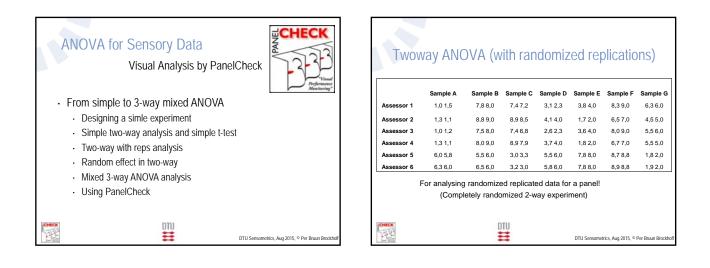
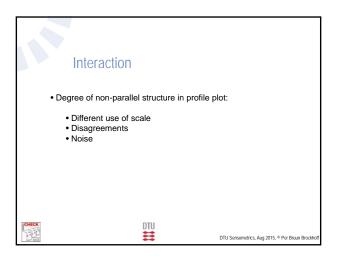
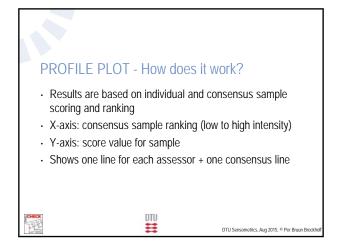


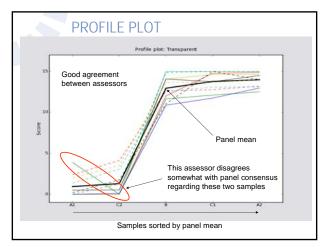
Т	woway A	ANOVA	(withou	t replica	ation)	
	Sweet	ProdA	ProdB	ProdC	ProdD	
	Pan.1	6	3	10	7	
	Pan.2	8	5	9	6	
	Pan.3	10	8	9	6	
	Pan.4	7	4	8	6	
						-
RCK			DTU		DTU Sensometrics, Ar	ug 2015, © Per Bruun Brock

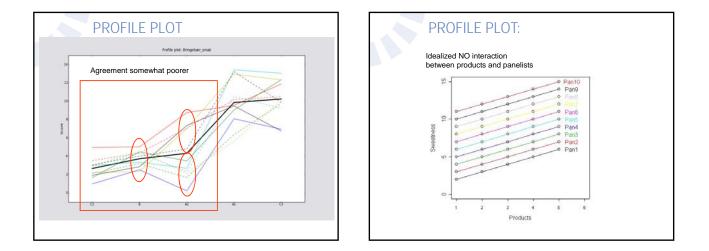
Tw	oway ANO	VA (\	without	replicat	ion)	
	Source	DF	SS	MS	F	Prob
	Assessor	3	9.5	3.17	1.78	0.2206
	Product	3	12.5	12.17	6.84	0.0107
	Residual	9	16	1.78		
	Low P-values real difference		ility is unlike	ly high – so	there MUST	be a
	AssessorProducts			nificantly	different!	
CHRCK			UTU	DTL	J Sensometrics, Aug 2	015, © Per Bruun Brockhol

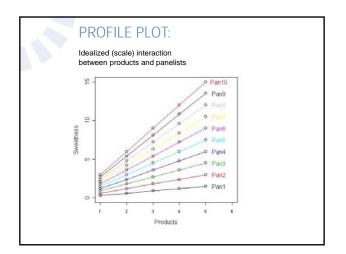

WHAT IF ONLY 2 PRODUCTS? (and e.g. 10 Assessors) Product1 1.6 0.9 2.4 2.8 5.3 3.6 5.6 4.1 5.8 10.1 Product2 4.6 1.4 5.4 5.6 4.9 7.3 5.5 7.3 9.4 10.1 3.0 0.5 3.0 2.8 -0.4 3.7 -0.1 3.2 3.6 0.0 Diff, D Paired t-test: (in R) $t = \frac{\overline{D}}{s_D / \sqrt{n}}$ > mean(dif)/(sd(dif/sqrt(10))) [1] 3.597661 # The square of the paired t-test: $t^2 = F$ > (mean(dif)/(sd(dif/sqrt(10))))^2 [1] 12.94317 DTU ≣ DTU Sensometrics. Aug 2015. © Per Bruun Brock

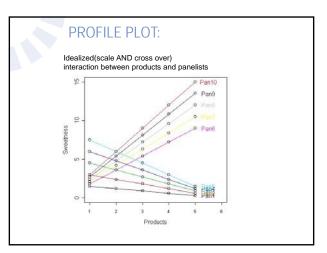



Tv	voway ANO	VA (v	vithout	replicat	ion)	
	Source	DF	SS	MS	F	Prob
	Assessor	3	9.5	3.17	1.78	0.2206
	Product	3	12.5	12.17	6.84	0.0107
	Residual	9	16	1.78		
	Low P-values real difference • Assessor • Products	s are	NOT sigr			be a
CHECK			TU	DTU	J Sensometrics, Aug 2	015, © Per Bruun Brockho

