| Likelihood based confidence intervals                                                                     |                                                                                                                                                                                                                       |  |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Christine Borgen Linander                                                                                 | A hum thank to a famous calles and of asian Dune U.D. Christenson                                                                                                                                                     |  |
| DTU Compute<br>Section for Statistics<br>Technical University of Denmark<br>chjo@dtu.dk                   | A huge thank to a former colleague of mine Rune H B Christensen.                                                                                                                                                      |  |
| August 20th 2015                                                                                          |                                                                                                                                                                                                                       |  |
| DTU Compute DTU                                                                                           |                                                                                                                                                                                                                       |  |
| Department of Applied Mathematics and Computer Science                                                    |                                                                                                                                                                                                                       |  |
|                                                                                                           |                                                                                                                                                                                                                       |  |
| O Christine Borgen Linander (DTU) Likelihood based confidence intervals Sensometrics Summer School 1 / 15 | © Christine Borgen Linander (DTU) Likelihood based confidence intervals Sensometrics Summer School 2 / 15                                                                                                             |  |
|                                                                                                           |                                                                                                                                                                                                                       |  |
| Outline                                                                                                   | Motivation                                                                                                                                                                                                            |  |
| Outline                                                                                                   |                                                                                                                                                                                                                       |  |
| Outline                                                                                                   | Motivation                                                                                                                                                                                                            |  |
| Outline                                                                                                   | Motivation                                                                                                                                                                                                            |  |
| Outline<br>Outline<br>Motivation                                                                          | Motivation<br>Motivation<br>We are interested in:                                                                                                                                                                     |  |
| Outline                                                                                                   | Motivation<br>Motivation<br>We are interested in:<br>Which sensory difference (d') is most supported by the data?                                                                                                     |  |
| Outline<br>Outline<br>Motivation<br>Examples                                                              | Motivation<br>Motivation<br>We are interested in:<br>Which sensory difference (d') is most supported by the data?<br>Which interval of sensory differences is supported by the data?                                  |  |
| Outline<br>Dutline<br>Motivation<br>Examples                                                              | Motivation<br>Motivation<br>We are interested in:<br>Which sensory difference (d') is most supported by the data?<br>Which interval of sensory differences is supported by the data?<br>We usually answer those with: |  |

#### Problems with standard CIs

Standard (Wald) 95% confidence intervals:

- For binomial probability of a correct answer  $p_c$ :  $\hat{p}_c \pm 1.96 \cdot \operatorname{se}(\hat{p}_c)$
- For the Thurstonian  $\delta$ :  $\hat{\delta} \pm 1.96 \cdot se(\hat{\delta})$  (Bi et al, 1997)

Problems and solution:

- The standard CIs are incompatible and lead to contradictions
- The standard CIs do not cover the values of  $\delta$  or  $p_c$  that are most supported by the data
- Cls based on the likelihood function have better properties

© Christine Borgen Linander (DTU)

Likelihood based confidence intervals Sensometrics Summer School

#### Examples

## Peter and Sally's triangle experiment

- The guessing probability is 1/3
- They obtain 10 correct answers to 20 samples
- Peter analyzes the probability of a correct answer,  $p_c$ :  $\hat{p}_c=1/2(0.11)$  and  $CI_{95\%}=[0.28;0.72]$  which covers  $p_c=1/3$
- Sally analyzes the Thurstonian  $\delta$ :  $\hat{\delta}=1.47(0.59)$  and  $C\!I_{95\%}=[0.32;2.62]$  (Bi et al, 1997) which does NOT cover  $\delta=0$

Which method is (most) correct?

Should we trust Peter or Sally?

How much evidence is there really in the data about a difference between the products?

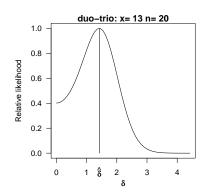
## John and Dorothy's duo-trio experiment

- The guessing probability is 1/2
- They obtain 13 correct answers to 20 samples
- John analyzes the probability of a correct answer,  $p_c$ :  $\hat{p}_c=0.65(0.11)$  and  $C\!I_{95\%}=[0.44;0.86]$  which covers  $p_c=1/2$
- Dorothy analyzes the Thurstonian  $\delta$ :  $\hat{\delta}=1.42(0.63)$  and  $\mathit{CI}_{95\%}=[0.18;2.66]$  (Bi et al, 1997) which does NOT cover  $\delta=0$

Which method is (most) correct?

Should we trust John or Dorothy?

How much evidence is there really in the data about a difference between the products?


