. Hence
we can deduce a guaranteed cost strategy for y: at each instant y 1s chosen
such that min; .S; is non-increasing.

Second, min; S; is not in general a viscosity subsolution and therefore does
not in general help us derive guaranteed cost strategies for u.

Third, min; S; is a generalized solution to (4.19) in the sense that the
equation holds for almost all £, S (viz. whenever g = arg min; S; 1s well
defined). This property is important in the following section where we
discuss a weak certainty equivalence principle concerning the heuristic cer-
tainty equivalence controller. a

A theorem and a conjecture on the structure of U

Consider the canonical equations governing the Hamiltonian dynamics as-
sociated with U:
- O0H OH : OH , OH
S=5vy Ai=—5 Si= g, pi=— =
9N 0&; Op; a5;
It is well known (see e.g. [120]) that if the lower value function U is C, then
the trajectories (£, A, ) corresponding to the saddle point strategies u*,

0 . (4.20)
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Y™, solve the canonical equations. Hence the co-state p is constant along the
saddle point trajectories. Now w*(&, A, ) and y* (&, A, p) are linear in (&, A)
for fixed p which implies that the trajectories also solve a linear system.
Furthermore this linear system is the canonical equations associated with
the weighted linear-quadratic game

Z(£(0), 5(0); &) = il(l}))gl/l(lf)ZalSl(oo) (4.21)

where o = p.

This fits with the following observation: If a controller K is such that
(®, K) dissipates S; for ¢ = 1,...,p, then (®, K) also dissipates >, a; S;
for any non-negative weights «; with >, a; = 1 (proposition 2 on page 32).

This leads us to believe that the minimax controller at each instant chooses
an equivalent linear-quadratic game, given by o = p, and plays the minimax
control of that game. In fact we have the following theorem:

Theorem 46: Assume that Z is finite everywhere and C!, and that a
differentiable function a* (£, S) exists such that

Z(&,8;a%(€,9)) = H}XinZ(E’,S; @)

Here minimization is over a; > 0 with > . a; = 1. Then U(£,5) =
ming Z (&, S; «). Furthermore, the control law

ul (€, 8) = u* (&, Ue (€, 9), Us (€, 9))

guarantees that (Py, i) is has Lo-gain less than or equal to v for all 4, and
that #(t) — 0 as t = oo for any £, disturbances w(-), v(-). a

Proof: First, note that the one half of the statement U/ = min, 7 is
trivial:

U, S) = supinfminZaiSi(oo) <minZ(¢, S; a)
w Yoo = o
To show that also the other inequality holds, we denote
Y(E,5) = minZ(€, 5 0) = Z(€, S;07 (£, 5)

and aim to show ¢ < U using proposition 41. First, take o = (1,0,...,0);
then ¢(£,5) < Z(£,S;a) = S1. Thus ¢ < min; S;.

4.5 The minimax controller 89

Second, we must show that H (£, S, ¥¢,¢s) > 0. Here o* being a minimizer
implies that

746, 5 07(6.5) 2 (€, )

Ve(, S) 7

I
AN
™
n
Q*

1/)S(€,S) = Zg(g,S,OZ*( aS +ZQ(€,S,OZ*(€,S))—(€,S)

)
)

da*
) S
)

Since Z solves the Hamilton-Jacobi-Isaacs equation H (€, S, Z¢, Zg) = 0 for
each «, these expressions imply that also H(&,S, ¢¢,¢¥s) = 0. Thus we
can apply proposition 41 to show that ¢ < U, hence ¢ = U, and that the
control law uY guarantees min; S;(7) > U(£(0),5(0)) for all T and inputs
y(+). Finally combine with theorem 40 to see that this control applied to Py
guarantees an L2 gain less than or equal to v as well as internal stability.

|

The theorem provides the following solution to the simultaneous M., con-
trol problem: First, construct the filter bank (4.13), (4.14) which generates
the estimates &;, S;. Second, determine off-line the quadratic value func-
tions 7 (€, S;a) by finding the stabilizing solutions to a family of Riccati
equation; one for each «. This yields the corresponding feedback controls

UZ(E:,S, O[) = U*(g,Zg(g,S, O[)aZS(gaS; O[))

which are linear in &. Then, on-line, determine the minimizing argument

a* and apply the control u¥ (£, S) = u? (¢, 5;a* (€, 9)).

One could argue that this solution is only partial since differentiability of
Z and o~ is sufficient but not necessary for the existence of a simultaneous
Hoo controller. Indeed, Z may take the value +oo for some values of £ and
a, and - more importantly - «* may be discontinuous, when more than
one minimizing argument of min, Z(£, S; «) exist. At this point it is not
clear how profound these difficulties are, and this topic deserves further
attention. To this end, a good working hypothesis is the following:

Conjecture 47: The lower value function U(£, S) is finite for all £, S if
and only if Z(£,S;a) > —oo for all £, S, «. In this case

U(&,S) :H}XinZ(E’,S;a)
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where minimization is over weights «; > 0 such that ZZ a; = 1. 0O

A result corresponding to the conjecture was stated recently in [90] for a
finite horizon problem in discrete time; the proof has not been published. A
complication related to the continuous-time setting 1s that discontinuities
in the control law for u may lead to a closed loop system which is not
well-posed.

In general, it adds some credibility to the conjecture is that many multi-

objective optimization problems have been shown to be equivalent to weighted

problems. A recent contribution concerning minimax control of a discrete
system on a finite horizon is found in [89], which also contains further ref-
erences. In order to prove the conjecture, or similar results, one probably
needs to make use of viscosity solutions as well as minimax theorems [101],
and investigate in further detail how the games associated with Z depend
on a.

Summary of the discussion of the minimax controller

Let us briefly recapitulate our results concerning the minimax controller:

e The minimax controller is not based on certainty equivalence.

e The output feedback minimax control problem can be formulated as
a full information problem of control for multi-dissipation (proposi-
tion 40). The control object in this equivalent problem is the filter
bank (4.13), (4.14) which generates the minimax estimates of x, 6.

e The lower value function U of the corresponding game is not nec-
essarily C', but solves a certain Hamilton-Jacobi-Isaacs equation in
the viscosity sense (proposition 44). In addition, C! subsolutions of
this equation generate guaranteed cost controllers, which solve the
problem of simultaneous H., control (proposition 41).

e These controllers can be implemented with the px (n+1) states &, 5.

e Theorem 46 reduces the task of solving the Hamilton-Jacobi-Isaacs
equation by determining the structure of U: U can be derived from
a study of the weighted optimization problems, providing that addi-
tional assumptions hold. Finally conjecture 47 suggests that these
additional assumptions can be removed.
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4.6 Heuristic certainty equivalence control

Even if the assumptions of theorem 46 are met, the resulting minimax con-
troller is quite complex and requires substantial computation, both off-line
and on-line. From a practical point of view it is therefore of great interest
to investigate what can be obtained with simpler controller architectures.

In this section we consider the heuristic certainty equivalence controller

u(t) = w0 (1) = =By X (0(0), 1) (4.22)

where

f(t) = arg min S;(t) (4.23)

2
as before. Notice that the control law has yet to be defined at points where
the minimum min; S; is attained at more than one 7. Controllers which are

based on certainty equivalence, but without justifying certainty equivalence
principles, are common in adaptive control [4].

The state of the controller is (£(¢), S(¢)). Recalling that the control ob-
jective is that the closed loop dissipates the supply rate sy as defined in
equation (4.4), consider as a candidate control storage function

V(0,2(t),£(t),S@)) = R(x(t),0,t) — mljnSi(t) (4.24)

which may be computed as

V0, xS =
1 , 1, )
5(1‘ — &) (Qo — Xo)(x — &) + 5 + 2% Xow — HlilHSi
The candidate control storage function V' is locally Lipschitz and hence
differentiable almost everywhere, viz. wherever § = arg min; .S; 1s well

defined. Here the differential dissipation inequality holds, i.e.

v 1 5 5 1 5 45 1 5 1,
2 - — Z|H _
= 57l o+ 5Pl = Sl Hael = Slul

~g e = 2G5 (Xoa + Qo - Xo)(a - )

1 1
_572|v + Cyx — Cé€é|2 + §|u + B‘;Xéfﬂz
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We see that whenever é(t) is well defined, the heuristic CE control u(t) =

ué(t)(t) is the marimum dissipation control law with which V' indeed sat-
isfies the differential dissipation inequality V' < s. Thus V is a generalized
solution® to the differential dissipation inequality, in the sense of [35, p.

20].
It is now straightforward to pose the following result:

Proposition 48: Let assumptions 30, 31, 34 and 35 hold, let the heuristic
CE control law (4.22) be used and assume that #(¢) is well defined by (4.23)
almost everywhere on [0,7]. Then the Lo gain objective is met, i.e.

1 ’ 2 1 2 T 2 2 1 !
5[ lTdt< gy |w]” + |v|” dt + S eeQezo + Asg
0 0

If furthermore w € L3([0,0)), v € L2(]0,00)) and é(t) is well defined
almost everywhere on [0, c0) then #(t) = 0 as ¢ — oo. A

Proof: We have

e 1
5 | Pl 4l — 4P dt+ 5 Qura + A
0

> R(#(T),0,7) > S(2(T),0,T) > min:(7)
Since (t) was assumed to be well defined for almost all ¢ € [0, 7] we have

d 1

d . . _ 1.2 2
pr mimSi(t) = ESé(t)(t) =357 ly(t) — Cé(t)gé(t)| >0

for almost all ¢ € [0,7] due to the control law (4.22) and hence

min S;(7") > min S;(0) > 0

from which the result follows.
To show internal stability we follow the proof of proposition 39. ]

This result can be termed a weak certainty equivalence principle: Whereas
the CE principle in [14] requires that the extended state estimate is always
unique and concludes that the minimax controller is based on certainty

3V is also viscosity subsolution but in general not a supersolution which would imply
dissipation [53]. Compare also with remark 45 above.

4.6 Heuristic certainty equivalence control 93

equivalence, the present result states that if the estimate 1s almost always
unique, then the heuristic CE controller solves the original control problem,
although it may not be minimax.

The condition is not completely satisfying since it imposes a restriction on
the disturbances w(-) and v(:). One can draw a parallel to the assumption
of persistent excitation in stochastic adaptive control: This condition is also
not verifiable a prior:, and a safety system must be added to the controller,
so that proper action can be taken if the condition fails to hold. However,
in contrast to the assumption of persistent excitation, it is difficult to see
exactly which disturbances w(-), v(-) yield 8(t) being well defined almost
everywhere, and hence it is difficult for the practicing engineer to judge if
the restriction is reasonable. Further work on this issue is needed.

A smooth approximation of the controller

Since the control law is discontinuous at points where the minimum min; .S;
is attained for more than one i (indeed, the control law has yet not been
defined at the points of discontinuity), some modification is needed to
avoid chattering. Dwell-time switching or hysteresis switching are sug-
gested in [79]. Here we consider as an alternative to approximate the
control law with a smooth one. This will ease the load on the actuator
hardware and prevent excitation of unmodeled fast dynamics. To this end,
let us modify the candidate control storage function (4.24) to

V(0,2,6,5) = R(x,0,t) — f(5)
where the function f is the approximation of min; S; given by

P

f(S):—%log S (4.25)

j=1

Here n > 0 is a fixed parameter which determines the accuracy of the
approximation. The function f(S) enjoys the following properties which
make it a suitable approximation of min; S;: 1) f is €, 2) f satisfies
Af/9S; > 0 and ), 8f/0S; = 1, and finally 3) f(S) < min; S; < f(5) +
n~"logp.

The maximum dissipation controller corresponding to V is

P 6f

a'(€,8) = 95

(=B X3&)

i=1
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i.e., it is a weighted sum of the conditional minimax control suggested by
each estimator. The derivation of this expression, as well as some further
comments on this control law, can be found in [116].

Supervision of the controller

As mentioned above, the heuristic certainty equivalence controller should
be supervised since we cannot prove that it guarantees satisfying oper-
ation. The dissipation analysis suggests that such a supervisory system
should monitor the signals S;(-). In particular, a decrease in min; S; or
f(Si) indicates that the controller has not identified the plant and is uncer-
tain about which control signal to actuate. On the other hand, a sudden
increase in this signal should also attract attention as it indicates that the
disturbances behave unexpected - a possible cause could be that a change
in system parameters has occured.

We conclude the discussion of heuristic certainty equivalence control with
a brief description of a simulation study:

Example 49: In [116] we discussed a case study regarding position control
of an inverted pendulum, see figure 4.4. Here we briefly recapitulate the
discussion; see [116] for further details.

0

Figure 4.4: An inverted pendulum with force control and disturbance

The inverted pendulum is popular in benchmark problems because 1t is
nonlinear, unstable, and minimum-phase (from the control force to the
cart position), and yet relatively simple.

In our study, the plant is equipped with three sensors: One measuring the
position of the cart, one measuring the angular position of the rod, and one
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measuring the angular velocity of the rod. The latter is subject to fault so
we use two models to represent the control object; a nominal model and
one corresponding to the sensor fault.

A simultaneous controller for the two linearized plant models is constructed,
using the heuristic certainty equivalence architecture developed above.

The residuals .5; are pre-filtered with a first-order low-pass filter before the
plant estimate () is generated. This corresponds to exponential forgetting
in adaptive control, [85, 4].

Simulation results with the nonlinear plant and the switching controller are
shown in figures 4.5 and 4.6. Here a sensor fault occurs at time 7.4 seconds,
which is at a critical stage after a step in the position reference. The fault
is detected within approximately 0.2 seconds (figure 4.6). Some oscillations
result from the fault but the system is rapidly stabilized (figure 4.5). After
the fault has been detected system performance is worse since the one less
sensor implies worse state estimates.

The residuals 5; seem to be quite well suited as indicators of model fit, and
the heuristic certainty equivalence controller works nicely in this example.
Although further work is needed with respect to forgetting schemes and
modifications of the switching mechanism, the controller architecture seems
to be reasonable and holds some promise. a

4.7 Conclusion

In this chapter we have applied nonlinear H., theory to the problem of
simultaneous H., control of a finite number of linear plants. Our moti-
vation for investigating this problem is that it appears to be the simplest
problem of adaptive Ho, control, if one excludes problems where parameter
uncertainty is restricted to special system parameters.

