
Computational Tools
for Data Science

Week 5 Lecture:
Similar Items

Based on MMDS Chapter 3

Applications of Finding Similar Items

• Similar documents (textual similarity)
• Plagiarism
• Mirror pages
• News articles from the same source

• Recommendation Systems/Collaborative Filtering
• Online purchases
• Netflix recommendations

• Entity Resolution
• Matching Fingerprints

Challenges

• Many small pieces of a document can appear out of order in another
• Addressed by ”shingling”

• Documents too large or too many they cannot fit in main memory
• Addressed by using “signatures”

• Too many documents to compare all pairs
• Addressed by “locality-sensitive hashing”

Prelude: Hash Functions

• A hash function takes data of arbitrary size to fixed size values
• Mapping integers to their remainder modulo 𝑚
• Mapping strings to 32 bit integers

• Hash values are used as indices in arrays, or keys in dictionaries,
where the data is stored – known as hash tables

• Example: strings of length 9, alphabet = {a,b,…,z,_}
• 27! ≈ 7.6 × 10"# ≈ 2$% possible strings (9 bytes each)
• Hash to integer from 0 to 232-1 (4 bytes)

Hash Functions

• Want uniform coverage/few collisions

• Examples:
• ℎ 𝑥 = 𝑥 𝑚𝑜𝑑 1000
• ℎ 𝑥 = 133𝑥 + 27 𝑚𝑜𝑑 1000
• ℎ 𝑥 = 50𝑥 + 13

• Many available online

Big Picture

ShinglingDocument

The set
of strings
of length q
that appear
in the doc-
ument

Min
Hashing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

Converting documents to sets

• Simple approaches:
• Document = set of words appearing in document
• Document = set of “important” words appearing in document

• These don’t work well for this application. Why?

• Need to account for ordering of words!

• We use shingles

Shingling

• A 𝑞-shingle for a document is a sequence of 𝑞 consecutive “tokens”
appearing in the document
• Tokens can be characters, words, or something else depending on the

application
• For now assume tokens = characters

• Example: 𝒒 = 𝟐, document D = abcab
• Set of 2-shingles: S(D) = {ab, bc, ca}
• Option: shingles as multiset, count ab twice: S’(D) = {ab, bc, ca, ab}

Whitespace

• Often makes sense to replace any sequence of one or more
whitespace characters by a single blank

• Helps to distinguish shingles that cover one or more words from
those that do not

• Example:
• “The plane was ready for touch down” vs “The quarterback scored a touchdown”
• Both contain ‘touchdown’ as a 9-shingle if whitespace is ignored

Shingles and Similarity

• Documents that are intuitively similar will have many shingles in common

• Changing a word only affects 𝑞-shingles within distance 𝑞 from that word

• Reordering paragraphs only affects the 2𝑞 shingles that cross paragraph
boundaries

• Example 𝑞 = 3, “The dog which chased the cat” versus “The dog that
chased the cat”
• Only 3-shingles replaced are g_w, _wh, whi, hic, ich, ch_, and h_c

Choosing the value of 𝑞
• Too small:

• Most documents will have most 𝑞-shingles
• High similarity of documents even if they have none of the same sentences or

phrases

• Too big:
• Storing the shingles takes more space

• 𝑞 should be chosen so that the probability of any given shingle
appearing in any given document is low.
• Depends on how long the typical document is and how large the set of typical

characters is

Choosing the value of 𝑞
• Emails:

• 𝑞 = 5 could be good
• 27& = 14,348,907 possible shingle
• Most emails contain much fewer than 14 million characters

• More subtle than this
• More than 27 characters
• Appear with different probability – some 5-shingles may be common
• Rule of thumb: imagine there are only 20 characters – 20' possible shingles

• For large documents (e.g., research articles) 𝑞 = 9 is considered safe

Compressing Shingles
• For large 𝑞 we might expect that most 𝑞-shingles do not appear in any of

our documents

• Compress long shingles (e.g., q=10) by hashing them to (say) 4 bytes.

• Represent a document by the set of hash values of its shingles (still refer to
them as shingles)

• Documents will still only have a small fraction of possible (hashed) shingles

• Two documents could (rarely) appear to have shingles in common, when in
fact only the hash-values were shared

Similarity of Sets

• The Jaccard similarity of two sets is the size of the intersection
divided by the size of their union.

