

Introduction to Medical Image Analysis

Rasmus R. Paulsen DTU Compute

<u>rapa@dtu.dk</u>

http://www.compute.dtu.dk/courses/02512

Plenty of slides adapted from Thomas Moeslunds lectures

Lecture 5 – Morphology

What can you do after today?

- Describe the similarity between filtering and morphology
- Describe a structuring element
- Compute the dilation of a binary image
- Compute the erosion of a binary image
- Compute the opening of a binary image
- Compute the closing of a binary image
- Apply compound morphological operations to binary images
- Describe typical examples where morphology is suitable
- Remove unwanted elements from binary images using morphology
- Choose appropriate structuring elements and morphological operations based on image content

- 6-

Morphology

The science of *form, shape* and *structure* In biology: The form and structure of animals and

2020

-3-

Mathematical morphology

 $\left\{ \begin{array}{ll} \psi_m = ~\widetilde{\varphi}~\widetilde{\gamma} = \widetilde{\gamma}~\widetilde{\varphi}~\widetilde{\gamma} = \psi\widetilde{\gamma} \quad, \\ \psi_M = ~\widetilde{\gamma}\widetilde{\varphi} = \widetilde{\varphi}~\widetilde{\gamma}~\widetilde{\varphi} = \psi\widetilde{\varphi} \quad, \\ \psi = ~\widetilde{\gamma}~\psi = \widetilde{\varphi}~\psi, \\ \widetilde{\gamma} \leq \psi_m \leq \psi \leq \psi_M \ \leq \widetilde{\varphi} \quad. \end{array} \right.$

The same theorem may be restated in another way. If $\mathcal{J}d(\mathcal{B}) \neq \emptyset$ then let B_i be a family of elements of \mathcal{B} . We have $\forall B_i \in \sim B$, and thus $\tilde{\gamma}(\forall B_i) = \forall B_i$. From the first relation above, it follows for any $\psi \in \mathcal{J}d(\mathcal{B})$, that

$$\psi (\lor B_i) = \psi \widetilde{\gamma} (\lor B_i) = \widetilde{\varphi} \widetilde{\gamma} (\lor B_i).$$

But $\widetilde{\gamma}(\vee B_i) = \vee B_i$, so that

$$\widetilde{\varphi}\left(\vee B_{i}\right)=\psi\left(\vee B_{i}\right)\in\mathcal{B}$$

In the same way, we also obtain

$$\widetilde{\gamma}\widetilde{\varphi}(\wedge B_i) = \widetilde{\gamma}(\wedge B_i) = \psi(\wedge B_i) \in \mathcal{B}.$$

In other words, \mathcal{B} is a *complete lattice* with respect to the ordering on \mathcal{B} induced by \leq , i.e. any family B_i in \mathcal{B} has a smallest upper bound $\tilde{\varphi} (\lor B_i) \mathcal{B}$ and a greatest lower bound $\tilde{\gamma} (\land B_i) \in \mathcal{B}$.

Conversely, let us assume that \mathcal{B} is a complete lattice. Thus, for any $A \in \mathcal{L}$, the family $\{B : B \in \mathcal{B}, B \geq A\}$ has in \mathcal{B} a greatest lower bound, which is

 $\widetilde{\gamma} \left(\wedge \{ B : B \in \mathcal{B}, B \ge A \} \right) = \widetilde{\gamma} \ \widetilde{\varphi} \left(A \right) \in \mathcal{B}.$

But this implies $\mathcal{B}_{\psi_M} \subseteq \mathcal{B}$ for the filter $\psi_M = \widetilde{\gamma} \ \widetilde{\varphi}$. Conversely, for any

Developed in 1964

Theoretical work done in Paris Used for classification of minerals in cut stone

Initially used for binary images

Do not worry! We use a much less theoretical approach!

Relevance?

Point wise operations

- Filtering
- Thresholding
 - Gives us objects that are separated by the background
- Morphology
 - Manipulate and enhance binary objects

-Qu

What can it be used for?

- Remove noise
 - Small objects
 - Fill holes
- Isolate objects
- Customized to specific shapes

How does it work?

- Grayscale image
- Preprocessing
 - Inversion
- Threshold => Binary image
- Morphology

-Qu

Filtering and morphology

Filtering

- Gray level images
- Kernel
- Moves it over the input image
- Creates a new output image

Filtering and morphology

0	1	0	
1	1	1	Dis
0	1	0	
1	1	1	
1	1	1	Во

Filtering

- Gray level images
- Kernel
- Moves it over the input image
- Creates a new output image
- Morphology
 - Binary images
 - Structuring element (SE)
 - Moves the SE over the input image
 - Creates a new binary output image

-ÿr

1D Morphology

1D Morphology : The hit operation

1D Morphology : The fit operation

Dilate : To make wider or larger

– Dansk : udvide

Based on the *hit* operation

÷

1D Dilation example

15 DTU Compute, Technical University of Denmark

17 DTU Compute, Technical University of Denmark

1D Morphology : Erosion

Erode : To wear down (Waves eroded the shore)

– Dansk : tære, gnave

Based on the *fit* operation

-9-

Erosion Input image A) B) C) D) E) \$ Output Image

🖬 A 📓 B 📓 C 📓 D 📓 E

26 DTU Compute, Technical University of Denmark

2020

Structuring Element (Kernel)

Disk

- Structuring Elements can have varying sizes
- Usually, element values are 0 or 1, but other values are possible (including none!)
- Structural Elements have an origin
 Empty spots in the Structuring
 Elements are *don't cares*!