We have shown that simultaneous H., control involves a nonlinear H .,
problem which possesses a number of simplifying features: The full infor-
mation subproblem can be solved using linear theory. The cost-to-go, or
the information state, 1s a quadratic function on state space which also
can be found using linear theory. Although certainty equivalence does not
apply, the simultaneous H., control problem can be reduced to a state
feedback problem on the worst-case filter, and hence be solved with finite-
dimensional dynamic programming. However, these worst-case filters will
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Position of the cart and its reference

——  Cart position
Reference

15

0.5

Position — meters

-15

-2 I

Time - seconds

Figure 4.5: The position of the cart and its reference. Sensor fault in the

angular velocity sensor at time 7.4 seconds.
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Figure 4.6: The residuals associated with the two models. The controller
corresponding to the lower residual is connected to the plant. The fault at
time 7.4 seconds is detected when the lines cross; approximately at time

7.6 seconds.
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always be high-dimensional (example 49 leads to a filter with 14 states
despite being somewhat academic) which makes direct numerical solution
impossible and a prior: insight into the structure of the solution necessary.
We have made considerable progress in this direction, although a com-
plete solution requires conjecture 47 to be verified a falsified. Furthermore
we have investigated the heuristic certainty equivalence controller, and al-
though the assumptions under which we can guarantee its performance are
very restrictive, our simulations study suggests that its architecture is quite
reasonable.

The work reported in this chapter may be continued in several directions:
Further theoretical study of the problem may lead to conjecture 47 being
resolved, or less restrictive conditions under which the heuristic certainty
equivalence controller is sufficient. Also approximations of the heuristic cer-
tainty equivalence controller and investigation of various forgetting schemes
is a subject which deserves more attention. Some hints towards other sub-
jects are given in the succeeding notes.
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4.8 Notes and references

Related recent literature

A study of simultaneous output feedback H., control using digital con-
trollers is presented by Savkin in [94]. The approach in this reference is
reminiscent of the information state machinery, although it is not explicitly
used since the problem is not formulated as a nonlinear H., problem. The
main result of the paper is that a feasible controller exists if and only if
a) the filter algebraic Riccati equation (4.12) admits a suitable solution
(although a small perturbation of the equation is necessary due to the use
of digital controllers), and b) a full information minimax control problem,
which except for the use of piecewise constant control signals is similar to
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the problem discussed in section 4.5, admits a solution. As a consequence
we may restrict attention to finite dimensional controllers. The problem of
explicitly characterizing the solution of this state feedback minimax control
problem is not addressed. It is interesting to notice that the use of digital
controllers leads to a certain amount of technical simplification.

In [90] Rangan and Poolla consider a problem of simultaneous H o, control,
which 1s similar to the one studied here, but is formulated in discrete time
and on finite horizon. The approach is based on the information state ma-
chinery. Difficulties regarding regularity of the value function are avoided
due to the finite horizon discrete time setting. Very interestingly, a result
which resembles our conjecture 47 is stated. The proof of the result has
not been published (the result is not included in [88]), and therefore it is
not clear if it can be modified to assist in the verification of our conjec-
ture 47. Other problems related to identification and control of a plant
with multiple models are investigated in [88].

Jumping parameters

In applications one must usually expect that the parameter 6 1s not constant
for all time, but will occasionally jump. This holds whether the problem is
one of fault handling or an approximation to an adaptive control problem,
where the continuous parameter space has been discretized.

As we mentioned in example 49 in section 4.6, one may add a exponential
forgetting scheme to the heuristic certainty equivalence controller in order
to make 1t handle parameter jumps. This forgetting scheme and others are
popular in adaptive control [4, 85], and although it is most often difficult
to carry through a rigorous analysis of the resulting system, experience
indicates that they work quite well.

A rigorous approach to the problem with jumping parameters is to model
the parameter variations with a Markov chain, which then leads to a
stochastic dynamic game. The full information, finite time version of this
game is treated in [8], where the solution is shown to be governed by a
p coupled differential Riccati equations. The corresponding output feed-
back problem is open and involves several new difficulties, regarding the
characterization and réle of the information state.
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Relaxing the simplifying assumptions

We have assumed the simple case [128] of the p linear Ho, control prob-
lems, i.e. observability of (H;, A;), controllability of (A;, G;), decoupled
process and measurement noise w and v, and a decoupled error signal
z = ((Hz)',u"). Relaxing these assumptions involves mainly algebraic
manipulations [128], although certain details require attention.

Another assumption which can easily be removed is that the p plants have
state space representations with the same dimension.

Part 11

Stochastic models

101



Chapter 5

Dissipation in stochastic
systems

We define the property of dissipativity for controlled Ito diffu-
sions, and we investigate elementary properties, such as differ-
ential dissipation inequalities, convexity, and the connection to
stability.

5.1 Introduction

Dissipative systems play a central role in the deterministic theory of robust
stability, as evident from the works of numerous authors and also from the
first part of this thesis. The deterministic theory also enables performance
analysis, where performance is measured by the response to initial condi-
tions, or by the worst-case response to an input in some set. The resulting
framework has much appeal from a theoretical as well as from an engi-
neering point of view, and is in accordance with the currently dominating
paradigm for robust control.

A drawback of this framework is that 1t does not allow for stochastic repre-
sentations of uncertainty, such as white noise disturbances, or for stochastic
performance measures, such as risk of failure. On the other hand, the lit-
erature on stochastic systems does little to address the issues of robustness

103
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towards dynamic perturbations which motivated for instance the develop-
ment of H., control.

This suggests that it may be fruitful to extend the theory of dissipation
to stochastic systems, and apply it to robustness analysis of stochastic
systems. In this chapter we report results which indicate that the concept
of dissipation is indeed meaningful in a stochastic context, and that much
of the deterministic theory applies more or less directly.

Dissipation-like properties of stochastic systems do appear in the literature.
For instance [31] uses stochastic Lyapunov functions to achieve bounds on
the Ls-gain of a wide sense linear system with deterministic inputs and
stochastic outputs. Another example is the stochastic small gain theorem
in [30] which connects input-output properties to Riccati equations, the
solutions of which are subsequently used to obtain a stochastic stability
result.

5.2 Preliminaries

We consider a controlled process z; in a Euclidean state space X = R”
given by an Ito stochastic differential equation evolving on the time interval

T = [0, o0)
dey = f(wy, we) dt + g(we,wy) dBy, xg=2€X (5.1)

where B; is standard m-dimensional Brownian motion on a probability
space (£2, F, P) with respect a given filtration F;. The initial condition #
is deterministic. The input w; is an F;-adapted process taking values in
Euclidean space W = IRP. See [83] for the necessary background material.

The system exchanges some quantity with its environment, specified by a
supply rate » : X x W — R. The accumulated flow from environment into
the system during the time interval [0,] is R; where

th = T(l‘t, wt) dt, RO =0 . (52)

Notice that we here consider the supply to be a function of state and input,
rather than a function of input and output. The motivation for this is
simply to achieve a shorter notation, and the reader may substitute r(z, w)
with s(z, w) if he so pleases, where z = A(x, w) is the output.
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We do not wish to dwell on technicalities regarding existence and unique-
ness of solutions. Hence we simply restrict the input w; to a set W of
Fi-adapted inputs for which there exists a unique ¢-continuous solution a;,
and assume that W is sufficiently large and closed under switching so that
the principle of optimality holds.

Associated with the equation (5.1) we define for each w € W the differential
operator LY : C?(X,R) — C°(X,IR) given by LYV (z) = V. f + %trg’Vmg
where the right hand side is evaluated at (z, w).

If J is a functional on sample paths of the processes x;, w;, then E®J is
expectation w.r.t. the probability measure generated by z;, w; with initial

condition g = z. In this notation the dependence of E¥J on the input w;
1s suppressed.

5.3 Definition of dissipativeness and elemen-
tary properties

Recall that the fundamental element in the deterministic theory of dissipa-
tion [124] is the storage function V : X — R which satisfies the dissipation
inequality

Vixe) < V(o) —1—/0 r(xs,ws) ds

along every trajectory of the system. This inequality can be generalized
to a stochastic setting in several ways, but it appears that the most useful
framework 1s achieved by requiring the inequality to hold in expectation:

Definition 50: We say that the system (5.1) is dissipative w.r.t. the
supply rate r, if there exists a non-negative storage function V : X — R
such that the integral dissipation inequality

Ef{V(x,) —/ r(xs,ws) ds} < V(x) (5.3)

0
holds for all bounded stopping times 7 and all solutions «, w; of the system
with zg = z € X. O

We emphasize that the dissipation inequality is only required to hold for
bounded stopping times 7; see p. 114 below for a comment.
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Using the results in e.g. [83], it is easy to see that storage functions are
related to a differential version of the dissipation inequality:

Proposition 51: A nonnegative C? function V : X — R is a storage
function if and only if it satisfies the differential dissipation inequality

sup LYV (z) — r(z,w) <0 (5.4)
weWw

on X. A

Proof: Sufficiency: Let V be C? and satisfy the inequality (5.4). Let
z¢, wy be a solution with g = € X and let 7 be a bounded stopping time,
ie. 7 <T. Let (#4ar, Renr) be the process (z,, Ry) stopped at 7, i.e.

drinr = doy - Xe<r,  dRiar = dRe - xi<r

(Here x:<; is the indicator function, i.e. x:<; = 1 if and only if ¢ < 7 and
0 othervv;se). Now consider V (z¢ar) — Rinr. By Ito’s lemma this process
i1s again an Ito process and the differential dissipation inequality implies
E?(V(xinr) — Renr) < V(). Now notice that 2par = 2, and Rpar = Rr;
we have thus shown that the inequality (5.3) holds.

Necessity: Let V be a C? storage function and consider a solution (z;, w;)
for which the input is constant and deterministic, w; = w € W, and the
initial condition xg = x € X is deterministic. Then V is in the domain
of the characteristic operator A" (see [83, p. 116]) and the dissipation
inequality (5.3) implies that L%V (z) = AYV(z) < r(z,w). Since z and w
were arbitrary the conclusion follows. [ |

We define the available storage of the system (5.1) w.r.t. the supply rate r
in a manner analogous to [124], namely by

Va(2) = sup Ex/ —r ds (5.5)
we,T 0

where the supremum is over all bounded stopping times 7 and all solutions

x¢, wy with xp = x. With this definition we immediately have a result

analogous to theorem 1 in [124, p. 328]:

Proposition 52: The available storage is finite for all z € X if and only
if the system is dissipative. Furthermore, in this case the available storage
is in itself a storage function and any other storage function V satisfies

Viz) > Va(z), VeeX
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Finally inf{V,(x) : z € X} =0. A

Proof: First we show that if the available storage 1s finite, then it is a
storage function. It is immediate that V, > 0 (if necessary, this is obtained
by letting 7 — 0). The dissipation inequality then reads

Ef{Va(zr) — /OT rdst < Vy(x)

which follows from the principle of optimality. Hence the system is dissi-
pative.

Second we show that if the system is dissipative with storage function V,
then we have V, < V; in particular the available storage is finite. To see
this we rewrite the dissipation inequality as

E°® /T —rds < V(z)— E°V(z;) < V(x)

where the second inequality follows from V' being non-negative. Since this
inequality holds for all bounded stopping times 7 and all solutions z;, w;
which satisfy ¢ = # we have V,(x) < V(2) < oo. The conclusion follows.

Finally we show the last claim: Let V(z) be a storage function, then it is
easy to see that so is V(x) —infe V(£), hence V,(z) < V() —inf, V(£). Tt
follows that inf, V,(2) < 0. [ |

The available storage is related to a differential dissipation equality; see the
note on page 116 below.

In chapter 2 on deterministic systems, we stated that storage functions and
supply rates satisfy a joint convexity property (proposition 2 on page 32).
This generalized a statement of Willems [124, theorem 3, p. 331] and
was the key to the chapter 3, which reduced robustness analysis to convex
optimization. This approach to robustness analysis i1s also fruitful in a
stochastic context, which is the subject of the succeeding chapter. At this
point we state a result similar to the deterministic proposition 2:

Proposition 53: Given a diffusion (5.1), a linear space V of candidate
storage functions V : X — R and a linear space R of supply rates. Then
the subset

{(V;r)CVY xR |V >0and (V,r) satisfy (5.3)}

Is a convex cone. A
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Proof: Letr; € R fori = 1,2 be chosen such that the system is dissipative
w.r.t. r; and let two corresponding storage functions be V{(z;r;). Let x,
wy be a solution with 2y = ¢ € X and let 7 be a bounded stopping time;
we then know that

E7{V (xr;mi) — /OT ri dt} <V (#;7)

By multiplying these two inequalities with positive constants «; and adding
the results we see that a1V (x;71) + a2V (2;rq) is a storage function for the
system w.r.t. the supply rate ayry + aors. [ |

In particular, the set of dissipated supply rates in R is a convex cone, as is
the case for deterministic systems (see chapter 2 or [45]). A related fact is
the following:

Proposition 54: Let V,(z;7r) € [0,00] be the available storage of the
system (5.1) with respect to the rate r € R, then for each z the function
Va(x;r) is convex in 7. A

Proof: The available storage is for each z defined as the supremum of
a family of functionals which are convex in r; the same holds therefore for

Valz, ). u

5.4 Linear systems and quadratic supply rates

Consider a homogeneous wide sense linear system

de; = [Az, + Bwi] di+ Y _[Fiw, + Giw,] dBj (5.6)

i=t

with a quadratic supply rate r(x,w) = (' @' )Q(z’ w')’. We assume that
7 is concave-convex in (,w) which implies that r is regular in the sense
r(z,0) < 0. This system is linear in the sense that the set of solutions
(¢, we) is a linear space; in other words, the map from input process w;
and initial condition z to the state process z; is linear. It can be shown
that if such a system is dissipative then the available storage is a quadratic
function of the initial state #, i.e. may be written as

Va(z) = o' Py
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where P, = P, > 0. Furthermore, the quadratic storage functions V(z) =
#'Px with P = P’ are exactly those that satisfy P > 0 and the differential
dissipation inequality (5.4) which can be rewritten as the linear matrix
inequality

PSR GIPELGI<Q . 67)

i=1

PA+ AP PB
B'P 0

It is thus possible to use LMI solvers as [38, 32] to answer the analysis
questions: Is the system dissipative? If yes, what is the available storage?

