Computational Tools for Data Science

 Week 5 Lecture:
Similar Items

Based on MMDS Chapter 3

Applications of Finding Similar Items

- Similar documents (textual similarity)
- Plagiarism
- Mirror pages
- News articles from the same source
- Recommendation Systems/Collaborative Filtering
- Online purchases
- Netflix recommendations
- Entity Resolution
- Matching Fingerprints

Challenges

- Many small pieces of a document can appear out of order in another
- Addressed by "shingling"
- Documents too large or too many they cannot fit in main memory
- Addressed by using "signatures"
- Too many documents to compare all pairs
- Addressed by "locality-sensitive hashing"

Prelude: Hash Functions

- A hash function takes data of arbitrary size to fixed size values
- Mapping integers to their remainder modulo m
- Mapping strings to 32 bit integers
- Hash values are used as indices in arrays, or keys in dictionaries, where the data is stored - known as hash tables
- Example: strings of length 9, alphabet $=\left\{a, b, \ldots, z, _\right\}$
- $27^{9} \approx 7.6 \times 10^{12} \approx 2^{43}$ possible strings (9 bytes each)
- Hash to integer from 0 to 2^{32-1} (4 bytes)

Hash Functions

- Want uniform coverage/few collisions
- Examples:
- $h(x)=x \bmod 1000$
- $h(x)=133 x+27 \bmod 1000$
- $h(x)=50 x+13$
- Many available online

Big Picture

Converting documents to sets

- Simple approaches:
- Document = set of words appearing in document
- Document = set of "important" words appearing in document
- These don't work well for this application. Why?
- Need to account for ordering of words!
- We use shingles

Shingling

- A q-shingle for a document is a sequence of q consecutive "tokens" appearing in the document
- Tokens can be characters, words, or something else depending on the application
- For now assume tokens = characters
- Example: $\boldsymbol{q}=2$, document $\mathbf{D}=$ abcab
- Set of 2-shingles: $\mathbf{S (D)}=\{a b, b c, c a\}$
- Option: shingles as multiset, count ab twice: $S^{\prime}(D)=\{a b, b c, c a, a b\}$

Whitespace

- Often makes sense to replace any sequence of one or more whitespace characters by a single blank
- Helps to distinguish shingles that cover one or more words from those that do not
- Example:
- "The plane was ready for touch down" vs "The quarterback scored a touchdown"
- Both contain 'touchdown' as a 9-shingle if whitespace is ignored

Shingles and Similarity

- Documents that are intuitively similar will have many shingles in common
- Changing a word only affects q-shingles within distance q from that word
- Reordering paragraphs only affects the $2 q$ shingles that cross paragraph boundaries
- Example $q=3$, "The dog which chased the cat" versus "The dog that chased the cat"
- Only 3-shingles replaced are g_w, _wh, whi, hic, ich, ch_, and h_c

Choosing the value of q

- Too small:
- Most documents will have most q-shingles
- High similarity of documents even if they have none of the same sentences or phrases
- Too big:
- Storing the shingles takes more space
- q should be chosen so that the probability of any given shingle appearing in any given document is low.
- Depends on how long the typical document is and how large the set of typical characters is

Choosing the value of q

- Emails:
- $q=5$ could be good
- $27^{5}=14,348,907$ possible shingle
- Most emails contain much fewer than 14 million characters
- More subtle than this
- More than 27 characters
- Appear with different probability - some 5 -shingles may be common
- Rule of thumb: imagine there are only 20 characters -20^{q} possible shingles
- For large documents (e.g., research articles) $q=9$ is considered safe

Compressing Shingles

- For large q we might expect that most q-shingles do not appear in any of our documents
- Compress long shingles (e.g., q=10) by hashing them to (say) 4 bytes.
- Represent a document by the set of hash values of its shingles (still refer to them as shingles)
- Documents will still only have a small fraction of possible (hashed) shingles
- Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared

