Introduction to Medical Image Analysis
 Rasmus R. Paulsen
 DTU Compute

rapa@dtu.dk
http://www.compute.dtu.dk/courses/02512

Plenty of slides adapted from Thomas Moeslunds lectures

Lecture 5 - Morphology

0	0	1	1	1	0	0				
0	1	1	1	1	1	0				
1	1	1	1	1	1	1				
1	1	1	1	1	1	1				
1	1	1	1	1	1	1				
0	1	1	1	1	1	0				
0	0	1	1	1	0	0				

What can you do after today?

- Describe the similarity between filtering and morphology
- Describe a structuring element
- Compute the dilation of a binary image
- Compute the erosion of a binary image
- Compute the opening of a binary image
- Compute the closing of a binary image
- Apply compound morphological operations to binary images
- Describe typical examples where morphology is suitable
- Remove unwanted elements from binary images using morphology
- Choose appropriate structuring elements and morphological operations based on image content

Morphology

- The science of form, shape and structure
- In biology: The form and structure of animals and plants

Common leaf morphologies

Mathematical morphology

- Developed in 1964
- Theoretical work done in Paris
- Used for classification of minerals in cut stone
- Initially used for binary images

Do not worry! We use a much less theoretical approach!

Relevance?

- Point wise operations
- Filtering
- Thresholding
- Gives us objects that are separated by the background
- Morphology
- Manipulate and enhance binary objects

What can it be used for?

How does it work?

- Grayscale image
- Preprocessing
- Inversion
- Threshold => Binary image
- Morphology

Filtering and morphology

- Filtering

1	2	0	1	3	1
2	1	4	2	2	2
1	0	1	0	1	3
1	2	1	0	2	4
2	5	3	1	2	2
2	1	3	1	6	3

- Gray level images
- Kernel
- Moves it over the input image
- Creates a new output image

Filtering and morphology

0	1	0
1	1	1
0	1	0
1	1	1
1	1	1
1	1	1
	Box	

- Filtering
- Gray level images
- Kernel
- Moves it over the input image
- Creates a new output image
- Morphology
- Binary images
- Structuring element (SE)
- Moves the SE over the input image
- Creates a new binary output image

DTU Compute

1D Morphology

Input image

1	0	0	0	1	1	1	0	1	1

Structuring Element
(SE)

Output Image

1D Morphology : The hit operation

Input image

1	0	0	0	1	1	1	0	1	1

Structuring Element
 (SE)

- If just one 1 in the SE match with the input
- output 1
- else
- output 0

1D Morphology : The fit operation

Input image

Structuring Element
(SE)

- If all 1 in the SE match with the input
- output 1
- else
- output 0

1D Morphology : Dilation

- Dilate : To make wider or larger
- Dansk : udvide
- Based on the hit operation

DTU Compute

1D Dilation example

Input image

1	0	0	0	1	1	1	0	1	1

Structuring Element

$g(x)=f(x) \oplus S E$

to make bigger
Output Image

\square

DTU Compute

Example for Dilation

Input image

1	0	0	0	1	1	1	0	1	1

Structuring Element

Output Image

DTU Compute

Example for Dilation

Input image

1	0	0	0	1	1	1	0	1	1

Structuring Element

Output Image

DTU Compute

Example for Dilation

Input image

Structuring Element

Output Image

Example for Dilation

Input image

Structuring Element

Output Image

1	0	0	0	1	1	1	0	1	1

DTU Compute

Example for Dilation

Input image

Structuring Element

1	0	0	0	1	1	1	0	1	1

Output Image

Example for Dilation

Input image

Structuring Element

Output Image

1	0	0	0	1	1	1	0	1	1

Example for Dilation

Input image

Structuring Element

Output Image

The object gets bigger and holes are filled!

1D Morphology : Erosion

- Erode : To wear down (Waves eroded the shore)
- Dansk : tære, gnave
- Based on the fit operation

DTU Compute

Example for Erosion

Input image

Structuring Element

Fit

- If all 1 in the SE match with the input
- output 1
- else
- output 0

Erosion

Output Image

DTU Compute

Example for Erosion

Input image

1	0	0	0	1	1	1	0	1	1

Structuring Element

Output Image

Example for Erosion

Input image

Structuring Element

Output Image

1	0	0	0	1	1	1	0	1	1

Example for Erosion

Input image

Structuring Element

Output Image

1	0	0	0	1	1	1	0	1	1

Example for Erosion

Input image

Structuring Element

1	0	0	0	1	1	1	0	1	1

Output Image

Example for Erosion

Input image

Structuring Element

Output Image

1	0	0	0	1	1	1	0	1	1

	0	0	0	0	1	0	0		

Example for Erosion

Input image

Structuring Element

Output Image

The object gets smaller

Structuring Element (Kernel)

0	1	0
1	1	1
0	1	0

Disk

1	1	1
1	1	1
1	1	1

Box

- Structuring Elements can have varying sizes
- Usually, element values are 0 or 1, but other values are possible (including none!)
- Structural Elements have an origin
- Empty spots in the Structuring Elements are don't cares!