Remark 55: Tt is well known (see e.g. [76] and the references therein) that
multiplicative noise terms Fj, G; can be advantageous for a linear system
from the point of view of stability in probability. But such a noise term
will always contribute positively to the left hand side of the inequality (5.7)
which shows that multiplicative noise terms are always disadvantageous in
analysis of dissipation w.r.t. a quadratic supply rate. a

Supply rates of special interest are those corresponding to passivity and
small gain. Stochastic L2 gains have recently received some attention and
stochastic bounded real lemmas as well as other results can be found in [30,
31, 48]. Stochastic passivity has, to our knowledge, not been considered in
the literature, probably because stochastic passivity of an isolated system
1s of no particular interest. However, if a nominal stochastic system is
connected to an unknown passive perturbation, then it is of great relevance
if the nominal system is stochastically passive. We will later return to such
robustness issues; at this point we state a stochastic positive real lemma:

Proposition 56: For the system (5.6), let the supply rate be r(z, w) =
2(w, z) with z = Cz + Dw. Then the following are equivalent:

1. The system is stochastically strictly input passive, i.e. stochastically
dissipative w.r.t. r—e¢|w|? for some ¢ > 0, and the autonomous system
obtained with w = 0 is exponentially mean square stable.

2. There exists a P = P’ > 0 such that

PA+A'P PB - 0o
B P 0 ] +Z[Fi,Gi]/P[Fz’,Gi] < [C D’—|—D] - (5.8)
i=1

A
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Before we prove the proposition it is convenient to state an elementary
matrix lemma:

Lemma 57: Let Q =Q' >0, R=R > 0,5 and T = T’ be of compatible
dimensions, then for o > 0 sufficiently small the matrix inequality

0 0 -R S
0 Q| % 9 T
holds. O

Proof: [of the lemma] By Schur complement, the inequality holds if and
only if aR > 0 and Q —aT — a5’ R™1S > 0. These conditions are satisfied
for a > 0 small enough since @ > 0 and R > 0. ]

Proof: [of the proposition] To see that the linear matrix inequality
condition is sufficient one needs only verify that V(z) = 2/ Pz is a storage
function function w.r.t. r — ¢|w|? for sufficiently small ¢, and that, with
w = 0, V serves as a stochastic Lyapunov function to show exponential
mean square stability using a standard sufficient condition [43, p. 200].

To show necessity we use that exponential mean square stability implies [43,
p. 201] the existence of a 7 = Z' > 0 such that

ZA+AZ+Y F'ZF <51
i=1
for some § > 0. Now let € > 0 and let V(x) = 2’ X« be a storage function
for the system with respect to the supply rate r — e|w|?, ie. X = X' >0
and

XA+ AX XB , 0 c

i=1

m

We claim that P = X + a7 solves the linear matrix inequality (5.8) for
a > 0 sufficiently small. To see this, insert P = X + o7 in (5.8) and
reduce terms using the LMIs which X and Z satisfy, thus obtaining

0 0 S = ZB+ > F!ZG,
0 e |7 BZ+YGIZF,  Y.G2G;s

This inequality holds for & > 0 small enough according to lemma 57 which

completes the proof. [ |

Apart from strict input passivity, one could imagine several other defi-
nitions of strict positive realness of a stochastic system, just as in the
deterministic case [123].
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5.5 Stability and interconnections of dissipa-
tive systems

As in proposition 56 and in deterministic theory [124, 45] a storage function
often serves as a Lyapunov function to show that the isolated system is
stable. Indeed, this is one of the properties which make dissipative systems
interesting from a control point of view.

In order to investigate stability of the autonomous system
dl‘t = f(l‘t, 0) dt + g(l‘t, 0) dBt (59)

we use the terminology of Has’minskii [43]:
Definition 58: A constant solution z; = Z of the autonomous equa-
tion (5.9) is stable in probability if for any ¢ > 0
lim P®{sup|z; —Z| > ¢} =0
>0

r—T

where the diffusion z; solves (5.9) with zq = =. a

Using the existing Lyapunov-type criterion for stochastic stability [43] we
immediately get the following:

Theorem 59: Let the supply rate r be regular in the sense that r(z,0) < 0
for all . Let the system (5.1) be dissipative with respect to r and let V
be a continuous storage function which attains an isolated local minimum
at £ € X. Then the process z; = & is a solution of the autonomous
equation (5.9) and is stable in probability. a

Proof: The proof runs along the same lines as theorem 3.1 in [43, p.
164], the only deviation being that V' is not required to be C? around z.
Let @ = V(&), let Q be a neighbourhood of # such that ¢ < V() for
z € Q\{z}. Let T be the stopping time 7 = inf{t : z,¢Q}. It follows from
the dissipation inequality that V(zia;) — @ is a supermartingale for any
initial condition x € . In particular if # = & then z; = & w.p. 1 for all
t which proves the first claim. Furthermore for z # & the supermartingale
inequality of Doob (see e.g. [83, p. 28]) yields

Posup V(ziar) —a > e} < Viz)=a
>0 €
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which holds for all e. Now pick arbitrarily small €, ¢’ > 0 such the e-ball
around Z is contained in . We must show that there exists § > 0 such that
|z — 2| < 6 implies P¥{sup,» |#: — Z| > €} < €. To this end choose V3 > a
such that ¢ € Q and V() < Va together imply ¢ — Z| < e. Then choose
Vi > asuch that (V3 —a)/(Va—a) < €. Finally choose § € (0, ¢) such that
|¢ — | < ¢ implies that V(€£) < V;. We then have the implications

lt—z[<d = V()—a<Vi—a

Vi —
= P{supV(ziar)—a>Va—a} < i
>0 Vo —a

= P"{suple;— | > ¢} < ¢
t>0 -

as desired. [ |

Remark 60: We say that the system (5.1) is locally dissipative around
z w.r.t. the supply rate r if there exists a non-negative V' and a bounded
neighbourhood €2 of & such that the dissipation inequality holds provided
zy € Qfor 0 <t < 7. In this case we say that V' is a local storage function.
A necessary and sufficient condition for a non-negative C? function V' to
be a local storage function is that it satisfies the differential dissipation
inequality (5.4) on €. Tt is easy to see that the above theorem holds if the
storage function V is replaced with a local storage function. ad

One may show other stability properties such as stochastic sample path
boundedness or exponential p-stability by imposing additional constraints
on the storage function and the supply rate and using the corresponding
Lyapunov-type theorems in [43].

As in the deterministic case, the stability implications of dissipativity is
important in robustness analysis since systems consisting of dissipative
components are themselves dissipative. Consider the simple case of two
systems

Y o det = (2wt dt + g (2%, w') dB'
connected 1n feedback through the equations
w' = h (2%, w?) +v! and w? = Al (2t w!) 4 v?

Here h' are output functions and v’ are exogenous inputs. Assume that
each system is dissipative w.r.t. the rate r*(z*,w’). In addition, assume
that the interconnecting equations have unique solutions w® = w* for all
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z' and v’ (for instance, if one of the two h’ is independent of w') and that
the resulting system satisfies the well-posedness assumptions of section 5.2
(in particular, (B, B?) is standard Brownian motion w.r.t. the filtration
F¢). Tt is now easy to verify that the interconnection is dissipative w.r.t.
the supply rate r(z!, 2% vt v?) = r1(z!, wl) + r?(2?, w?). Combining with
the stability result of theorem 59 we get:

Proposition 61: Assume that the each of the storage functions V()
is continuous and attains an isolated local minimum at 2 = 0. Assume
in addition that the supply rates satisfy r(z!, 22 0,0) < 0 for all 2!, z2.
Then ! = 0 is a solution of the interconnected system with v! = 0 and
this solution is stable in probability. A

The main application of this result is to give a sufficient condition for ro-
bust stability of a stochastic system subject to a deterministic dissipative
perturbation, for instance combining with the positive real lemma of propo-
sition 56:

Corollary 62: Let a system X be given by the dynamics (5.6) and
the output equation z = C'z + Dw, and let ¥ be connected in feedback
with a perturbation A : z — w which is dissipative w.r.t. —2(w, z). Let
the interconnection be well posed and let A possess a continuous storage
function of which some point £ is an isolated minimum point. Assume that
there exists a P = P’ > 0 such that the linear matrix inequality (5.8) holds.
Then the constant process (0,&) is a solution of the interconnection and
this solution is stable in probability. a

The corollary demonstrates that, as in the deterministic theory, robustness
questions can be resolved by computing storage functions; in the case of
linear systems this reduces to linear matrix inequalities.

5.6 Chapter conclusion

It can be argued that the concept of dissipation in dynamical systems is
the unifying factor behind a broad range of results in deterministic control
theory, in particular within robust control. We believe that the appeal of
the framework is not lost in the transfer to a stochastic context.

Although this chapter demonstrates that several key features of the deter-
ministic theory generalizes to the stochastic setting, the stochastic theory
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is far from complete. Some comments on remaining problems are discussed
in the following.

5.7 Notes and references

Unbounded stopping times

In our definition of a dissipative stochastic system, the integral dissipation
inequality (5.3) was required to hold for bounded stopping times only. This
leads to the question: If V is a storage function for the diffusion (5.1) and
is an unbounded stopping time, does the dissipation inequality (5.3) hold?

The short answer to this question is: Not necessarily. Let € > 0, then a
trivial counterexample is the stopping time

r=inf{t >0 : V(xt)—/trdt>V(x)—|—e}

for which .
ExV(xT)—Ex/ rdt=V(z)+e
0

provided that V is continuous, implying that the dissipation inequality does
not hold. It is possible to construct examples where this stopping time is
finite almost surely - the interested reader is encouraged to consider the
diffusion dx; = —z; dt + w; dB; with the supply rate r = —22% + w? and
take the input w; to be a non-zero constant.

A first step towards a more complete answer is that a sufficient condition
for the dissipation inequality (5.3) to hold is that V' is a storage function
and that the family

tAT
{V(l‘t/\T) — / r dt}t>0
0

of random variables is uniformly integrable. This follows from a conver-
gence result for uniformly integrable random variables, [83, p. 41] - we refer
to the same reference for the definition of uniform integrability. We expect
that more explicit results can be obtained for special classes of unbounded
stopping times, such as the first exit time of z; from a given domain.
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Non-smooth storage functions and viscosity solutions

In deterministic theory of dissipation, it has been shown by James [53] that
locally bounded storage functions can without loss of generality be taken
to be lower semi-continuous (l.s.c.), and that l.s.c. storage functions are
exactly the viscosity solutions to the differential dissipation inequality (5.4).

The question is if the analogous statements hold in the stochastic setting.
It is easy to show that l.s.c. storage functions are indeed viscosity solutions
to (5.4). We conjecture that also l.s.c. viscosity solutions to (5.4) are stor-
age functions. Existing stochastic verification theorems in the framework
of viscosity solutions [62, 131] are based on uniqueness results for viscos-
ity solutions and are therefore not applicable to dissipation inequalities (or
even the corresponding equalities) which have many solutions. The de-
terministic technique in [563] could probably be modified and applied; the
additional complication that the dissipation inequality must hold for any
random bounded stopping time 7 could be addressed with the results on
optimal stopping in [84].

Further questions are if locally bounded storage functions can taken to be
l.s.c. and under what conditions they can be taken to be continuous or
even C?. These issues are left for future research.

The required supply

Recall that we in chapter 2 defined the required supply of a dissipative
deterministic system as

T
(z) = inf 1) dt
Vila) = inf / (1)

where the infimum 1s subject to the system dynamics and the conditions
Va(2(0)) = 0 and «(T) = x. We see that this definition does not extend
directly to stochastic systems, because the presence of noise may make it
impossible to reach a specified terminal state in finite time.

An alternative starting point for a definition is

Vi(z) = sgp Vi(x)
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where the supremum is over all L.s.c. storage functions V' for which V(§) =0
whenever V,(£) = 0. Assume that the required supply defined in this
fashion is finite; then it is L.s.c. and satisfies

Ex{VT(xT)—/OTrds}go if Vy(x)=0

Does the available storage satisfy a PDE?

It 1s well known that there is an intimate connection between the Hamilton-
Jacobi-Bellman equations and the available storage, the required supply
and other value functions, [83, 7]. Nevertheless, the exact nature of this
connection is often misquoted, in that situations where the value function
does not satisfy the Hamilton-Jacobi-Bellman equation are regarded as
pathological. Consider as an example passivity analysis of a scalar wide-
sense linear diffusion:

dey = (-2 + wy) dt + o2, dBy , 7(z,w) = 2w,

where ¢ > 0 is a parameter. Since the system is linear and the supply rate
i1s quadratic we know that the available storage is a quadratic function of
the state. It is easy to verify that a quadratic storage function V(z) = ax?
must satisfy

Vi, w: 20x(—z 4+ w) + ac’e? < zw

which implies

We see that the system is dissipative if and only if 02 < 2. In this case the
available storage satisfies the Hamilton-Jacobi-Bellman inequality

1
sup {L*Va(x) — r(z,w)} = (=14 50'2)932 <0
Only when ¢? = 2 does the available storage satisfy the Hamilton-Jacobi-
Bellman equation. The available storage solves a strict HJB-inequality
when o2 < 2, for instance in the deterministic situation ¢ = 0.

The reason why the value function does not satisfy the HJB-equation is that
no optimal solution exists. For the optimal control problem associated with
the available storage, almost-optimal Markov controls are w = — f& where
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f — +oo. Theorems which state that the value function satisfies a PDE
(as for instance theorem 11.1 in [83]) need the existence of an optimal pair
(xF,wy) (either explicitly assumed or implied by other assumptions) since
their proofs involve differentiating the value function along z;.

Another situation where the available storage does not satisfy the Hamilton-
Jacobi-Bellman equation is when the supply rates are not regular, i.e. in
some region of state space the input is forced to deliver a positive sup-
ply to the system. A trivial example is the system above with the supply
rate 1. In general, non-regular supply rates lead to many contra-intuitive
phenomena and should be treated with care or avoided.