Similarity of Sets

- The Jaccard similarity of two sets is the size of the intersection divided by the size of their union.
- $\operatorname{Sim}\left(S_{1}, S_{2}\right)=\left|S_{1} \cap S_{2}\right| /\left|S_{1} \cup S_{2}\right|$
- $\operatorname{Sim}\left(S_{1}, S_{2}\right)=0$ if and only if the sets have no elements in common
- $\operatorname{Sim}\left(S_{1}, S_{2}\right)=1$ if and only if $S_{1}=S_{2}$

Jaccard Similarity

4 in intersection 8 in union
Jaccard similarity $=4 / 8$
$=1 / 2$

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick q large enough, or most documents will have most shingles
- $q=5$ is OK for short documents (e.g., emails)
- $q=9,10$ is better for long documents

Minhashing and Signatures of Sets

Signatures

- If we have very many very large documents, we may not be able to store all of the sets of shingles in main memory
- Idea: Hash each set to a small signature $h(S)$ such that:
- $h(S)$ is small enough that the signature fits in main memory
- $\operatorname{Sim}\left(S_{1}, S_{2}\right)$ is the same as the "similarity" of the signatures $h\left(S_{1}\right)$ and $h\left(S_{2}\right)$
- Goal: First find a function h^{\prime} such that
- If $\boldsymbol{\operatorname { S i m }}\left(\boldsymbol{S}_{\mathbf{1}}, \boldsymbol{S}_{2}\right)$ is high, then with high probability $\boldsymbol{h}^{\prime}\left(\boldsymbol{S}_{\mathbf{1}}\right)=\boldsymbol{h}^{\prime}\left(\boldsymbol{S}_{2}\right)$
- If $\boldsymbol{\operatorname { S i m }}\left(\boldsymbol{S}_{\mathbf{1}}, \boldsymbol{S}_{\mathbf{2}}\right)$ is low, then with high probability $\boldsymbol{h}^{\prime}\left(\boldsymbol{S}_{\mathbf{1}}\right) \neq \boldsymbol{h}^{\prime}\left(\boldsymbol{S}_{\mathbf{2}}\right)$
- Concatenate many such h^{\prime} to obtain desired h

Signatures

- Solution: Create signatures using "minhashing"
- Given a hash function h, the minhash of a set S with repsect to h, denoted $\hat{h}(S)$, is

$$
\hat{h}(S)=\min \{h(s): s \in S\}
$$

- Use several (e.g., 100) independent hash functions to create signatures

Minhash and Jaccard Similarity

In this case: $\hat{h}(S)=\hat{h}(T)=1$

Signatures and Jaccard Similarity

- Set signature
- Pick k hash functions $h_{1}, h_{2}, \ldots, h_{k}$ independently
- These give k minhashes $\hat{h}_{1}, \hat{h}_{2}, \ldots, \hat{h}_{k}$
- $\boldsymbol{\operatorname { s i g }}(\boldsymbol{S})=\left[\hat{h}_{1}(S), \hat{h}_{2}(S), \ldots, \hat{h}_{k}(S)\right]$
- Jaccard similarity estimation
- $\operatorname{Sim}(S, T) \approx[\#$ equal pairs in $\operatorname{sig}(S)$ and $\operatorname{sig}(T)] / k$

Computing Signatures for many Sets at once

- SIG - matrix with $\operatorname{SIG}(i, S)=i^{\text {th }}$ entry of the signature of S
- Initialize $\operatorname{SIG}(i, S)=\infty$ for all i and S
- Let $U=$ set of all elements in all sets S
for $s \in U$ do
Compute $h_{1}(s), h_{2}(s), \ldots, h_{k}(s)$
for each set S do
if $s \in S$ then
for $i \in\{1, \ldots, k\}$ do
$S I G(i, S) \leftarrow \min \left\{h_{i}(s), S I G(i, S)\right\}$