• 𝑆𝑖𝑚(𝑆1, 𝑆2) = 𝑆1⋂𝑆2 / 𝑆1⋃𝑆2

• 𝑆𝑖𝑚 𝑆1, 𝑆2 = 0 if and only if the sets have no elements in common

• 𝑆𝑖𝑚 𝑆1, 𝑆2 = 1 if and only if 𝑆1 = 𝑆2

Jaccard Similarity

4 in intersection
8 in union
Jaccard similarity = 4/8
= 1/2

Working Assumption

• Documents that have lots of shingles in common have similar text,
even if the text appears in different order

• Caveat: You must pick 𝑞 large enough, or most documents will have
most shingles
• 𝑞 = 5 is OK for short documents (e.g., emails)
• 𝑞 = 9, 10 is better for long documents

Minhashing and Signatures of Sets

Signatures
• If we have very many very large documents, we may not be able to

store all of the sets of shingles in main memory

• Idea: Hash each set to a small signature ℎ(𝑆) such that:
• ℎ(𝑆) is small enough that the signature fits in main memory
• 𝑆𝑖𝑚(𝑆1, 𝑆2) is the same as the “similarity” of the signatures ℎ(𝑆1) and ℎ 𝑆2

• Goal: First find a function ℎ′ such that
• If 𝑺𝒊𝒎(𝑺𝟏, 𝑺𝟐) is high, then with high probability 𝒉′ 𝑺𝟏 = 𝒉′ 𝑺𝟐
• If 𝑺𝒊𝒎(𝑺𝟏, 𝑺𝟐) is low, then with high probability 𝒉′ 𝑺𝟏 ≠ 𝒉′ 𝑺𝟐

• Concatenate many such ℎ′ to obtain desired ℎ

Signatures

• Solution: Create signatures using “minhashing”

• Given a hash function ℎ, the minhash of a set 𝑆 with repsect to ℎ,
denoted 5ℎ(𝑆), is

5ℎ(𝑆) = min ℎ 𝑠 : 𝑠 ∈ 𝑆

• Use several (e.g., 100) independent hash functions to create signatures

Minhash and Jaccard Similarity

Pr 5ℎ(𝑆) = 5ℎ(𝑇) =
𝑆⋂𝑇
𝑆⋃𝑇 = 𝑆𝑖𝑚(𝑆, 𝑇)

In this case: 5ℎ 𝑆 = 5ℎ 𝑇 = 1

Signatures and Jaccard Similarity

• Set signature
• Pick 𝑘 hash functions ℎ1, ℎ2, … , ℎ𝑘 independently
• These give 𝑘 minhashes Cℎ", Cℎ#, … , Cℎ(
• 𝒔𝒊𝒈(𝑺) = [Cℎ"(𝑆), Cℎ#(𝑆), … , Cℎ((𝑆)]

• Jaccard similarity estimation
• 𝑆𝑖𝑚 𝑆, 𝑇 ≈ [# equal pairs in 𝑠𝑖𝑔(𝑆) and 𝑠𝑖𝑔(𝑇)]/𝑘

Computing Signatures for many Sets at once

• 𝑆𝐼𝐺 – matrix with 𝑆𝐼𝐺(𝑖, 𝑆) = 𝑖𝑡ℎ entry of the signature of 𝑆
• Initialize 𝑆𝐼𝐺 𝑖, 𝑆 = ∞ for all 𝑖 and 𝑆
• Let 𝑈 = set of all elements in all sets 𝑆

for 𝑠 ∈ 𝑈 do
Compute ℎ1 𝑠 , ℎ2 𝑠 ,… , ℎ𝑘(𝑠)
for each set 𝑆 do

if 𝑠 ∈ 𝑆 then
for 𝑖 ∈ {1,… , 𝑘} do
𝑆𝐼𝐺(𝑖, 𝑆) ← min{ℎ! 𝑠 , 𝑆𝐼𝐺(𝑖, 𝑆)}

Example

• 𝑆 = 1,3,4 , 𝑇 = {2,3,5}
• ℎ" 𝑥 = 𝑥 𝑚𝑜𝑑 5
• ℎ# 𝑥 = 2𝑥 + 1 𝑚𝑜𝑑 5

Locality-Sensitive Hashing

Locality-Sensitive Hashing

• Goal: Find documents with Jaccard similarity at least some threshold 0 < 𝑡 < 1
• Balance false positives and false negatives

• false positives = sets with similarity < 𝑡 that become candidates
• false negatives = sets with similarity > 𝑡 that do not become candidates