Computation of storage functions with convex optimization

Consider the input-affine controlled diffusion on X = R”
dey = (f(x) + ¢(z) wi) di + (g(xe) +y(2e) we) dB
with the input-quadratic supply rate
r(z,w) = h(z)+ 2k(z) w+w' l(z) w

We assume that both B; and w; are scalar processes. The case of vector
processes 1s conceptually the same but the notation is more involved. The
backwards operator 1s

1
LYV (x) = Vof + Ved w+ §(g +5 w)' Vee(g +7 w)

for Ve C?*(X,R); we have omitted the argument z on the right hand
side. The differential dissipation inequality (5.4) can then be written more
explicitly as

ks l/xx_h lx l/xx_k
P(V,z) = 1Vf+2gvg 7Ve0 ¥ 30 Ver <0
g(vx¢)/ + %'Ylvxxg — K P)/Vxx’)/ —1
(5.10)
Here P : C?(X,R) x X — R?*2. A non-negative C? function is a storage
function if and only if this matrix inequality holds at each point x in state

space (proposition 51 on page 106).
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We now suggest the following numerical strategy for computing storage
functions: Choose a set of basis functions V¢ € C'?(X,R) and search for a
storage function of the form

Viz) = Z aiVi(x)

The basis functions V? could for instance be polynomials, trigonometric
functions, or wavelets. In order to verify if V is a storage function, we test
for dissipation and non-negativity at a set of points 27, j = 1,..., M. This
leads to the LMI problem

Find «y, ..., ay such that

N N

S aiP(Via) <0, Y aiVi(e) >0 forj=1,....M (5.11)
i=1 i=1

for which software such as [38, 32] can find a solution or determine that no

solution exists.

The LMI problem has N scalar variables, M scalar constraints and M 2-
by-2 matrix constraints. If w is a m-vector rather than a scalar, then the
matrix constraints will be (m+1)-by-(m+1). Notice that the dimension
of the state space does not affect the size of the matrices; however high-
dimensional state spaces need a large number of basis functions V¥ and
a large number of evaluation points z; in accordance with the curse of
dimensionality.

If the differential dissipation inequality (5.10) is merely satisfied at points
x;, it is quite likely that it fails near z;. Therefore, one may wish to
consider strict inequalities in (5.11) and attempt to solve

Find «aq,...,an, 81, B2 such that

N
ZaiP(Vi,xj)g—ﬁl k(z), forj=1,...,.M |

i=1

N
Zaivi(l‘j) > P Alz), forj=1,...,M |

i=1

ﬁ1>0a ﬁ2>0
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where k and A are given functions.

Computing storage functions with LMI software is a relatively flexible prin-
ciple which may be modified in several ways, depending on the specific ap-
plication. For instance, one may search simultaneously for a supply rate in
some convex polytope, add constraints on the storage function, its gradient
or curvature, or one may include a linear functional of storage function and
supply rate to be minimized.

If one goes beyond input-affine systems with input-quadratic supply rates,
then storage functions may still be found with convex optimization but
with much greater difficulty since the differential dissipation inequality does
not reduce to LMIs in state space. Further complications arise when the
supremum over w in the differential dissipation inequality (5.4) cannot be
evaluated explicitly.

While the above discussion may be sufficient for illustrative academic case
studies, it would be necessary for real-world applications to consider the
numerics in greater detail. A specific question which deserves attention
concerns the dual to (5.10). As emphasized in [19], when convex opti-
mization is used as computational tool in control theory, the dual problem
often have interesting control theoretic interpretations. See [57] for an ex-
ample where dualism is utilized in discretized infinite-dimensional convex
optimization problems.

Another strategy for numerical computation of storage functions is to solve
a partial differential equation corresponding to the differential dissipation
inequality (5.4) using a finite difference scheme [65]. The two approaches,
convex optimization and numerical solution of PDEs, may also be com-

bined.

Simplifying computations with modularity

For a realistic problem involving more than a couple of states and without
specific simplifying structure, the approaches outlined above become unre-
alistic as the numerical burden becomes overwhelming. In this case it may
be feasible to decompose the system into a number of sub-systems. These
sub-systems need not correspond to physical units but could for instance
be dynamic modes which are known to interact weakly. Then one may per-
form dissipation analysis on each of the subsystems and after this conclude
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on the dissipation of the overall system using the results on interconnec-
tions of dissipative components. In effect this corresponds to imposing a
specific structure on the storage function of the overall system. Needless
to say, the effectivity of this approach relies heavily on the physical and
mathematical insight into the system.

For deterministic systems with (single) supply rates corresponding to pas-
sivity, this approach to analysis goes back to Popov’s work on hyperstabil-
ity [87]. An interesting topic of future research would be systematic modu-
larization. Backstepping and other recursive design techniques [63, 24] can
be seen as extreme examples of systematic modularization.

Stratonovich equations

In this dissertation we work exclusively with the Ito interpretation of stochas-
tic differential equations. In some applications it is more natural to model
uncertainty with stochastic differential equations in the Stratonovich in-
terpretation. The difference between the interpretations is mainly one of
modelling, though; in fact a stochastic process z; solves the Stratonovich
equation

dl‘t = f(l‘t) dt + g(l‘t) o dBt

where B; is scalar Brownian motion if and only if it solves the equivalent
Ito equation

dey = f(o) dt + %gx(xt)g(xt) dt + g(x¢) dB:

See [83, p. 75, p. 32 f] - a similar formula holds for the case of multidi-
mensional Brownian motion. Therefore, if one has modelled a system with
a Stratonovich equation, then one may afterwards do the analysis for the
equivalent Ito6 equation.

Chapter 6

Robust performance of
stochastic systems

We demonstrate that a number of performance objectives for
stochastic systems correspond to stochastic dissipation require-
ments: stochastic L2 gain, H, gain, probability of failure, and
expected time to complete a mission. Then we consider stochas-
tic systems subject to dissipative perturbations and show that
a stochastic dissipation analysis of the nominal system can pro-
vide sufficient conditions for robust performance of the per-
turbed system.

6.1 Introduction

The previous chapters in this dissertation have demonstrated that dissi-
pation theory is a very useful tool in addressing deterministic problems
of robustness analysis, and that dissipation theory can be generalized to
a stochastic setting. The objective of this chapter is to combine these
two statements: Robust performance analysis of stochastic systems can be
based on stochastic dissipation.

What motivated us to consider robust performance of stochastic systems
was the specific problem of robust Hs performance in presence of H

121
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bounded perturbations. The reader may recall that we in chapter 3 gave
a sufficient analysis condition for this problem, for linear systems; there
we employed the deterministic interpretation of Hs performance which is
in terms of the response to impulse inputs. This lead to the question if
the same condition would also bound the #» performance in the stochas-
tic interpretation, i.e. the response to white noise. This chapter employs
our notion of dissipative stochastic systems to answer this question affir-
matively: For linear systems, one LMI condition on the nominal system
implies robust Hy performance, whether the deterministic or stochastic in-
terpretation of Ha performance is used. (See the note on page 142 for
references to the literature on mixed Hs/Hoo problems.)

While our original objective was to bound the variance of an error signal
in presence of deterministic and stochastic uncertainty, it soon became
clear that many other performance objectives could be addressed with the
same framework. Essentially, if performance analysis for the unperturbed
stochastic system can be cast in terms of a Lyapunov-type function on
state space, then robust performance can be guaranteed by dissipation-
type arguments. Particular examples of such performance measures are
the risk of failure, as well as expected time to complete a mission. In this
chapter we provide bounds for the risk of failure of a stochastic system in
presence of deterministic dissipative perturbations; this demonstrates that
it 1s indeed possible to merge stochastic and robust control.

The chapter is organized as follows: First, in section 6.2, we discuss perfor-
mance measures for autonomous stochastic system which can be formulated
in terms of dissipation. Then, in section 6.3 we add an exogenous distur-
bance and discuss L5 gain and Hs performance of the disturbed stochastic
system. In section 6.4 we consider finite signal-to-noise ratio systems in
the sense of Skelton and embed the associated problems in our dissipation-
based approach to robust performance.

In section 6.5 we demonstrate that robust performance of stochastic systems
subject to multi-dissipative perturbations can be guaranteed by performing
dissipation analysis on the nominal system. After this general statement
we present two examples: robust 2 performance, and robust bounds on
the probability of failure. Finally section 6.6 contains a few concluding
remarks.
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6.2 Performance of autonomous systems

In this section we consider the autonomous stochastic system
Y dey = flay) dt+ g(we) dB; (6.1)

where B; is standard Brownian motion with respect to a filtration F; on
a probability space (2, F, P). For this system we discuss two properties
which may be design objectives and give sufficient conditions in terms of
dissipation properties. We do not claim novelty of the conditions. Indeed,
they can be found in classical literature, for instance [64]. Our contribution
is simply to point out that these properties can be cast in our framework
of stochastic dissipation; in particular the characterization is convex. We
will employ this in a later section concerning robustness of the properties
towards dissipative perturbations, thus obtaining new results.

For the convenience of the reader we include the proofs, which are all quite
straightforward.

Expected time to complete a mission

Assume that the state z; of system X evolves in a domain D C X and that
the control mission is completed upon first exit from D. We then have the
following bound on the expected time to complete the mission:

Proposition 63: Let V : D — R be a continuous storage function for ¥
w.r.t. the supply rate —1; then the bound

Efrp < V(x)

holds for z € D. A

Proof: By hypothesis the process V(zinr,) +¢ A 7p is a supermartingale
and hence

Ef{tANmp} < E%{V(2tarp) +tATD < V()

Since this holds for all ¢ > 0 we conclude that 7p is finite P"-almost surely,
and that E?rp < V(z). [ |
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Risk of failure

Assume now that the boundary of D is divided into two components A
and B. As before, the process is stopped upon first exit from D and the
mission is denoted a success if A 1s reached, whereas exiting through B is
a failure. We then have the following bound on the risk of failure:

Proposition 64: Let V : D — R be a continuous storage function for ¥
w.r.t. the supply rate 0 which satisfies the additional constraint V|g > 1;
then the bound

P rp =1} < V(x)

holds for z € D. A

Proof: By hypothesis the process V(ziar,) is a supermartingale and
hence
Prp =71} < P{sup V(winsp) > 1} < V(2)
t>0

Here the first inequality holds because 7p = 7 implies V(2;,) > 1 and
hence supg<; V(2tarp) > 1. The last inequality is the supermartingale
inequality. [ |

Notice that the proposition does not claim that the probability of success is
no smaller than 1 — V' (#); this would in addition require that D is reached
in finite time, P"-almost surely. Propositions 63 and 64 may be combined
to yield such a result. A related question is what the expected time to
complete the mission is, conditioned on the mission being completed suc-
cessfully. This is the subject of appendix A (page 151 ff.) where a new
formula for this conditional expectation is derived.

6.3 Performance of disturbed systems

In this section we consider a disturbed stochastic system
Y o day = fag,v) dt 4 g(we,ve) dBe oy = e, vp) (6.2)

where v; 1s the disturbance input and y; is an output which is used in
evaluation of the performance of the system. As before, B; is Brownian
motion w.r.t. a filtration F;. The input v; is restricted to a set V of F;-
adapted signals for which there exists a unique ¢-continuous solution to the
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dynamic equation. We assume that V is sufficiently large and closed under
switching so that the principle of optimality holds.

Following standard notation [83], we define the backward operator associ-
ated with the controlled diffusion (6.2):

1
L'V =V, f + §tr(glvmg)

6.3.1 Stochastic £, gain

The L, gain is one way of measuring the amplification, or gain, of a deter-
ministic or stochastic system, and is a good performance measure when we
adopt a worst-case view on the inputs and wish to bound their effect on
the r.m.s. value of the output. A reasonable question is what makes the
L5 norm (or the r.m.s. value) suitable as a signal norm. Here we adopt
the pragmatic point of view that in many applications it is not at all clear
what signal norm is suitable, and that in these situations it may be most
fruitful to use the £5 norm since it leads to technical simplicity.

Definition 65: The stochastic £y gain of the system (6.2) is denoted
||X]|ee and equals the infimum of all 4 > 0 such that the system is stochas-
tically dissipative with respect to v2|v|? — |y|?. O

Thus, we have ||X]|oc < v if and only if

Ex/ lye|? dt < 'yzEx/ log|* dt + K (x)
0 0

holds for some K : X — R and all bounded stopping times 7 and all inputs
ve in V. In this case K must be nonnegative and may be taken to have
infimum 0.

Our choice of notation suggests that ||X||c is a norm. Indeed, it is possible
to organize systems of the form (6.2) in a linear space: Fix the probability
space (2, F, P), the filtration F; and the input space V. We then view the
system as a family of operators from input v; to output z;, parametrized
by the initial condition #, and define addition and scalar multiplication
of systems in the obvious way. Then the stochastic £y gain ||Z||s is a
semi-norm on the subspace of those systems for which it is finite.

The stochastic £ gain is the one property of stochastic dissipation which
has received considerable attention in the literature [30, 31].
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6.3.2 H, performance

Whereas it is largely agreed that the L2 gain is a suitable generalization of
the Hoo norm to nonlinear systems, it is less clear how to define the Hs norm
of a nonlinear system defined by the stochastic differential equation (6.2).
Here we suggest a new definition which is based on stochastic £ gains and
therefore fits into our framework of stochastic dissipation.

Since the Hs norm of a linear time invariant system concerns the response
to a white noise input v, we need to modify the model (6.2) to allow for
such inputs. Since we have restricted ourselves to Ito diffusions, which only
allow a white noise term dB/dt to enter affinely in the dynamic equation,
we must assume that (6.2) is affine in v;. Furthermore, recall [128] that
a stable rational transfer function has finite s norm if and only if 1t 1s
strictly causal, so we can assume that the output equation y = ¢(z,v) is
independent of v. Hence we assume that the system (6.2) has the following
special form:

Y dry = fey) dt 4 g(we) dBe + b(w)ve dt,  y = () . (6.3)

In order to define Ho performance of such a system X, we formally replace
the input v; with a white noise term 1, dé/dt. Here v; 1s a scalar noise
intensity while B, is standard Brownian motion with respect to F; and
independent of B;. Thus we obtain a new system, mapping the noise
intensity v; to the output y;:

Y dey = flae) dt+ g(xy) dBe + b(2y) 1y dét, yr = c(ay) (6.4)

Definition 66: The strong Hs performance index of the system (6.3) is
denoted ||X]|2 and equals the stochastic £2 gain of the system (6.4). a

The strong Ho performance index is the worst-case ratio between the vari-
ance of the output y and the intensity of the white noise input v; =
vt dét/dt. The affix strong is due to the feature that the intensity of the
white noise input is allowed to vary, for instance as a function of the state.

Implicit in the definition is that the filtration F; must be ’large enough’
to allow two independent F;-Brownian motion processes B; and Bt. This
mathematical twist will probably cause little concern in engineering appli-
cations where we start with statistical properties of noise signals and then,
usually implicitly, define the probability space accordingly.
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As was the case for stochastic £o gains, 1t is possible to organize systems
¥ of the form (6.3) in a linear space such that ||X||z is a seminorm on the
subspace where it is finite.