Structuring Element Origin

The origin is not always the center of the SE

	1	1
1	1	1
1	1	1

÷

Special structuring elements

0	0	0	1	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
1	1	1	(1)	1	1	1
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	1	0	0	0

Diamond

Structuring elements can be customized to a specific problem

0	0	0	0	0	1	1
0	0	1	(1)	1	0	0
1	1	0	0	0	0	0

Line

2020

Dilation on images - disk

Holes are closed

 $g(x,y) = f(x,y) \oplus SE$

Object is bigger

÷

2020

Dilation on images - box

$g(x, y) = f(x, y) \oplus SE$

Dilation – the effect of the SE

÷2.

37 DTU Compute, Technical University of Denmark

Dilation Example

• Round structuring element (disk)

• Creates round corners

0	1	1	1	1	1	
1	1	1	1	1	1	
1	1	1	(1)	1	1	
1	1	1	1	1	1	
0	1	1	1	1	1	
0	0	1	1	1	0	

Ω

 $\mathbf{0}$

 \mathbf{O}

A threshold of 200 is applied to the image and the result is a binary image. Now a dilation is performed with the structuring element below. How many foreground pixels are there in the resulting image?

Threshold and dilation

A) 14
B) 17
C) 6
D) 3
E) 12

145	56	86	42	191
19	33	41	255	115
14	240	203	234	21
135	120	20 9	167	58
199	3	135	176	116

1. 14
 2. 17

3. 6
 4. 3
 5. 12

Erosion on images - disk

2020

2020

 $g(x,y) = f(x,y) \Theta SE$

2020

٠Şe

42 DTU Compute, Technical University of Denmark

Erosion example

 \otimes

Counting Coins

- Counting these coins is difficult because they touch each other!
- Solution: Threshold and Erosion separates them!
- More on counting next time!

Compound operations

Compound

 made of two or more separate parts or elements

Combining Erosion and Dilation into more advanced operations

- Finding the outline
- Opening
 - Isolate objects and remove small objects (better than Erosion)
- Closing
 - Fill holes (better than Dilation)

Finding the outline

- Dilate input image (object gets bigger)
- 2. Subtract input image from dilated image
- 3. The outline remains!

$g(x,y) = (f(x,y) \oplus SE) - f(x,y)$

• 🌣

2020

Opening

- Motivation: Remove small objects BUT keep original size (and shape)
- Opening = Erosion + Dilation
 - Use the same structuring element!
 - Similar to erosion but less destructive
- Math:

$g(x,y) = f(x,y) \circ SE = (f(x,y) \ominus SE) \oplus SE$

Opening is idempotent: Repeated operations has no further effects!

$f(x,y) \circ SE = (f(x,y) \circ SE) \circ SE$

Opening $g(x,y) = (f(x,y) \ominus SE) \oplus SE$

÷2.

Opening Example

9x3 and 3x9 Structuring Elements

Opening example

Size of structuring element should fit into the smallest object to keep
 Structuring Element: 11 pixel disc

Compound operations A) 3 **B)** 23 C) 11 **D)** 36 16 9 0 0 0 0 A B C D E

The compound morphological operation seen below is applied to the image. How many foreground pixels are there in the resulting image?

 $(I \ominus SE1) \oplus SE2,$

- 1.3 2.23
- 3. 11
- 4.36
- 4. 50
- 5. 16

Closing

Motivation: Fill holes BUT keep original size (and shape)

- Closing = Dilation + Erosion
 - Use the same structuring element!
 - Similar to Dilation but less destructive
- Math:

$g(x,y) = f(x,y) \bullet SE = (f(x,y) \oplus SE) \ominus SE$

Closing is idempotent: Repeated operations has no further effects!

$$f(x,y) \bullet SE = (f(x,y) \bullet SE) \bullet SE$$

Closing $g(x,y) = (f(x,y) \oplus SE) \ominus SE$

53 DTU Compute, Technical University of Denmark

2020

Closing Example

Closing operation with a 22 pixel discCloses small holes

-2e

54 DTU Compute, Technical University of Denmark

Closing A) 31 B) 18 C) 6 D) 35 E) 21

Morphological closing is applied to the image using the structuring element below. How many foregrounds pixels are there in the resulting image?

31
 18
 6

4. 35
 5. 21

÷2.

56 DTU Compute, Technical University of Denmark

How do you like the book?

- A) Very bad book
- B) Bad book
- C) Ok book
- D) Good book
- E) Really good book

X

-ÿ.

2020

Flipped classroom TA 8-10, Lecture 10-12

- A) It really does not work
- B) It is not optimal
- C) It is ok
- D) It is fine
- E) It works very well

-3-

How much time do I spend on preparing every week?

- A) 0 minutes
- B) 0-15 minutes
- C) 15-30 minutes
- D) 30-60 minutes
- E) 1-2 hours
- F) 2-4 hours
- G) More than 4 hours

How do I feel about Matlab

- A) I simply do not get it
- B) I find it hard
- C) We are ok friends
- D) I feel confident in Matlab
- E) I write Matlab scripts even when I sleep

-Qu

Next week: Blob Analysis