Structuring Element Origin

0	1	0
1	1	1
0	1	0

- The origin is not always the center of the SE

(1)	1	1
1	1	1
1	1	1

Special structuring elements

- Structuring elements can be customized to a specific problem

0	0	0	1	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
1	1	1	1	1	1	1
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	1	0	0	0

Diamond

0	0	0	0	0	1	1
0	0	1	1	1	0	0
1	1	0	0	0	0	0

Line

Dilation on images - disk

Holes are closed

Dilation on images - box

A) 1011
B) 0100
C) 0111
D) 0111
E) 1101

$g(x, y)=f(x, y) \oplus S E$

Dilation - the effect of the SE

Dilation Example

A threshold of 200 is applied to the image and the
with the structuring element below. How many
foreground pixels are there in the resulting image?

Threshold and dilation

A) 14
B) 17
C) 6
D) 3
E) 12

$\square A \square B \square C \square D E$

145	56	86	42	191
19	33	41	255	115
14	240	203	234	21
135	120	209	167	58
199	3	135	176	116

1. 14

Erosion on images - disk

Erosion on images - box

A) 0010
B) 1010
C) 0110
D) 0100
E) 1000

Erosion on images - box (square)

Erosion example

Counting Coins

- Counting these coins is difficult because they touch each other!
- Solution: Threshold and Erosion separates them!
- More on counting next time!

Compound operations

- Compound
- made of two or more separate parts or elements
- Combining Erosion and Dilation into more advanced operations
- Finding the outline
- Opening
- Isolate objects and remove small objects (better than Erosion)
- Closing
- Fill holes (better than Dilation)

Finding the outline

1. Dilate input image (object gets bigger)
2. Subtract input image from dilated image
3. The outline remains!

$$
g(x, y)=(f(x, y) \oplus S E)-f(x, y)
$$

Opening

- Motivation: Remove small objects BUT keep original size (and shape)
- Opening = Erosion + Dilation
- Use the same structuring element!
- Similar to erosion but less destructive
- Math:
$g(x, y)=f(x, y) \circ S E=(f(x, y) \ominus S E) \oplus S E$
- Opening is idempotent: Repeated operations has no further effects!

$$
f(x, y) \circ S E=(f(x, y) \circ S E) \circ S E
$$

Opening $\quad g(x, y)=(f(x, y) \ominus S E) \oplus S E$

Opening Example
■ 9x3 and 3×9 Structuring Elements

Opening example

- Size of structuring element should fit into the smallest object to keep
■ Structuring Element: 11 pixel disc

The compound morphological operation seen below is

DTU Compute

 applied to the image. How many foreground pixels are there in the resulting image?$$
(\mathrm{I} \ominus \mathrm{SE} 1) \oplus \mathrm{SE} 2,
$$

connpounconeratons

A) 3
B) 23
C) 11
D) 36
E) 16

$\square A \boxtimes B \square C \square D \square E$

1. 3
2. 23
3. 11
4. 36
5. 16

Closing

- Motivation: Fill holes BUT keep original size (and shape)
- Closing = Dilation + Erosion
- Use the same structuring element!
- Similar to Dilation but less destructive
- Math:
$g(x, y)=f(x, y) \bullet S E=(f(x, y) \oplus S E) \ominus S E$

■ Closing is idempotent: Repeated operations has no further effects!

$$
f(x, y) \bullet S E=(f(x, y) \bullet S E) \bullet S E
$$

Closing $g(x, y)=(f(x, y) \oplus S E) \ominus S E$

$$
\text { Closing }=\text { dilation }+ \text { erosion }
$$

Dilated

SE

Closing Example

- Closing operation with a 22 pixel disc - Closes small holes

Morphological closing is applied to the image using the structuring element below. How

Closing

A) 31
B) 18
C) 6
D) 35
E) 21
 many foregrounds pixels are there in the resulting image?

[^0]How do you like the book?
A) Very bad book
B) Bad book
C) Ok book
D) Good book
E) Really good book

Flipped classroom

 TA 8-10, Lecture 10-12A) It really does not work B) It is not optimal
C) It is ok
D) It is fine
E) It works very well

$\square A \square B \square C \square D \square E$

How much time do I spend on preparing every week?

A) 0 minutes
B) 0-15 minutes
C) 15-30 minutes
D) 30-60 minutes
E) $1-2$ hours
F) 2-4 hours
G) More than 4 hours

How do I feel about Matlab

A) I simply do not get it
B) I find it hard
C) We are ok friends
D) I feel confident in Matlab
E) I write Matlab scripts even when I sleep

Next week: Blob Analysis

[^0]: 1. 31
 2. 18
 3. 6
 4. 35
 5. 21