We have the following partial differential inequality condition for Hs per-
formance:

Proposition 67: For the system X defined by equation (6.3), let there
exist a real number v > 0 and a C? function V > 0 on X such that

1 1
VeeX: Vof+ §tr(glvmg) + §|C|2 <0, ~? > tr(b'Vyrd)

Then ||Z||2 < 7. A

Proof: We claim that V' is a storage function for the system (6.4) with re-
spect to the supply rate %721/2 — %yz. The differential dissipation inequality
is

1 1 1 1
Vo + itr(glvmg) + 51/2 tr(b'Verd) < 5721/2 - §|C|2 )

which is seen to hold for all z and all v if V and v are as in the proposition.
|

The condition is only sufficient since storage functions need not in general
be C2%. Notice that the characterization is convex in ¥? and V. In the
narrow sense linear case, i.e.

fle)=Az, g(z)=0, bx)=B, c(z)=Cz

we know from chapter 5 that we can restrict attention to quadratic storage
functions, i.e. V(z) = %l‘/Pl‘, and we recover the Lyapunov-type linear
matrix inequality problem

P>0, PA+AP4+C'C<0, v*>tr(BPB)

Feasibility of this problem is sufficient and necessary for ||X||z < 7 since
linear dissipative systems possess a quadratic storage function. In other
words, the strong H» performance index equals the standard Hy norm of
the transfer function C'(sI — A)~1B.

It is well known [128] that for linear systems the Hs norm of a transfer
function equals the steady-state variance of the output, when the input is
white noise with unit intensity. This generalizes to nonlinear systems as
follows:
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Proposition 68: Let v = ||Z]|2 < oo and assume that the intensity v,
in (6.4) is constant and equal to some number ¢ > 0, then

1 T
lim sup —Ex/ lys|* dt < o? - *
T— 00 T 0 -

If furthermore a stationary solution z; exists such that £ V(x;) < oo, then
B e(z)|* < o? -5
A

Proof: The assumption implies that the system ¥ is dissipative w.r.t.
v2v? — |y|?. Let V be a storage function; then the dissipation inequality

T
0< E°V(ep) <Vi(x)+ Ex/ 2 o? — |yt|2 dt
0
holds. This can rewritten as
1/TW|Pﬁ<1V<H-22
—_ JE— x . 0'
T o Yt =7 vy 3

which holds for all 7" > 0. Now take lim sup on both sides and notice
that limsupp_, o V(2)/T = 0. The second claim follows directly from the
dissipation inequality

T
E V(er) < EV(zg) + E/ o2 % — |c(xt)|2 dt
0

combined with the stationarity property F V(zr) = £ V(xg). ]

For general nonlinear systems the bounds in the proposition may be some-
what conservative since we have restricted the noise intensity v; to be con-
stant.

In the deterministic case ¢ = 0 the condition of proposition 67 is the exis-
tence of a Lyapunov function V' for the autonomous system & = f(x) such

that d )
LV (0) <~ le(eo)P

and which in addition has small curvature, i.e. tr(b'V;,;b) < 72. A classical
question is to what extent “nice” input-output behaviour (e.g. finite gain)
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implies “nice” internal behaviour (e.g. stability). In the deterministic case
g = 0 it is possible to employ La Salle’s theorem [59, p. 115, p. 440]. Hence
finite strong Mo performance index implies asymptotic stability of the zero
solution to the undisturbed system & = f(x) if: 1) the autonomous system
& = f(x), y = c(x) is zero-state detectable, and 2) the storage function V
in proposition 67 is proper and satisfies V=1({0}) = {0}.

A concluding remark concerns Hy performance of systems (6.2) which do
not have the input-affine form (6.3). In this case one needs a more general
framework for stochastic differential equations than Ito diffusions, which
allows a stochastic integral to be a nonlinear function of the driving mar-
tingale. Such a framework can be found in [75] but is beyond the scope of
this dissertation.

6.4 FSN models

In a sequence of papers [102, 104, 100, 110, 72, 71, 103], R.E. Skelton and
co-workers have introduced disturbances with finite signal-to-noise ratio
(in short, FSN disturbances) and discussed their use for representation of
uncertainty. In this section we demonstrate that FSN disturbances can,
too, be represented in the framework of stochastic dissipation.

FSN disturbances are white noise signals with intensities which are not
fixed a priori but grow with the variance of specified signals in the closed
loop. As argued in [102], this is a reasonable model of round-off errors in
finite word-length computations with floating point, as well as of turbulence
forces around air foils.

To be more specific, consider the linear system
r=Azx+Guw, y=Cr (6.5)

where w is an FSN disturbance: i.e., a scalar white noise signal with in-
tensity o3 + 07 F(y'y). Here o¢ and o are specified constants; oy is called
the noise-to-signal ratio. Also other terms such as controls may appear
in the expressions for # and y but are irrelevant to the present discussion.
The model can be generalized to allow for vector disturbances w in several
ways.

The model (6.5) is well suited for steady-state analysis: A unique invariant
distribution for = exists if and only if there exists a unique non-negative
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solution P to the generalized Lyapunov equation
PA' 4+ AP 4+ GG/ (0} + of - tr(CPC)) =0 . (6.6)

In this case, this unique invariant distribution for z is N(0, P), i.e. in
steady state x is zero mean, has covariance P and is Gaussian. However,
the model (6.5) does not fully describe the process z. For instance, assume
that we have observed x up to some time ¢, what is then the conditional
distribution of w? Such questions are important if one wishes to study
transient behaviour.

The objective of this section is twofold: First, we wish to generalize FSN
models to nonlinear and non-stationary systems. Second, we wish to formu-
late FSN models such that they can be combined with our dissipation-based
framework for robustness. We believe that the following model fulfills both
objectives:

dzr; = f(xt) dt +g(l‘t) (0’0 dB: + 01(; dBt) y Y = C(xt) . (6'7)

Here (; is the scalar output of an unknown deterministic system A which
has £ gain less than or equal to 1, and the input of which is y;. Further-
more B; and B; are independent standard Brownian motion.

In order to see that this is indeed a generalization of the model (6.5), set
f(z) = Az, g(x) = G, ¢(z) = Cz, and assume that steady-state has been
reached. Assume furthermore that A is a worst-case perturbation so that
the root mean square (r.m.s.) of {; equals that of y;. Then it is fairly easy
to see that x in steady state must have zero mean and variance P where
P solves the generalized Lyapunov equation (6.6), which implies that the
models (6.5) and (6.7) lead to the same steady-state mean and variance.
However, our suggested model (6.7) need not lead to Gaussian distributions
in steady state - this will depend on the particular system A.

If one wishes to simulate an FSN system, one will obviously have to choose
a particular perturbation A. Two systems with £5 gain equal to one are
of special interest:

A )= y() (for y scalar)

A ()= \//Ooowexp(—wr)|y(t —7)|?dr
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The first of these two specific perturbations A is that of multiplicative noise,
c.f. eg. [31] and the references therein. In certain analysis problems for
linear FSN systems this perturbation is worst case. The second form of A
illustrates that ¢ may be thought of as an r.m.s. estimator for y.

When we analyse FSN models, we take the the perturbation A to be an
unknown state-space system with £, gain less than or equal to one, and
we adopt a worst-case view on this class of perturbations. In particular ap-
plications, one may possess additional knowledge regarding A, for instance
concerning time constants.

We have thus demonstrated that FSN models can be embedded in our
general framework for uncertain systems; viz. a nominal system described
by a stochastic differential equation, subject to an unknown perturbation
which possesses a number of specified dissipation properties.

6.5 Performance of perturbed systems

In this section we consider the interconnection of a nominal stochastic sys-
tem ¥ and a multi-dissipative deterministic perturbation A; see figure 6.1.
Our objective is to provide conditions on the nominal system X under
which the interconnection dissipates a given supply rate r for any multi-
dissipative perturbation A. This is a fairly general problem formulation;
later we consider specific applications such as robust H, performance in
presence of H, bounded perturbations.

A<

wi <1

Y

)

wo <0

Figure 6.1: Setup for robust performance analysis.
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The nominal system X 1s described by a stochastic differential equation

dey = flee, we,v) dt 4 g2, we,vt) dBy
X v = (@, we, ve) (6.8)
Zt = h(l‘t, Wy, Ut) s

whereas the unknown perturbation A, mapping z to w, is known to dissi-
pate p given supply rates —r;, ¢ = 1,...,p. Welet £ denote the state of the
perturbation A and let W (£, —r;) denote a storage function for A w.r.t.
—r;. The backwards operator corresponding to (6.8) is

1
LYV (z) = Vo f + §tr(glvmg)

for V € C?(X,R); here the right hand side is evaluated at z,w, v.

We omit details concerning well-posedness of the interconnection; i.e. we
assume that unique ¢-continuous solutions z;, & exist for any F;-adapted
input v; in a sufficiently large class of inputs.

The vehicle of our analysis of the interconnection (3, A) is an extended
system derived from the nominal system X and independent of A: Define
the system X by appending to (6.8) the dynamic equation

dfl = —r; dt . (6.9)

Thus ¥ has states z; and 8, = (BL,...,B), inputs wt and v¢, and outputs
z¢ and y.. The backwards operator associated with X 1s

P
1
MU (e, f) = Usf =Y Us.i+ 5t1(g'Useg)

i=1
for U € C?(X x RP,R); here the right hand side is evaluated at z, 8, w, v.

Definition 69: We say that X is regionally dissipative on D C X x RP
w.r.t. the supply rate r if there exists a function U(z, ) which is non-
negative on D and such that the dissipation inequality

E5PU (2r,8,) <Ul(x,B) + E*F / rdt (6.10)
0]

holds for all (z,8) € D, all Fi-adapted inputs v, w; and all bounded
stopping times 7 such that

r<tp:=inf{t >0 : (2, 3)¢D} (6.11)
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holds. O

Regionally dissipative systems are not directly covered by our definition of
stochastic dissipation (page 105); nevertheless it is straightforward to verify
that they possess many properties similar to those of dissipative systems.
Let us only state the partial differential inequality condition:

Proposition 70: Let D C X x R% be open and let U € C?(D,R,). The
following are equivalent:

1. U is a regional storage function for ¥ on D w.r.t. the supply rate r.

2. U satisfies the partial differential inequality

sup MY U(x,5)—r <0 (6.12)
on D.
A
Proof: The proof is merely a repetition of the proof of proposition 51 on
page 106 and omitted. ]

We can now state our main result which 1s a sufficient condition for the
interconnection (X, A) to dissipate r.

Theorem 71: Assume that ¥ is regionally dissipative on X x Rg_ w.r.t.
r with U(z, ) a corresponding regional storage function. Then the inter-
connection (X, A) dissipates r; an upper bound on the available storage
is

Ulx, )
provided that #° > W (¢, —r;). a
The idea behind the theorem is that the appended states 5 of ¥ bound
the storage W (&, —r;) in the perturbation. This technique has, to our

knowledge, not been used before in the literature; even in a deterministic
context.

Proof:  Consider the response x;, & of the interconnection (X, A) to
an Fi-adapted input v; under the initial conditions & and &. Let g* >
W (&, —r;). We aim to show that

ES / —r dt < Uz, ) (6.13)
0
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holds for any bounded stopping time 7.

First, notice that the output w; of A is Fi-adapted since A is deterministic.
Let Z;, 3; be the response of ¥ to the inputs v; and w; and the initial
conditions # and 3. Then clearly x; = #; by uniqueness; the processes x;
and Z; solve the same stochastic differential equation (6.8) with the same
initial condition.

Next, the dissipation inequalities for A are

t
0 Wi —r) < [ =ni ds 4 W(E—n)
0
and hold for any sample trajectory and any ¢ > 0. This implies that
0< 8 <G =5 +W(E—ri) < B

Finally, let 7 be a bounded stopping time. Since Bi > 0 for any t > 0, the
regional dissipativity of ¥ implies that

E™P /T —rdt <U(x,p) — E°U(xr, ;) < U(x,B)
0]

which completes the proof. [ |

Linear combinations of supply rates

Theorem 71 generalizes the conditions of chapter 3 where we required the
nominal system X to dissipate a linear combination of the supply rates r, r;.
We may recover this type of results (in a stochastic context) by imposing
a specific structure on U:

Corollary 72: Assume that there exists non-negative weights d; such
that ¥ dissipates the supply rate

r+ Zp:diri
=0

then the interconnection (X, A) dissipates r. a

Proof: In the theorem, take U(z,3) = V(z) + >, d; 3 where V is a
storage function of X w.r.t. the supply rate r + Zf:o d;r;. Let wy, vy be
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Fi-adapted inputs to ¥ and ¥ and let 7 be bounded; we then have

E"PU (2, Br)

P
EV (x7) + B di Bt
i=1

IA

T 14
V(a:)—i—Ex/ r—l—Zdiri dt
i=1

0
P ) T
+ETPN " d; 62—/ r; dt
ZZ:; ( i )
= Ex/ rdt+ Uz, 3)
0

which implies that the sufficient condition of theorem 71 1s satisfied. No-
tice that U(x, W (&, —r;)) is in this case in fact a storage function for the
interconnection (X, A). [ ]

Conservatism of the condition

Since theorem 71 provides a sufficient condition, but not a necessary one,
the question is how conservative the condition is. Before we discuss this
issue we emphasize that the condition is less conservative than those of
chapter 3; this is demonstrated by corollary 72. In fact the condition of
theorem 71 1s not very conservative.

First, the theorem does not only guarantee that the interconnection (3, A)
dissipates r but also that there exists a bound on the available storage which
depends only on W (&, —r;), and not on the actual perturbation A and its
initial condition £. This may be conservative if all we care about is that
the interconnection is dissipative. On the other hand, in most applications
it does not suffice to know that a bound exists for the available storage of
(3, A); we also want to know what this bound is. Since the initial storage in
A may very well be the one quantity we can bound reliably, it is appealing
that this is exactly what we need to bound the available storage of (X, A).

Another way conservatism is introduced in the theorem is that the dissi-
pation inequality (6.10) holds for all F,-adapted inputs w;. Notice that a
deterministic perturbation A must necessarily produce an output w; which
is adapted to the sub-filtration generated by z;. In other words, the theorem
is conservative in that the bound (6.13) holds also for perturbations which
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have access to complete information about the system Y. This conservatism
may even be desirable in applications where A is physically integrated in the
total control system; for instance if A represents parasitic high-frequency
dynamics. Then it would be hazardous to let a design depend on A not
exchanging information with its environment.