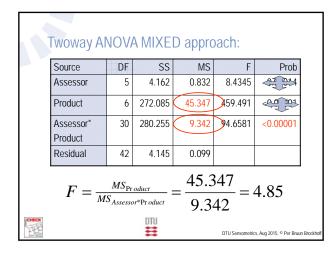




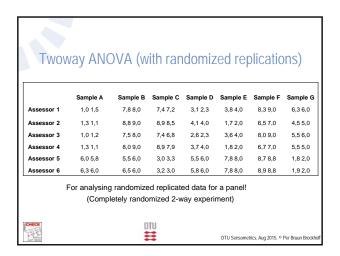






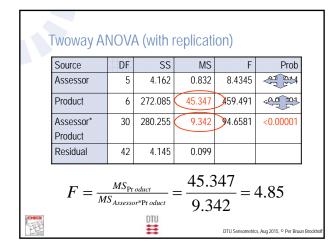


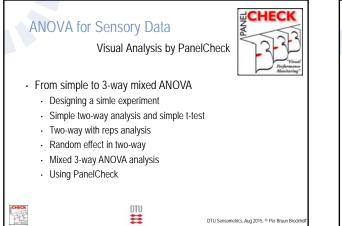
Twoway ANOVA (with replication)


Source	DF	SS	MS	F	Prob
Assessor	5	4.162	0.832	8.4345	0.00014
Product	6	272.085	45.347	459.491	<0.00001
Assessor* Product	30	280.255	9.342	94.6581	<0.00001
Residual	42	4.145	0.099		

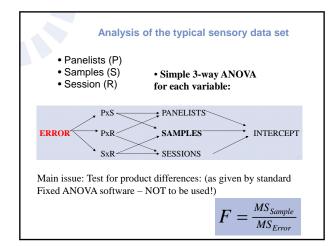
The F-test for product difference given in this table is NOT to be used

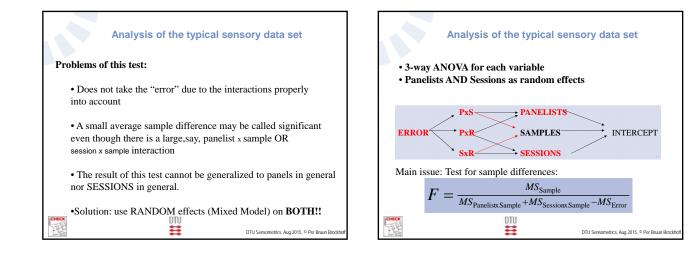
• A small average product difference may be called significant even though there is a large Assessor x Product interaction

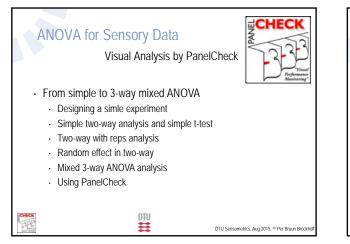

Twoway ANOVA (with replication) Post hoc Analysis $LSD = t_{0.975}(30) \sqrt{\frac{2MS_{Assessor^*Product}}{2MS_{Assessor^*Product}}}$ /12 Summarize product average differences ("as usual") DTU Ξ DTU Sensometrics, Aug 2015, © Per Bruun Brockt

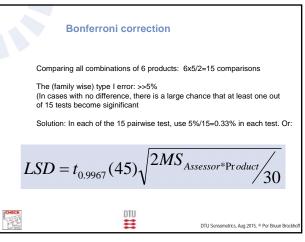

Mixed	d 2-way	= Anal	ysing	averaç	ge data	а	
	Sample A	Sample B	Sample C	Sample D	Sample E	Sample F	Sample G
Assessor 1	1,0 1,5	7,8 8,0	7,4 7,2	3,1 2,3	3,8 4,0	8,3 9,0	6,3 6,0
Assessor 2	1,3 1,1	8,8 9,0	8,9 8,5	4,1 4,0	1,7 2,0	6,5 7,0	4,5 5,0
Assessor 3	1,0 1,2	7,5 8,0	7,4 6,8	2,6 2,3	3,6 4,0	8,0 9,0	5,5 6,0
Assessor 4	1,3 1,1	8,0 9,0	8,9 7,9	3,7 4,0	1,8 2,0	6,7 7,0	5,5 5,0
Assessor 5	6,0 5,8	5,5 6,0	3,0 3,3	5,5 6,0	7,8 8,0	8,7 8,8	1,8 2,0
Assessor 6	6,3 6,0	6,5 6,0	3,2 3,0	5,8 6,0	7,8 8,0	8,9 8,8	1,9 2,0
CHECK			TU		DTU Sensome	trics, Aug 2015, ©	Per Bruun Brockh