• Idea:
• Filter all but a few candidate pairs
• Check candidates using set signature similarity estimation

• Optional: compute exact Jaccard similarity for candidates

LSH for Minhash Signatures

• Big idea: has signatures several times

• Arange that (only) similar columns are likely to hash to the same value

• Candidate pairs are those that hash to the same value at least once

Partition Signature matrix into 𝑏 Bands

Signature matrix SIG

r rows
per band

b bands

One
signature

Partition 𝑆𝐼𝐺 into Bands
• Divide 𝑆𝐼𝐺 into 𝑏 bands of 𝑟 rows each

• For each band, hash its portion of each column to a hash table with 𝑚
buckets
• Make 𝑚 as large as possible

• Candidate pairs are those that hash to the same bucket for ≥ 1 band
• Ideally: this is equivalent to the signatures being equal on ≥ 1 band

• Tune 𝑏 and 𝑟 to catch most similar pairs, but few nonsimilar pairs

Matrix SIG

r rows b bands

Buckets
Columns 2 and 6
are probably identical
(candidate pair)

Columns 6 and 7 are
surely different.

Simplifying Assumption

• There are enough buckets that columns are unlikely to hash to the
same bucket unless they are identical in a particular band

• Hereafter, we assume that “same bucket” means “identical in that
band”

• Assumption needed only to simplify analysis, not for correctness of
algorithm

Example - Bands

• Suppose 100,000 documents/sets

• Signatures of 100 integers

• Similarity threshold: 𝑡 = 0.8

• Approximately 5,000,000,000 pairs of signatures

• Choose 20 bands with 5 rows each

Suppose 𝑆1 and 𝑆2 are 80% similar

• Remember: 20 bands of 5 rows each

• Probability 𝑠𝑖𝑔 𝑆1 and 𝑠𝑖𝑔 𝑆2 are identical in one particular band:
(0.8)^5 ≈ 0.328

• Probability 𝑠𝑖𝑔 𝑆1 and 𝑠𝑖𝑔 𝑆2 are not identical in any band:
(1-0.328)^20 ≈ .00035
• i.e., about 1/3000th of the 80%-similar underlying sets are false negatives

Suppose 𝑆1 and 𝑆2 are 40% similar

• Remember: 20 bands of 5 rows each

• Probability 𝑠𝑖𝑔 𝑆1 and 𝑠𝑖𝑔 𝑆2 are identical in one particular band:
(0.4)^5 ≈ 0.01
• Probability 𝑠𝑖𝑔 𝑆1 and 𝑠𝑖𝑔 𝑆2 are identical in at least one band:

1 - (1-0.01)^20 ≈ .19
• i.e., about 1/5th of the 40%-similar sets are false positives

General Case
• 𝑏 bands of 𝑟 rows each

• 𝑆1 and 𝑆2 have similarity 𝑡

• Probability identical on a given band = 𝑡𝑟

• Probability not identical on a given band= 1− 𝑡$

• Probability no band identical = (1 − 𝑡$)%

• Probability at least one band is identical= 1− (1 − 𝑡$)%

S-Curve
𝑏 = 20, 𝑟 = 5

Similarity

Pr
ob

. o
f s

ha
rin

g
a

bu
ck

et

What We Want

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

Si
m

ila
rit

y
th

re
sh

ol
d
s

No chance
if t < s

Probability = 1
if t > s

What 1 band of 1 row gives you

Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(S1, S2) of two sets

Probability
of sharing
a bucket

𝑏 bands of 𝑟 rows each

𝑟 = 5, 𝑏 = 20
𝑟 = 6, 𝑏 = 37
𝑟 = 7, 𝑏 = 66
𝑟 = 8, 𝑏 = 120
𝑟 = 9, 𝑏 = 218
𝑟 = 10, 𝑏 = 395

Picking 𝑟 and 𝑏

Choose 𝑏 and 𝑟 so that 𝑡 ≈ "
0

"/2

Putting it all together
• Convert documents to their sets of shingles (must choose shingle size)
• Optional: Compress shingles via hashing
• Pick several (e.g., 100) hash functions and compute signatures of

minhashes for each document/set
• Pick a similarity threshold 0 < 𝑡 < 1 and select 𝑏 and 𝑟 so that

𝑡 ≈ "
%

"/$

• Use locality-sensitive hashing to find candidate pairs
• Check similarity of the signatures of the candidate pairs

• This eliminates false positives

• Optional: Check actual Jaccard similarity of the sets/documents