A similar discussion concerns the situation where the perturbation A is
composed of a large number of independent blocks in parallel, i.e. w® =
A'z* Tt appears to be difficult to make use of the fact that multiple pertur-
bations really must solve decentralized control problems in order to make
the dissipation inequality fail. In short, we restrict the energy and other

resources available to A; not the information.

Refining the storage bounds g > W (&, —r;)

The 1dea in theorem 71 1s that we keep track of how much storage is present
in the perturbation A through the bounds

ﬁ; > W(gta _ri)

The dynamic equation d3 = —r; dt simply states that if we supply a
quantity to A, then the storage in A may increase with this quantity but
no more.

In some applications it may be essential to incorporate additional knowl-
edge about A such as time constants. For instance, consider a welding
robot which first moves the arm into correct position with large and fast
movements after which the welding process begins and the welding seam
1s to be followed slowly and accurately. The perturbation A is parasitic
high-frequency dynamics in the robot arm; the storage in A i1s mechanical
energy. During the initial rough placement of the robot arm it is likely
that large amounts of energy is supplied to the perturbation. It is then
important for the analysis that this energy cannot be hidden in A and
then released much later, during the fine movements of the actual welding
process. In such a situation one may replace the dynamic equation for 3!
with )
45} = (=i = vs)

where T is the time constant of the perturbation. Of course, also other
forms of decay can be used, for instance if physical reasoning gives bounds
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to the storage which A is capable to keep. In general, these issues are im-
portant if some phases of the system operation are more critical or sensitive
than others.

The idea of bounding the storage in the perturbation has applications far
beyond the robustness analysis which we concentrate on here. For instance,
a supervisory system may keep track on-line of the storage in the perturba-
tion using the dynamic equation of 3! as well as on-line measurements from
the system. A large storage may provoke an alarm, or pause the control
mission until the storage in the perturbation decreases to an acceptable
level. For the welding robot above, this means to stop welding until we
are confident that parasitic oscillations in the arm have died out. On the
other hand, if the bound (! ever goes negative then it can be concluded
that the model is inconsistent with the measurements which may trigger
a change of control strategy. The reference [88] describes an approach to
adaptive Ho, control based on a finite number of models and this type of
model validation.

6.5.1 Guaranteed H; performance

Consider now the block diagram in figure 6.2 where the system ¥ has inputs
wy, oy and vy and is given by the model

Y day = fee,we) dt 4 ov g(we) dBe + e b(xy) di (6.14)

with outputs y: = e(@¢), ¢ = n(x¢), and z; = h(x). We make the following
assumptions about the perturbations A and Ap:

A is passive and small £5-gain, i.e. dissipative w.r.t. —ry = (w,z) and
—ry = |z|? — |w|?. This could for instance represent unmodelled parasitic
dynamics.

Ap is small L£o-gain, i.e. dissipative w.r.t. —rz = [¢|? — |o|?. This implies
that o dB;/dl is a white noise signal which grows in intensity with the
variance of (¢, 1.e. a finite signal-to-noise ratio disturbance.

To evaluate the strong H, performance index of the total system, we follow
our definition 66 and replace the input v; in (6.14) with a white noise term
vy dW;/dt, thus obtaining

3 dl‘t = f(l‘t, wt) dt + o g(l‘t) dBt + b(l‘t) th . (615)
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AA

o AF‘ ¢

Figure 6.2: Nominal system and perturbations

Assume now that X is stochastically dissipative w.r.t. ~2|v|? — |y|> +
2?21 d;r; for some v > 0, d; > 0 and that V is a corresponding storage
function, then it follows from corollary 72 that the overall interconnection
is dissipative w.r.t. ¥?|v|? — |y|?; a storage function is V 4+, d;W;. Hence,
an upper bound on the square of the strong #» performance index is

3

721‘r11linv v s.t. V a storage function for (6.15) w.r.t. v%|v|*— |y|2—|—Z d;r;
e, i=1

where v > 0 and d; > 0. This infinite-dimensional optimization problem is
convex according to proposition 53; if the state # has low dimension it may
be solved be restricting V to a finite-dimensional subspace as outlined on
page 117.

If the right hand side of the governing equation (6.14) is linear in (z, w, v, o)
then V' can be taken to be quadratic and the optimization problem reduces
to a linear matrix inequality problem:

Theorem 73: Let the system X be given by the linear SDE
DI dl‘t: (Axt—l—@wt—i—th) dt—|—0’t GdBt

and the output equations z; = Hay, yp = Cay, ¢ = Jay, and let w = Az
and v = A( where A and Ap are as above. Then an upper bound on the
square of the strong H» performance index of the interconnection is

/
min tr B'PB st. P >0, d; >0, Y PO+ dH

Auin P+dH  —d | S0
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where Y is shorthand for Y = PA+ AP+ C'C +d-H'H + J'J tr G'PG.
Od

Proof: The proof is merely a verification that, given feasible P and dy, ds,
the quadratic form V() = 2’ Pz is a storage function of system

dl‘t = (Al‘t —|— <I>wt) dt —|— Vi B th —|— T¢ G dBt

with respect to the supply rate y2|v|* — |y|*+ 3.0, dir; with 4> = tr B'PB
and d3 = tr G'PG. [ |

This upper bound can be computed with standard software for linear matrix
inequalities such as [38, 32]. Notice that if one removes the FSN disturbance
ot g(x¢) dBy/dt in (6.14) and applies the condition in theorem 27 on page 61
for robust H 5 performance in the deterministic sense, then one recovers the
condition of theorem 73. On other words, if one is after sufficient conditions
for robust Hs performance of linear systems, then it is inessential if one
uses the stochastic or the deterministic interpretation of Hs performance.

6.5.2 Robust estimates on the risk of failure

Consider a system
Y o odey = fee,we) dt 4 g(oe, we) dBy 2 = h(xe) (6.16)

connected in feedback with a deterministic perturbation A : z — w which
dissipates the p supply rates —r, ..., —rp. Let the initial condition z be in
an open domain D C X, let the boundary 0D be divided into two disjoint
sets A and B; corresponding to success and failure, respectively.

As before, we let 3 denote the system ¥ appended with the states 3! with
dBi = —r; dt.

Theorem T4: Assume that ¥ is regionally dissipative on DX}R’_}_ w.r.t. the
supply rate 0 with a regional storage function U(z, §) which is continuous
on D x @g_ and such that U(z, ) > 1 whenever # € B and ' > 0. Then
we have the following bound on the risk of failure

P>, € BY <U(z,f)

where 38 = W (&, —r;). a
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Proof: Let ' > W(¢,—r;) and let x;, 3; be the trajectories of ¥ when
connected in feed-back with A, corresponding to the initial conditions «, &
and 5. We claim that the process U(zinr,, Biarp) 18 a continuous super-
martingale. Continuity is clear since z; and 3; are continuous processes and
U is a continuous function. To see that the process is a supermartingale,
notice that 8 > W (&, —r;) > 0, and hence regional dissipativity w.r.t. the
supply rate 0 yields

ExygU(xt/\TD ; 6t/\TD) S U(l‘, 6)
This allows us to pose the probability bound

Poa,, € B} < Pfﬁ{sgp U(zinrps Biarp) > 1} < U(x, )
0<t

Here, the first inequality holds because x,, € B implies that U(z.,, 3;,) >
1 and hence supy<; U(Zinrp, Binrp) > 1. The second inequality is the
supermartingale inequality.

We have thus shown that P®¢{z, € B} < U(z, () for any 3 such that
Bt > W(E, —r;). Now let @ — W (&, —r;) from above and use continuity of
U to see that the same bound holds with #° = W (¢, —r;). ]

A similar conclusion is obtained if we follow corollary 72 and replace the
hypothesis with ¥ dissipating ), d;7; for non-negative weights d;, with a
continuous storage function V' such that V|g > 1. However, in this case
the resulting bound is

P, € BY <V(x)+ Y diW (€, —r)

which 1s seen to be quite conservative for large amounts of initial stor-
age in the perturbation A; in fact the upper bound may then become
P®&lz. € B} < 1 which is not very informative. In this situation the-
orem 71 1s of much more use; at least for large amounts of initial storage
in the perturbation. In other words, it may well be very conservative to
consider only regional storage functions U(x, 3) which are affine in 3.

6.6 Conclusion

This chapter has demonstrated that problems of robust performance of
stochastic systems can be addressed with the notion of stochastic dissipa-
tion. The three steps in this procedure are:
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1. Model the physical system as an interconnection of a nominal system
Y. and a perturbation A, where A is dissipative w.r.t. the supply
rates —r;, e =1,...,p.

2. Formulate the performance property as one of stochastic dissipation,
1.e. find the supply rate r such that the overall system has satisfactory
performance iff 1t dissipates r.

3. Perform dissipation analysis on ¥ using theorem 71 or corollary 72,
i.e. investigate if ¥ dissipates r regionally, or if 3 dissipates r+) , d;r;
for non-negative weights d;.

Regarding the first item, the dissipation properties of A will typically be
the same as in a deterministic analysis, such as passivity or small gain.
We have also demonstrated that Skelton’s finite signal-to-nose ratio (FSN)
models can be incorporated in this framework.

Regarding the second item, we have shown that stochastic L2 gain, Hs
performance, risk of failure and expected time to complete a mission are
examples of performance objectives which can be stated in terms of stochas-
tic dissipation. While it is hardly surprising that the stochastic £ gain is
related to dissipation, it is an innovation that Hs performance is expressed
in this framework. We believe that nonlinear H, control, both nominal
and robust, is a fruitful field of future research. The two last performance
measures, risk of failure and expected time to complete a mission, are well
studied in the classical literature on stochastic analysis and control, but it
1s a novelty that they can be embedded in the framework of dissipation and
thus subjected to a robustness analysis.

Regarding the last item, the idea of searching through convex conic com-
binations of supply rates was also employed (in a deterministic context) in
chapter 3 and in the recent reference [126], but it is a new observation that
this idea is a special case of regional dissipation analysis of the extended
system ¥; i.e. that corollary 72 follows from theorem 71.

The practical applicability of our suggested framework depends on two
factors: First, we need numerical methods for performing (regional) dissi-
pation analysis on general nonlinear systems - here 1t would be interesting
to develop the LMI based procedure suggested on page 117 and apply it to
some benchmark problems. Second, recognizing that these numerical meth-
ods will not be applicable to systems with high-dimensional state spaces
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due to the curse of dimensionality, we need analytical procedures for sim-
plifying the dissipation analysis using information about the structure of
the system. Modularity is one such procedure; time-scale separation would
be another interesting issue to investigate.

6.7 Notes and references

Mixed H>/H o problems

The literature contains several different statements of mixed Ho /M anal-
ysis and control problems, [26, 60, 68, 69, 86, 98, 106, 129, 132]. Much of
this work concerns posing an Hs bound on one closed loop transfer func-
tion and an H., bound on another. Problems of robust H- performance of
a linear system in presence of one H., bounded perturbation are treated
in [106, 86]. The setting there is much alike the one used in section 6.5.1;
however the object of analysis in these references is a family of Riccati
equations rather than a linear matrix inequality. The parameter in this
family corresponds to our weight d;. The final numerical strategy is then
to search over this weight, solving a Riccati equation for each di. This
approach is difficult with more than one dissipation property of the per-
turbation, since it is not clear how the solution of the Riccati equation
depends on the d-weights. We have in [113] presented a numerical exam-
ple with two dissipation properties; for this example a convexity property
makes numerical optimization over the d-weights feasible.

Stability of FSN systems

The simplest FSN model, according to our suggested definition, is
drve = f(xe) dt + g(2e)G dBy , ye = ()

where (4 = Ayy; here A is a deterministic system with Lo gain less than or
equal to one. This corresponds to (6.7) where the signal-to-noise ratio o4
is 1, and oy = 0. A sufficient condition for this system to be stable is that
the stochastic £5 gain from (; to y; is less than one; this is equivalent to
the system mapping v; to y; given by

dwy = f(xe) dt + glze)ve dt , yr = e(a)
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having strong H, performance index less than 1. This is a small gain type
result for nonlinear FSN systems.

Earlier joint work with R.E. Skelton [110], for linear FSN systems, con-
cluded that this condition was sufficient and necessary. Furthermore, for
the situation with several FSN disturbances, a necessary and sufficient
condition was given in terms of the spectral radius of a certain matrix, the
elements of which were obtained by H» analysis on the nominal system. It
is in fact possible to give a similar sufficient condition for stability of non-
linear FSN systems with several FSN disturbances, employing corollary 72.
This result will be reported elsewhere.
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Chapter 7

Conclusion

We have in this dissertation contributed to the mathematical theory of ro-
bust performance of control systems in presence of parametric uncertainty,
dynamic perturbations, and deterministic or stochastic exogenous distur-
bances.

There are four threads in our work. The first is the opinion that control
theory should employ notions which have some general validity and not
only, for instance, make sense in a deterministic linear setting. We believe
that our dissipation based framework for robust performance of stochastic
systems fulfills this requirement.

The second thread is the opinion that control theory should maintain a
close connection to physics. This i1s partly because many techniques from
physics, such as Lyapunov stability, has proven to be valuable to control
theorists, but also because a sound knowledge of the physics in a control
system will assist the control engineer in posing the right mathematical
problems.

Thirdly, we consider the uncertainty associated with a nominal mathemat-
ical model to be equally important as the nominal model itself. The rep-
resentation of uncertainty determines the strategy for analysis and design,
and the more detailed the information about the uncertainty, the sharper
conclusions. Both the simultaneous H., controller of chapter 4 and the
robust performance analysis of chapter 6 uses explicit quantitative evalu-
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ation of the uncertainty, in terms of the residuals and the storage of the
perturbations.

Lastly, we believe that tools for analysis of control systems are as impor-
tant as tools for synthesis. Good analysis tools, which for instance could
be based on dissipation analysis on a closed loop system, can be of great
practical value, not only for the theorist but also for the practicing engi-
neer. For instance an inspection of storage functions may conclude that a
heuristic controller, although not optimal, solves the control job nicely, or
it may identify a weakness in the design of the plant.

In the remainder of this chapter we briefly summarize the precise nature of
our contributions, and point out a number of issues which deserve further
attention.