Avera	age data	a = two	-way \	NITHC)UT R	eplica	tion
	Sample A	Sample B	Sample C	Sample D	Sample E	Sample F	Sample G
Assessor 1	1,25	7,9	7,3	2,7	3,9	8,65	6,15
Assessor 2	1,2	8,9	8,7	4,05	1,85	6,75	4,75
Assessor 3	1,1	7,75	7,1	2,45	3,8	8,5	5,75
Assessor 4	1,2	8,5	8,4	3,85	1,9	6,85	5,25
Assessor 5	5,9	5,75	3,15	5,75	7,9	8,75	1,9
Assessor 6	6,15	6,25	3,1	5,9	7,9	8,85	1,95
CHECK			ITU		DTU Sensome	trics, Aug 2015, ©	Per Bruun Brockho


Miyod	2-way =		isina :	avora	teh ar	3	
IVIIACU	z-way -	Analy	ising a		ye uai	a	
	Sample A	Sample B	Sample C	Sample D	Sample E	Sample F	Sample
Assessor 1	1,0 1,5	7,8 8,0	7,4 7,2	3,1 2,3	3,8 4,0	8,3 9,0	6,36,
Assessor 2	1,3 1,1	8,8 9,0	8,9 8,5	4,1 4,0	1,7 2,0	6,5 7,0	4,5 5,
Assessor 3	1,0 1,2	7,5 8,0	7,4 6,8	2,6 2,3	3,6 4,0	8,0 9,0	5,5 6,
Assessor 4	1,3 1,1	8,0 9,0	8,9 7,9	3,7 4,0	1,8 2,0	6,7 7,0	5,5 5,
Assessor 5	6,0 5,8	5,5 6,0	3,0 3,3	5,5 6,0	7,8 8,0	8,7 8,8	1,8 2,
Assessor 6	6,3 6,0	6,5 6,0	3,2 3,0	5,8 6,0	7,8 8,0	8,9 8,8	1,9 2,0
ICK		DT	11				
		ŧ					


	Conclusion on two-way ANOVA:
·	 Averaging (randomized) replicates makes sense! For more general situations (eg. with missing values): Using the random effect assumption in a mixed model for the complete data is a better approach. An what if replications are organized in sessions? Averaging still equivalent to random assessor effect BUT: this would ignore possible session-by-product interactions!
CHECK	DTU




Twov	vay A	NOV	A (w	/ith s	ession	repli	catio	n)	
Sess1	SamA	SamB	SamC	SamD	Sess2	SamA	SamB	SamC	Saml
Ass1	1,0	8,0	7,4	2,3	Ass1	1,0	8,0	7,4	2,3
Ass2	1,3	9,0	8,9	4,0	Ass2	1,3	9,0	8,9	4,0
Ass3	1,0	8,0	7,4	2,3	Ass3	1,0	8,0	7,4	2,3
Ass4	1,3	9,0	8,9	4,0	Ass4	1,3	9,0	8,9	4,0
Ass5	6,0	6,0	3,0	6,0	Ass5	6,0	6,0	3,0	6,0
Ass6	6,0	6,0	3,0	6,0	Ass6	6,0	6,0	3,0	6,0

	eewa	y ANO	VA		
Source	DF	SS	MS	F	Prob
Panellist (P)	5			NOT OK	NOT OK
Sample (S)	3			NOT OK	NOT OK
Session (R)	1			NOT OK	NOT OK
Pan*Sam	15			OK!!	OK!!
Sam*Ses	3			OK‼	OK!!
Pan*Ses	5			OK!!	OK!!
Residual	15				

Bonferroni correction
Comparing all combinations of 6 products:
$$6x5/2=15$$
 comparisons
The (family wise) type 1 error: >>5%
(In cases with no difference, there is a large chance that at least one out of 15 tests become significant
Solution: In each of the 15 pairwise test, use 5%/15=0.33% in each test. Or:
 $LSD = t_{0.9967} (45) \sqrt{\frac{2MS_{MixedError}}{30}}$
 $MS_{MixedError} = MS_{PanelistsSample} + MS_{SessionsSample} - MS_{Error}$

ection
6 products:
$$6x5/2=15$$
 comparisons
>>5%
ere is a large chance that at least one out
wise test, use 5%/15=0.33% in each test. Or:
 $5)\sqrt{2MS_{MixedError}/30}$
 $mple + MS_{SessionxSample} - MS_{Error}$
ANOVA for Sensory Data
Visual Analysis by PanelCheck
• From simple to 3-way mixed ANOVA
• Designing a simle experiment
• Simple two-way analysis and simple t-test
• Two-way with reps analysis
• Random effect in two-way
• Mixed 3-way ANOVA analysis
• Using PanelCheck
 $mixed 3-may ANOVA analysis$