Karl M. Heuer / David E. Roberson

Autumn 2022
Exercise class:
in 302 on September 20th

Exercises for Computational Tools for Data Science (02807)

Week 4: MapReduce

References and Reading

1. Chapter 2 of Mining of Massive Data Sets, Jure Leskovec, Anand Rajaraman, and Jeff Ullman.
2. Documentation for mrjob. See mrjob.readthedocs.io/en/latest/

Exercise 1: Install mrjob

Search relevant documentation and install mrjob on your system. Use mrjob to perform exercises 2-6, i.e., you must write one or more map/reduce functions

Exercise 2: Word Frequency

Implement the word frequency example discussed in class, i.e., the input is a document of words and the output is the frequency of each word. Test your solution on a small example.

Exercise 3: Inverted index

Implement the inverted index example discussed in class, i.e., the input is a collection of documents and the output is a set of <key, value> pairs where each key is a word appearing in at least one document and the value is the list of documents it appears in. Test your solution on a small example.

Exercise 4: Euler Tour

Determine if a graph has an Euler tour. To do so count and output the number of vertices of even and odd degree. The input is a file representing a graph G, where each line consists of two numbers x and y representing an edge (x, y) in G. The output should be a count of the number of nodes with even degree and odd degree. Test your solution on the graphs given in the files eulerGraphx.txt, where $x=1,2,3$.

Exercise 5: Common Friends

Implement the common friends example discussed in class. The input is a file representing a graph in an adjacency list style-format. Each line in the file is of the form $x: y_{1}, y_{2}, \ldots, y_{k}$ and encodes that vertex x is adjacent to vertices $y_{1}, y_{2}, \ldots, y_{k}$. The output should be pairs of ADJACENT vertices and their common neighbors, i.e., $x, y: c_{1}, c_{2}, \ldots, c_{j}$ if x and y have common neighbors c_{1}, \ldots, c_{j}. Test your solution on the graph in the file friends.txt.

Exercise 6: Triangle Counting

Compute the number of triangles in a graph. The input is in the same format as the Euler Tour exercise. Test your solution on the graph in the file roadnet.txt. Hint: The solution to the common friends exercise may be useful here.

Exercise 7: Install and explore NetworkX

With any remaining time after the above exercises, install the NetwowkX package and explore its capabilities (see https://networkx.org). Can you use it to do any of the above exercises? Try making and/or drawing some interesting graphs.