7.1 Summary of contributions

The purpose of this section is to provide a concentrated overview of the
results which were obtained during the Ph.D. study and reported in this
thesis.

The introductory chapter 1 does not present new results, although the ob-
servation that LMIs can be used to compute storage functions for nonlinear
but input affine-quadratic systems seems to be new.

Chapter 2 presents fundamental properties of deterministic systems which
are dissipative w.r.t. several supply rates. The convex conicity of the
set of dissipated supply rates is mentioned in passing in [45]; this simple
property is what enables the robustness analysis of the succeeding chapter.
New results are that the set is also closed and that the available storage
i1s a continuous function on this set. These properties are important for a
numerical analysis and contribute to the general understanding of multi-
dissipative systems.

The contribution of chapter 3 is to demonstrate that analysis of control
systems can be done by explicit consideration of the multiple dissipation
properties of unknown system components. It is fair to say that this idea
is also present in approach of Integral Quadratic Constraints, but several
differences exist between this framework and the one of multi-dissipation as
explained in section 3.1. The chapter also contains several more technical
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contributions which can be seen as exercises in Lyapunov techniques - in
this type of work, the devil is in the details. The results for linear-quadratic
systems are obtained using standard methods for linear matrix inequalities.
The importance of these results is to demonstrate that problems with such
mixed uncertainty models lead to convex optimization problems, namely
LMIs.

Chapter 4 contributes to the theory of adaptive H, control by pointing
out that certainty equivalence based minimax controllers for this problem
is not the generic situation. Although the characterization of the minimax
controller is done with existing ideas, viz. the information state machinery,
the literature contains few applications of this machinery, and the details
are by no means trivial. One such detail is the characterization of the value
function as the viscosity solution to the HJI-PDE. In a given application
it will be a cumbersome affair to construct the minimax controller, but
it 1s quite straightforward to synthesize the heuristic certainty equivalence
controller, and this design may have direct practical applicability.

Chapter 5 contains a generalization of dissipation theory to stochastic sys-
tems. In the existing literature, dissipation techniques have only been used
to perform analysis of stochastic systems in special cases; it appears to be
a new observation that the framework is applicable and operational in gen-
eral. The results of the chapter essentially say that many of the attractive
features of deterministic dissipative systems apply to stochastic dissipative
systems as well; these are the inherent convexity, the role of the available
storage, the closedness under interconnections, and the implications for
stability. The strictly positive real lemma for wide-sense linear stochastic
systems 1s new; passivity of stochastic systems has to our knowledge not
been investigated previously.

Chapter 6 constructs a framework for robustness of stochastic systems,
based on the theory of stochastic dissipation. A minor contribution is the
observation that stochastic performance measures such as the risk of failure
can be formulated in terms of dissipation. It is more innovative that the
same applies to Ha performance and finite signal-to-noise ratio (FSN) mod-
els. The idea of expanding the system with extra states, which keep track
of the storage in the perturbation, is new. This idea leads to quite sharp
sufficient conditions for robust performance; for general nonlinear systems
these conditions are more natural than the multiplier-based approach of
chapter 3. The idea may also have further applicability in other fields of
control theory such as supervision and model validation.
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7.2 Perspectives and future works

As 18 so often the case, each of the answers in this dissertation leads to
several new questions. Many of the results could be refined or generalized;
the notes and references ending each chapter contains such detailed sug-
gestions for future works. At this point we take a step back and outline
some fields of research which we believe to be fertile.

The problem of adaptive H ., control remains largely open. As stated in
chapter 4, we cannot expect the minimax controller to be based on certainty
equivalence or finite dimensional (when there is more than a finite number
of possible parameter values). In this situation there is a great need for
clever heuristics and sub-optimal strategies as well as for studies of special
situations, and although much work has been done in this direction, there
are many questions that remain unaddressed. A fundamental question is if
the problem formulation itself is a sign of prudence or paranoia. In other
words, should we impose some further constraints on those disturbances
for which the dissipation inequality must hold, or is it reasonable to antici-
pate disturbances which in some clever way attempt to confuse the control
system?

We have, in the notes at the end of chapter 5, mentioned the possibility
of extended the theory of stochastic dissipation to a more general class of
stochastic differential equations than Ito diffusions. A related interesting
project would be to extend the theory of stochastic dissipation to infinite-
dimensional systems, i.e. systems given by stochastic partial differential
equations. Initial results in this direction are probably obtained quite eas-
ily, following [124] where many results hold for infinite dimensional systems,
but we expect it to be quite complicated to obtain more explicit results. A
good starting point for such a project would be the corresponding deter-
ministic problem, see [61] and the references therein.

As we have already mentioned on several occasions, numerical methods
for analysis and control of nonlinear systems remains the hurdle for the
practical applicability of the theory, and is a natural subject of future
investigations.

After the robustness analysis results of chapter 6, an obvious next step is to
develop a theory of control for stochastic dissipation. The objective of such
a theory is to provide techniques for finding a control law, a storage func-
tion, and possibly also a supply rate in a given set, which together satisfy
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the dissipation inequality. In principle, this can be done by value-policy
iteration but we expect that much more explicit results can be obtained,
at least if some generality is sacrificed.

A special case of such a theory is nonlinear Hy control building on the
definition of strong H o performance index of chapter 6. The term nonlinear
Ho control is most often used in the deterministic meaning, where the
cost 1s evaluated from the response to initial conditions, and is therefore
unable to conclude on the response to white noise. Similarly, stochastic
nonlinear optimal control is most often used with fized noise intensities, and
does therefore not provide information about the response to other noise
intensities. In some applications it is quite sensible to take a worst-case
view on the noise intensity (as in our definition of strong # 2 performance).
It also embeds nicely in a dissipation-based robustness framework - notice
that fixing the noise intensity (or just bounding it way from zero) leads
to supply rates which are not regular and thus weakens the dissipation
theory. In short, we believe dissipation-based nonlinear H, control to be a
promising field.
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Appendix A

Conditional Expectations
of First Passage Times

We consider an It6 diffusion evolving on a domain in Euclidean
space, the boundary of which is divided into two components, A
and B. We then ask the question: What is the expected time to
pass before the set A is reached, conditioned on A being reached
before B?

We derive a partial differential equation which governs this con-
ditionally expected first passage time, seen as a function of the
initial state. We also provide a generalization which involves
other functionals than the first time of exit, and we show how
a partial differential inequality can be useful for establishing
bounds.

A classical question concerning Ito diffusions evolving in Euclidean spaces
1s: If the diffusion starts at a point x in some open set €, what is the
expected time E¥Tsq to pass before it reaches the boundary 907 It is
well known that under suitable technical assumptions this expected first
passage time, seen as a function of the initial state z, is the unique solution
to the second order semi-elliptic partial differential equation

L¢:_1a ¢|3Q:0
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Here, L is the backward differential operator associated with the diffusion
- see below for precise definitions and statements.

A related question is: If we divide the boundary 02 into two disjoint com-
ponents A and B = 90\ A, what is the probability P*{rsq = 74} that
the process hits A before B? This probability is - again, under suitable
technical assumptions - the unique solution to the equation

Ly =0, ¢la=1 4lp=0

One application of these results is performance analysis of a stochastic con-
trol system: The control mission is completed upon passage of the boundary
0%; successfully if the boundary is reached at a point in A whereas reaching
B before A would be a failure. For instance, the mission could be docking
of a ship or a spacecraft. The primary performance measure for this ap-
plication may be the probability of success, 1.e. the function #, whereas a
secondary performance measure may be the time it takes to complete the
mission, averaged only over those missions which are completed success-
fully. In other words, the question arises: If we condition that A is reached
before B, what is then the expected time to reach A7

Although this question seems almost as basic as the two previous ones,
we have not been able to find it answered explicitly in the literature. In
this note we show that - still, under suitable technical assumption - this
conditional expectation of the first passage time can be computed as

E™{1a | T4 = o} =

where 1 1s the probability that A is reached before B, as above, and where
K 1s the unique solution to the equation

LK:_,l/)a H|3Q:0

This is our main result which is stated precisely and proved in section A.1
below. In section A.2 we state a rather straightforward generalization where
a reward is released upon first passage; making this reward equal to the time
of first passage recovers the result of section A.1. In section A.3 we show
how one may obtain upper bounds if given solutions to the corresponding
partial differential inequalities. This is especially useful in situations where
the partial differential equations have no (classical) solutions which will be
the case in many applications.
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Notation

Our notation is fairly standard and follows [83]. In particular, the diffusions
we consider in this note are It6 diffusions evolving in Euclidean space X =
R™ according to the stochastic differential equation

dey = f(w) dt + g(x¢) dB: (A.1)
which we interpret in the Ito sense. Of course, we assume an underlying

filtered probability space which we however do not refer to explicitly.

We define the (backward) differential operator L associated with the diffu-
sion z in the usual way: If V : X — R is C?, then

1
LV(z) =V, f+ §tr(glvmg)

where the right hand side is evaluated at .

If D C X is Borel then we use 7p to denote the stopping time inf{¢ >
0: a; € D}. P® is the probability law of z; starting at 29 = « and E*
denotes expectation w.r.t. P7.

For a set A, A denotes the closure of A.

If A is an event such that P"A > 0 and y is a stochastic variable for which
E*|y| < oo, then E”{y | A} denotes the conditional expectation E“{y | A}
evaluated at some w € A; here A denotes the o-algebra generated by A.

A.1 The main result

We malke the following assumptions on the geometry and the dynamics:

Assumption 75:

1 The initial condition # of the stochastic differential equation is in
a domain € C X which i1s open and bounded and has a smooth

boundary 9%2.

ii The drift coefficient f and diffusion coefficient g are Lipschitz contin-
uous on the closure €2 of the domain.



154 Appendix A. Conditional Expectations of First Passage Times

1ii The diffusion g satisfies the non-degeneracy condition that g9 >0
on €.

iv. The boundary 92 is divided into two disjoint components A and B
which have no common limit points, i.e. AUB = JQ and AN B = .

O

These assumptions are standard and natural from a classical point of view:
The Lipschitz continuity and the boundedness of €2 assure that there exists
a unique solution of the stochastic differential equation at least up to the
first time the boundary €2 is reached, see [83]. The non-degeneracy con-
dition on g ensures that the first passage time 75 is finite w.p. 1 and has
finite expectation. It also implies that L is uniformly elliptic which gives
us existence and uniqueness of solutions in the classical sense to the partial
differential equations we consider. The condition that A and B are disjoint
implies that the probability /() = P?{ra = Taq} is Lipschitz continuous
on 9Q and hence C? on Q.

Later, we relax some of the assumptions somewhat.
Our main result is the following:

Theorem 76: Tor the diffusion (A.1) under assumption 75, we have the
following formula for the conditional expectation of the first passage time

E{ra | Ta = Ton} =

for any point « € Q such that ¢(z) > 0. Here ¢(z) equals P"{r4 = 7m0}
and is the unique solution to the equation

Ly =0, ¢la=1, ¢|g=0 (A.2)

while & : X — R is the unique solution to the equation
Le=—¢, klsa=0 . (A.3)
O

Proof: It is well known [107, chpt. 3] that the assumptions imply that
Y(z) = P®{ta = 190} is C? and the unique solution to (A.2); a compact
exposition of the necessary results can be found in [40, sec. 3.5]. This in
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turn implies that  is well defined as the unique solution to (A.3). Further-
more, Taq 1s finite w.p. 1 and has finite expectation which implies that the
conditional expectation is well defined [83, p. 239].

For s € R, define the process s; = s +1¢. Let y = (24, 5¢); then y; is the
unique (up to Tsq) solution to the stochastic differential equation

_ o flye) dt+g(y) dB:
dy: = ( 1 dt )

We stop the process g when it hits 9Q x R (i.e, at t = Tpq) and define the
reward function for y = (z, s)

s ifzeA
A(3/)=8~><A(96)={0 else.

Define the expected reward

v(y) = EYA(y(1o0))

and let y = (z,s) with # € Q, then

EY{A (y(roa)) | Ta = o} - PY{ra = o0}
+ EY{A(y(req)) | 7B = Toa} - PY{rB = Toa}
= E'{s+7a|7a =100}l P{Ta =100}

= (s+E7a | 7a=m0}) v(z)

v(y)

Define the (backward) differential operator M associated with the diffusion
y in the usual way: f W : X x T — R is C%' then

1
where the right hand side is evaluated at y = (#,s). Then Mv = 0 on

1 x R. Furthermore, v(z,s) = s for # € A and v(z,s) =0 for z € B.

We claim that v(xz,s) = k(z) + s - ¢¥(x). To see this notice that v (z,s) =
Y(x). Together with Mv = 0 and the boundary conditions this implies
that v(x,0) = &(z) on £ from which the conclusion follows.

Combining the above expressions yields

E{14 | ma = Toa} - d(x) = v(z,5) — s - Y(z) = k()
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which completes the proof. [ |

Example 77: [Brownian motion] Consider the case of scalar Brownian
motion, i.e. X=R and f =0, g = 1. Let £ be the open interval (0, 1) and
let A={1}, B={0}. Then ¢(z) = « and s(x) = s2(1 — z?), i.e.

1
E™{1a | Ton="7a} = 3(1—902) for0<z<1 . (A.4)
For comparison we have the unconditional expectation
Eirga=x—a’for0<az<1

Notice that the conditional expectation and the unconditional expectation
coincide for # = 1/2 as symmetry predicts.

Figure A.1 shows numerical results which are obtained in the following
way: For each initial condition in {0.05, 0.10, ... ,0.95}, we perform a
number of simulations until we obtain 100 simulations which exit to the
right. Simulations are done with a sample time of A{ = 0.0001. For these
100 simulations we compute and plot the average first exit time (marked
with x in the figure). The sample means are slightly larger than the con-
ditional expectation as computed by the expression (A.4) (the solid line in
the figure). The difference decreases with the sample time At (although
the plot shows results for only one sample time). This is to be expected:
When we only observe the diffusion at discrete points of time we only get
an upper bound on the first exit time, and sample paths starting near = 0
are prone to misclassification. a

A.2 A generalization

A way to generalize the result from the previous section is to see that
the first passage time is a functional on the set of trajectories and then
consider more general functionals. The functionals we consider in this
section consist of two components: A cumulative term, i1.e. an integral
along the trajectory, and a terminal term depending on where the the
trajectory hits the boundary. More specifically, we obtain a formula for

e {k(x(m)) 4 /0 U di | 7 = Taﬂ}

A.2 A generalization
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Figure A.1: Numerical results obtained for scalar Brownian
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Assumption 78:

i: The function [ : @ — IR is Lipschitz continuous.

ii:  The function k : 9 — R is Lipschitz continuous.