 $\odot$  Christine Borgen Linander (DTU)

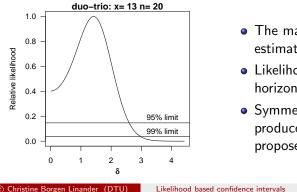
Likelihood based confidence intervals Sensometrics Summer School

The likelihood function and confidence intervals

## Properties of the likelihood function

- Likelihood function = density:  $L(\delta;x,n) = \binom{n}{x} p^x (1-p)^{n-x}, \ p = f_{\rm psy}(\delta)$
- Measures support of values of  $\delta$  relative to  $\hat{\delta}$
- $\bullet\,$  An objective way to measure information in the data about  $\delta\,$




- The maximum likelihood estimate (MLE)
- Likelihood CIs are given by horizontal lines
- Symmetric approximation produces standard (Wald) CIs proposed by Bi et al (1997)

ristine Borgen Linander (DTU)

#### The likelihood function and confidence intervals

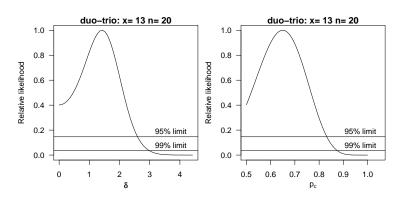
#### Properties of the likelihood function

- Likelihood function = density:  $L(\delta; x, n) = \binom{n}{r} p^{x} (1-p)^{n-x}, \ p = f_{psv}(\delta)$
- Measures support of values of  $\delta$  relative to  $\hat{\delta}$
- An objective way to measure information in the data about  $\delta$



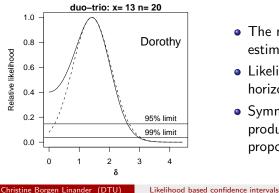
- The maximum likelihood estimate (MLE)
- Likelihood CIs are given by horizontal lines
- Symmetric approximation produces standard (Wald) CIs proposed by Bi et al (1997)

Sensometrics Summer School


8 / 15

9 / 15

Examples revisited


#### John and Dorothy's duo-trio example revisited

- "No difference" between the products has reasonably high likelihood
- An intermediate difference between products is most likely
- A large difference between products is unlikely

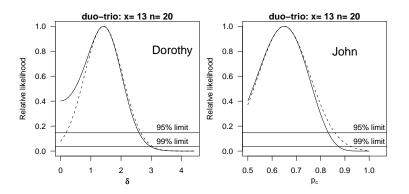


#### Properties of the likelihood function

- Likelihood function = density:  $L(\delta; x, n) = \binom{n}{r} p^{x} (1-p)^{n-x}, \ p = f_{psv}(\delta)$
- Measures support of values of  $\delta$  relative to  $\hat{\delta}$
- An objective way to measure information in the data about  $\delta$



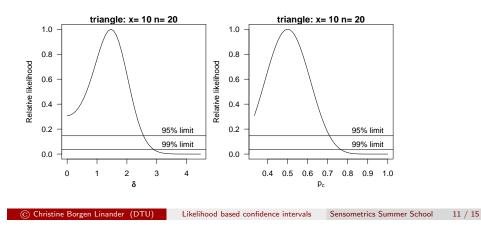
- The maximum likelihood estimate (MLE)
- Likelihood Cls are given by horizontal lines
- Symmetric approximation produces standard (Wald) CIs proposed by Bi et al (1997)


Sensometrics Summer School

8 / 15

Examples revisited

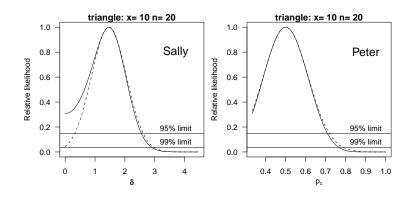
#### John and Dorothy's duo-trio example revisited (2)


- The symmetric approximations are inaccurate
- Neither John's nor Dorothy's CIs are appropriate
- Likelihood inference for  $\delta$  and  $p_c$  is compatible



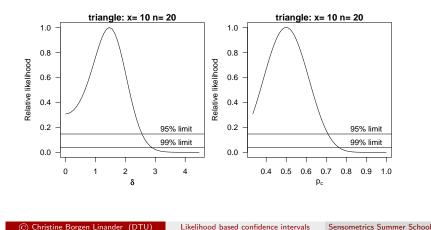
#### Examples revisited

#### Peter and Sally's triangle example revisited (1)


- "No difference" between the products has reasonably high likelihood
- An intermediate difference between products is most likely
- A large difference between products is unlikely



Examples revisited


#### Peter and Sally's triangle example revisited (3)

- The symmetric approximation for  $\delta$  is quite inaccurate
- Sally's CI is very misleading



## Peter and Sally's triangle example revisited (2)

- The likelihood curve tells the full story about the data
- The likelihood curve illustrates the effect of confidence level



Perspectives

Coverage probability

• Boyles (2008) showed that likelihood CIs have the best coverage probability among common CIs for the binomial *p*.

Coverage probability in % for the binomial p with a nominal level of 95% (Boyles, 2008)

|     |          |       | (20).00, 2000 |
|-----|----------|-------|---------------|
| n   | Standard | Exact | Likelihood    |
| 10  | 76.9     | 98.4  | 94.9          |
| 50  | 90.1     | 96.9  | 95.0          |
| 100 | 92.2     | 96.5  | 95.0          |
| 500 | 94.3     | 95.7  | 95.0          |

12 / 15

# Likelihood methods in discrimination testing

**Likelihood** — a common framework for:

| Estimation           | Maximum likelihood    |
|----------------------|-----------------------|
| Testing              | Likelihood ratio test |
| Confidence intervals | Profile likelihood    |

Gracefully handle boundary cases

Likelihood methods extend to complex situations