Example

- $S=\{1,3,4\}, T=\{2,3,5\}$
- $h_{1}(x)=x \bmod 5$
- $h_{2}(x)=(2 x+1) \bmod 5$

Locality-Sensitive Hashing

Locality-Sensitive Hashing

- Goal: Find documents with Jaccard similarity at least some threshold $0<t<1$
- Balance false positives and false negatives
- false positives $=$ sets with similarity $<t$ that become candidates
- false negatives $=$ sets with similarity $>t$ that do not become candidates
- Idea:
- Filter all but a few candidate pairs
- Check candidates using set signature similarity estimation
- Optional: compute exact Jaccard similarity for candidates

LSH for Minhash Signatures

- Big idea: has signatures several times
- Arange that (only) similar columns are likely to hash to the same value
- Candidate pairs are those that hash to the same value at least once

Partition Signature matrix into b Bands

Signature matrix SIG

Partition SIG into Bands

- Divide SIG into b bands of r rows each
- For each band, hash its portion of each column to a hash table with m buckets
- Make m as large as possible
- Candidate pairs are those that hash to the same bucket for ≥ 1 band
- Ideally: this is equivalent to the signatures being equal on ≥ 1 band
- Tune b and r to catch most similar pairs, but few nonsimilar pairs

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Example - Bands

- Suppose 100,000 documents/sets
- Signatures of 100 integers
- Similarity threshold: $t=0.8$
- Approximately 5,000,000,000 pairs of signatures
- Choose 20 bands with 5 rows each

Suppose S_{1} and S_{2} are 80% similar

- Remember: 20 bands of 5 rows each
- Probability $\operatorname{sig}\left(S_{1}\right)$ and $\operatorname{sig}\left(S_{2}\right)$ are identical in one particular band: $(0.8)^{\wedge} 5 \approx 0.328$
- Probability $\operatorname{sig}\left(S_{1}\right)$ and $\operatorname{sig}\left(S_{2}\right)$ are not identical in any band: $(1-0.328)^{\wedge} 20 \approx .00035$
- i.e., about $1 / 3000$ th of the 80%-similar underlying sets are false negatives

Suppose S_{1} and S_{2} are 40% similar

- Remember: 20 bands of 5 rows each
- Probability $\operatorname{sig}\left(S_{1}\right)$ and $\operatorname{sig}\left(S_{2}\right)$ are identical in one particular band: $(0.4)^{\wedge} 5 \approx 0.01$
- Probability $\operatorname{sig}\left(S_{1}\right)$ and $\operatorname{sig}\left(S_{2}\right)$ are identical in at least one band:
$1-(1-0.01)^{\wedge} 20 \approx .19$
- i.e., about $1 / 5$ th of the 40%-similar sets are false positives

General Case

- b bands of r rows each
- S_{1} and S_{2} have similarity t
- Probability identical on a given band $=t^{r}$
- Probability not identical on a given band $=1-t^{r}$
- Probability no band identical $=\left(1-t^{r}\right)^{b}$
- Probability at least one band is identical $=1-\left(1-t^{r}\right)^{b}$

S-Curve

What We Want

Similarity $t=\operatorname{sim}\left(C_{1}, C_{2}\right)$ of two sets \longrightarrow

What 1 band of 1 row gives you

b bands of r rows each

$$
\begin{gathered}
r=5, b=20 \\
r=6, b=37 \\
r=7, b=66 \\
r=8, b=120 \\
r=9, b=218 \\
r=10, b=395
\end{gathered}
$$

Picking r and b

- Picking r and b to get the best S-curve
- 50 hash-functions ($r=5, b=10$)

Blue area: False Negative rate Green area: False Positive rate

Choose b and r so that $t \approx\left(\frac{1}{b}\right)^{1 / r}$

Putting it all together

- Convert documents to their sets of shingles (must choose shingle size)
- Optional: Compress shingles via hashing
- Pick several (e.g., 100) hash functions and compute signatures of minhashes for each document/set
- Pick a similarity threshold $0<t<1$ and select b and r so that

$$
t \approx\left(\frac{1}{b}\right)^{1 / r}
$$

- Use locality-sensitive hashing to find candidate pairs
- Check similarity of the signatures of the candidate pairs
- This eliminates false positives
- Optional: Check actual Jaccard similarity of the sets/documents