O

Theorem 79: For the diffusion (A.1) with the reward functions &, [ under
assumptions 75, 78, we have the following formula

pr{wetma + [t at ] 74 = o = 5

for any point x € Q such that ¥(z) > 0. Here ¥(z) is as before and & is
the unique solution to the partial differential equation

Le=—1l-v¢, kla=k, klg=0
a

Proof: Asin the proof for the previous theorem existence and uniqueness
of a solution & to the partial differential equation i1s guaranteed; notice that
the boundary condition k - x4 i1s Lipschitz continuous since & is and since
A and B are disjoint. Also, the conditional expectation is well defined.

Define y; = (¢, zt) where z; solves the stochastic differential equation
dZt = l(l‘t) dt

Existence and uniqueness of a solution to this equation is guaranteed since
[ 1s Lipschitz continuous. Let zg = z be the corresponding initial condition
and define the reward

A, z) = (k(z) + z)xa(z)
and the expected reward
v(z,z) = E9° X x(1aq), 2(Taq))

Again, we define the backward differential operator M associated with
y = (x,z) in the usual way: If W : X x Z — R is C*1 then

1
MW(y) = Wef+W.l+ §tr(g/WMg)
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where the right hand side is evaluated at y = (#,2). Then Mv = 0 on
and ¥ = A on 0%2. Following the proof of theorem 76, we see that v, =
on Q and hence that v(z, z) = k(z) 4+ z - ¢(x). Finally we notice that

v(z,z) = E"*{Mz(ra0), 2(1oq)) | Ton = Ta} - ¥(2)

which completes the proof. [ |

A.3 An upper bound under weak assump-
tions

A weakness of the previous results is that the assumptions are rather re-
strictive. In particular, we would like to allow for non-smooth boundaries,
degenerate diffusion coefficients and situations where A and B are not dis-
joint (although A and B are). This means that we must obtain the desired
results without having guaranteed existence and uniqueness of solutions to
the involved partial differential equations. For instance, if A and B are not
disjoint then  cannot be continuous on €. This motivates us to establish
results which guarantees bounds through partial differential inequalities.

In this section we use Z; to denote the process z; stopped at 02, i.e.
i‘(t) = l‘(t A TaQ).

Assumption 80:

1 : The domain €2 is open and bounded.

ii : The drift coefficient f and the diffusion coefficient g are Lipschitz
continuous on 2.

iii : The boundary 0f2 is reached in finite time, almost surely, and fur-
thermore E¥rm5q < oo for all z € €2.

iv : The boundary 99 of the domain is divided into two disjoint Borel
sets A and B, i.e. AUB=0Q and ANB =0.

v : k:0Q— Rand!l:Q — R are Lipschitz continuous and non-negative.

O
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The assumption that E7715q < oo is not always immediate; in these situ-
ations one can use the sufficient condition that there exists a C? function

¢ : Q — R such that L¢ < 0 on Q.

We start off with an elementary lemma; many similar statements can be
found in the literature.

Lemma 81: Let assumption 80 hold and let ¢ : © — R be C'? and satisfy
Then the bound B
U(x) < ¥(x)
holds. Conversely, let ¢ : Q — R be C? and satisfy
Then the bound
U(x) > ¢(x)
holds. ad

Proof: The assumptions imply that 1/3(9?}) is an almost surely continuous
non-negative supermartingale. We then have the inequalities

Pi{ra =T1o0} < Px{jglg@(i‘t) > 1} < o(x)

using Doob’s martingale inequality, see e.g. [83, p. 28]. The converse
statement follows similarly after noting that 1 — ¢(Z;) is a non-negative
supermartingale; here we must use that the process exits Q in finite time,
almost surely. [ |

Theorem 82: Let assumptions 80 hold and let £ be a non-negative C?
function Q@ — R which satisfies

L <—=l-%, &loa>k xa

where 1 is as in lemma 81. Let ¢ satisfy ¢ <4 on Q. Then the bound

o {k(m(rgm)) + /Omzm) dt ‘ Ta = Taﬂ} < ;((z))

holds at any point x € Q for which P> 0. a
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Proof: As in the previous existence of the conditional expectation is
guaranteed. Let z; be the unique solution to the stochastic differential
equation

dZt = l(l‘t) dt
with initial condition zg = z € R. We let Z(¢) denote the stopped process
2y = Z(t A TaQ).

Define

v(x,z) = R(z)+2-¢(x)

Then we have

Mp=Lk+z LY +1-¢9<0

for any z, z with # € Q and z > 0. Notice that if the initial condition z is
non-negative, then so is z; for ¢ > 0 since [ > 0. This implies that v(Z;, z)
is a non-negative supermartingale with continuous sample paths, almost
surely, which in turn implies that the inequality

Ex’z{l;(i‘(TaQ), E(Taﬂ)) | TA = TaQ} . Px{TA = TaQ} < D(l‘, Z)
holds. Manipulating the left hand side we obtain

Ex’z{l;(i‘(TaQ), E(Taﬂ)) | TA = TZ)Q}
BT {z(moq) + k(z(r0q)) | Ta = Ton}
24 B z(ro0) + k(z(100)) | T4 = Toa}

= z+ Ex{/TaQ l(zs) ds+ k(z(780)) | Ta = Taa}

Y

We have thus shown that
ToQ
E” {/ l(zs) ds+ k(z(7s0)) ‘ TA = Taﬂ} ~(x) <p(x,0) = R(x)
0

holds. The result follows. [ |

A.4 Numerical issues

Under the assumptions 75 and 78 there exists smooth solutions to the in-
volved partial differential equations and standard methods for their solution
can be employed.
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Example 83: [Two-dimensional Brownian motion] Consider the case n =
2, dxy = dB; and let the domain 2 be

1
Q={e B flefls <1 A lzlloc > 7}

Let A C 082 be the outer boundary, i.e. A = {# |||#|lcc = 1}. The operator
L is then A/2. Using a quadratic grid with a step length of 0.05, we
have discretized the partial differential equations using a finite difference
method. The solutions are seen in figures A.2 through A .4. ad

The probability of exit outwards

B 10.9

‘%}‘\{{{{\\\\\

\“\ ': o
“‘MW’"%""’

B 10.8

\\\

\\

0.8

Figure A.2: 2-D Brownian motion: Probability of exit outwards

Under the weaker assumptions 80 one has to consider carefully if the partial
differential equations have solutions in the classical sense. One option is to
approximate the problem with one which satisfies the assumptions 75. For
instance when ANB # ) one may choose to approximate x4 with a function
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(Unconditional) Expectation of the first exit time

r 10.16

-10.14

0.1

0.08

0.06

0.04

0.02

Figure A.3: 2-D Brownian motion: Unconditional expectation of the first
exit time

which is Lipschitz continuous on 9€2. The weak maximum principle, see
e.g. [91, p. 106], is useful for establishing relations between approximated
solutions obtained in this fashion.

An alternative is to search for solutions to the partial differential inequal-
ities of section A.3 in some finite dimensional subspace, for instance spun
by trigonometric functions or polynomials. If one only requires that the
inequalities are satisfied at some finite set of points in €2, then the problem
of finding the best bounding functions v, ¥ and & becomes one of linear
programming. N
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The conditional expectation of the first exit time

o Ho2
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Figure A.4: 2-D Brownian motion: Conditional expectation of the first exit
time

A.5 Summary

For solutions to a stochastic differential equation starting is some bounded
domain, we have derived a formula for the conditional expectation of the
time of first exit from the domain. The conditioning is with respect to
the event that a given part of the boundary is reached first. The formula
requires the solution of two elliptic partial differential equations. We have
also provided a generalization to other functionals than the first time of
exit, and we have established bounds which are expressed in terms of partial
differential inequalities.

We have concentrated on classical (i.e, C?) solutions to the involved partial
differential equations and inequalities as well as classical conditions for
existence and uniqueness of solutions to the equations. Similar results can
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be obtained under weaker hypothesis if one employs the notion of viscosity
solutions and uses the results of [84]. This is a topic of current research;
the results will appear in [112].
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Appendix B

Various technicalities

This appendix contains various proofs and calculations which are not es-
sential for the understanding of the results in this thesis.

B.1 Proof of theorem 25 on page 60

Due to the condition (3.11) we know that there exists parameters A;(¢) > 0,
j=1,...,m, such that

[A(1), B(), C(t), Dt)] = Y Aj(t)[4, B, G, D], Y Aj(t) =1
Jj=1 j=1
We omit the time argument after signals and use the notation
z; = Cje 4+ Djw
Our candidate storage function for X is 2’ Pa. We then get

A [ PA(%/—(i;)z;lD’(t)P PE(})(t) ] ( z )

o oa~=, [ PA+AP PB; x
= (2" v Z/\][ B}P 0 w

j=1
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S ;o 0 0 I ! x
< ZAj(x w') (Z d; [I ARAR A Y [C5 Dil )L,
j=1 =1 J J
m P w
= ZA] (Z dl(w/ Z/)QZ ( Z ) — EZ;Z])
j=1 i=1

= (e e () ) - Xugs
N j=1 j=1
- 1ot w /

<> di ((w z)Qi( . ))—m

i=1
We have thus show that the time-invariant function ¢’ Pz is a strong storage

function for the time-varying system X w.r.t. the supply rate ) . d;s; and
hence we may conclude robust stability of the interconnection (X, A).

B.2 The filter ODE for the conditional state
estimate

In this appendix we derive the filter ODEs (4.13) and (4.14) for the condi-
tional worst case state estimate £(,¢) and the associated loss S(£(7,1),¢,1).
The derivation follows the general procedure of [120].

The loss function S(z,,) is quadratic in #. This means, that the charac-
terization of the worst-case conditional state estimate £(i,1) is

D e
FoS(E(). 1) =0 (B.1)

and
2

0 N
@S(E’(z),z,t) >0

At this point we omit the x and ¢ arguments and adopt the simplified

notation S, for %S(r, i,t) and so forth.

The cost-to-go and cost-to-come satisfy the PDEs [9, 120]:

1 1 1
Y
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and

1
R: + R, (Ail‘ + Biu) + 2—2RxGiG;R/x (B3)
Y

1 1 1
+§x’HZ(Hix — §'yz||y — Ciz|)* + 5”“”2 =0

The PDE (B.2) reduces to the control algebraic Riccati equation (4.5) after
guessing P to be quadratic in z for fixed i. Likewise, the PDE (B.3) is re-
lated to the filter algebraic Riccati quation (4.12): Guess R to be quadratic
in z for fixed ¢, assume stationarity in the sense R, = 0 and consider only
second order terms in (B.3). For each ¢, define Q; := Ryy(x, ), then Q;
must satisfy the ARE (4.12).

Using S = R— P we get by subtracting (B.2) from (B.3) and rearring terms

1 1
St gllut BIPLE = 592y = Coall* + Se(Ase + B) - (BA)

1 1ol
+37 (Se +2P,)GiGLS, =0

This must in particular hold for & = £(7,t). Using the stationarity condi-
tion (B.1) we then find the ODE for the conditional loss (4.14)

LS(eli,0),1.1) = 397y~ Cie G I — 3w+ BRI

If the parameter estimate é(t) = argmin; S;(¢) is well defined, then we may

use the the certainty equivalence control u(t) = —Bé(t)Px’(g(H(t),t), é(t))
to obtain that the unconditional worst-case loss (for i = é(t)) satisfies

d

SSEO0,1),00),1) = 377lly — Gy €000, D

and hence is non-decreasing.

To obtain the observer equation (4.13), we again follow [120] and differen-
tiate the stationarity condition with respect to ¢ to get

d . P -1
% (€60, =0 & 6,1 =-S5 Stelemeiin)

The expression for St is found by viewing (B.4) as a relation between x,
t, v and y and differentiating with respect to x. Using the stationarity
condition to eliminate the terms including S, we get:

Ste + (u+ B{P.) (B{Xi) +7*(y — Ci€)'Ci
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1 /
+ <€/A§ + U/Bz{_QPxGiGi) See =0
v
which must hold for all ¢, u,y at @ = £(¢,%). Combining, we obtain
: 1
£(i,t) = Aig+ Biut V—QGiGQPx#S;xl’Ysz(@/—C@+5;x1XiBi(U+Bfo/)

This may also be written as (4.13): A—ppendlx C

, 1
&(i,t) = Aié—BiB{ Py+— GiGi P+S;, v Ci(y—Ci€)+ 5y, Reo Bi (u+B{ P})
gl

Frequently used symbols
and acronyms

Miscellaneous
A’ Complex conjugate transpose of matrix A
A A set of dynamic state space systems
(perturbations)
by Nominal system
A Perturbation
(¥,A) Perturbed system; interconnection of ¥ and A
™ Stopping time; first exit from domain D

Functions and operators

Argmin, f(2) The set {z | f(x) = infe f(£)} where f(z) € R

argming f(z)  The unique element of Argmin, f(x)

0(9) A function for which ||o(d)]|/]|0]| = 0 as ||§]| = O
Ve Gradient of C! function V', 9V /0x

Vew Hessian of C? function V

V=1(A) Preimage of A under V,ie. {2z | V(x) € A}

LV (x) Backwards operator of an autonomous diffusion
LV () Backwards operator of a controlled diffusion
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Appendix C. Frequently used symbols and acronyms

Sets and spaces

[a,b], (a,b), [a,b), (a,b]

R, N, Z
R, R_

A Ry R
40, A
Co(A)

X

TX, T*X
L2(X,Y)

Moo

Acronyms

Closed, open, and half-open real intervals
Real, natural, integer numbers

Positive, negative real numbers

Closure of sets

Interior, boundary of set A

Convex hull of a set A in a linear space
State space, typically R”

Tangent and cotangent bundle of X
Lebesque space of square integrable functions
from X to ¥

Hardy space of complex functions, analytical
in the closed right half plane

CE Certainty equivalence
FSN  Finite signal-to-noise ratio

HJ Hamilton-Jacobi

HJB  Hamilton-Jacobi-Bellman

HJI Hamilton-Jacobi-Isaacs

LMI  Linear matrix inequality

ODE Ordinary differential equation
PDE  Partial differential equation
PDI  Partial differential inequality
SDE  Stochastic differential equation
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