







### Analysing Similarity test data



- 1. Aim: proof that products are (sufficiently) similar!
- 2. Traditionally, "Power approach":
  - 1. Claim "similarity" if NOT different
  - 2. "Acceptance" of difference test hypothesis of no difference.
- 3. Better:
  - 1. Equivalence tests and/or Confidence limits.

DEPARTMENT OF Applied Mathematics and Computer Science

DTU Sensometrics, August 2015, © Per Bruun Brockhof

#### Equivalence tests



For such one-tailed situations this is equivalent to:

- Specify the wanted degree of similarity
- Claim similarity (with 95% confidence) IF the 90% upper (2-tailed) confidence limit is within this specification

Can be used on level 0, level 1 or level 2 BUT: "discrim" requires the Pd0 as input!

**TU Compute** epartment of Applied Mathematics and Computer Science

DTU Sensometrics, August 2015, © Per Bruun Brockhof

## **Equivalence** tests



1. Interchanges the roles of the hypotheses:

**H0: Products are NOT similar** 

H1: Products are similar

**Example with specified level of similarity:** 

$$(p_{d0} = 0.25)$$

$$H_0: p_d \ge 0.25 \Leftrightarrow p_c \ge 0.50$$

$$H_A: p_d < 0.25 \Leftrightarrow p_c < 0.50$$

OTU Compute

Department of Applied Mathematics and Computer Science

DTU Sensometrics, August 2015, © Per Bruun Brockhoff

# Doing the equivalence test



Does 40 out of 100 in a triangle prove a 0.25 Pd-equivalence?

discrim(40,100,pd0=0.25,conf.level=0.90, method="triangle",test="similarity")

DTU Compute

Department of Applied Mathematics and Computer Science

### Similarity and difference tests



SAME data may provide non-significant results for BOTH difference and similarity tests:

discrim(40, 100, pd0=0.2, conf.level=0.90, method="triangle", test="similarity")

discrim(40, 100, conf.level=0.90, method = "triangle")

OTU Comput

lepartment of Applied Mathematics and Computer Science

DTU Sensometrics, August 2015, © Per Bruun Brockhoj

# Doing the equivalence test



Does 35 out of 100 in a 3AFC prove a 0.5 d-prime equivalence?

mypd0=rescale(d.prime=0.5)\$pd

discrim(40,100,pd0=mypd0,conf.level=0.90, method="3AFC",test="similarity")

OTU Compute

partment of Applied Mathematics and Computer Science

DTU Sensometrics, August 2015, © Per Bruun Brockhof

## Similarity and difference tests



SAME data may provide significant results for BOTH difference and similarity tests:

discrim(80, 200, pd0=0.25, conf.level=0.90, method="triangle", test="similarity")

discrim(80, 200, conf.level=0.90, method = "triangle")

DTU Compute

Department of Applied Mathematics and Computer Science

DTU Sensometrics, August 2015, © Per Bruun Brockhoff

#### sensR -Part 2



- 1. Analysing similarity test data.
- 2. Planning similarity tests (power and sample size for similarity testing)
- 3. Analysing replicated difference test data

OTU Compute

Department of Applied Mathematics and Computer Science

# Power of Similarity tests



ISO triangle standard does (a version of) the following:

discrimPwr(pdA=0,pd0=0.25, sample.size=100, alpha=0.05,pGuess =1/3, test="similarity")

So assumes the true pd to be zero! (pdA=0)

(only best case scenario)

nt of Applied Mathematics and Computer Science

DTU Sensometrics, August 2015, © Per Bruun Brockhoj

# Explanation of Power of Similarity tests



The critical value of the test can be found:

(The upper limit of being able to prove similarity)

findcr(sample.size=100, alpha = .05, p0 = 1/3, pd0 = 0.25, test = c("similarity"))

#Power: pbinom(41,100,1/3)

OTU Compute

artment of Applied Mathematics and Computer Science

DTU Sensometrics, August 2015, © Per Bruun Brockhoff

# Power of Similarity tests



But what if pdA>0, e.g. pdA=0.2:

(ISO triangle standard ignores this) sensR does the job:

discrimPwr(pdA=.2,pd0=0.25, sample.size=100, alpha=0.05,pGuess=1/3, test="similarity")

DTU Compute

Department of Applied Mathematics and Computer Science

DTU Sensometrics, August 2015, © Per Bruun Brockhoff

# Power of Similarity tests



What if similarity is defined on dprime scale, e.g. d.prime0=0.5:

d.primePwr(d.primeA=0,d.prime0=0.5, sample.size=100, alpha=0.05,method="triangle", test="similarity")

DTU Compute

Department of Applied Mathematics and Computer Science









#### Replicated situations



n individuals each performed k tests

- Individuals may be different
- There may be heterogeneity
- The nk observations are not independent

Actually: the naive (pooled) difference hypothesis test is NOT wrong BUT: NOT enough for extracting complete information

JIU Compute Jenartment of Applied Mathematics and Computer Science

DTU Sensometrics, August 2015, @ Per Bruun Brockhoft

#### Replicated traingle tests How do they come out?? sensR: Simulation: # First a case where individuals are "clones" - they are NOT really different, # AND there is NO product difference: discrimSim(20, replicates = 12, d.prime = 0, method = "triangle", sd.indiv=0) # Next a case where individuals are "clones" - they are NOT really different, # but there IS a product difference, d.prime=2: discrimSim(20, replicates = 12, d.prime = 2, method = "triangle", sd.indiv=0) # Finally a case where individuals are really different, (sd.indiv=2) # AND there IS a product difference, d.prime=2: discrimSim(20, replicates = 12, d.prime = 2, method = "triangle", sd.indiv=2) DTU Compute of Applied Mathematics and Computer Science DTU Sensometrics, August 2015, @ Per Bruun Brockho

# Replicated traingle tests



Example, n=15, k=12: 2,2,3,3,4,4,4,4,4,4,4,4,5,6,10,11

**Naive analysis:** 



discrim(70,180,method="triangle")

Confidence limits generally NOT OK Test for detecting product difference may NOT be the strongest possible!

DTU Compute

Department of Applied Mathematics and Computer Science

DTU Sensometrics, August 2015, © Per Bruun Brockhoff

# Replicated traingle tests



TWO aspects are now in play:

- 1. Average level of difference
- 2. Variability of individual differences
  - 1. "Usual" variability
  - 2. "EXCESS" variability ("over-dispersion")

Different possible approaches to cope with this! (all: random individuals)

DTU Compute

Department of Applied Mathematics and Computer Science













