02465 Project: Part 4

Tue Herlau
tuhe@dtu.dk

January 30, 2026

Formalities

* The deadline for this report is Monday 11th May, 2026 before 23:59.
* Submission of reports happen on DTU learn
* You can work in groups of 1, 2 or 3 students (but not 4)

* Collaboration policy: It is not allowed to collaborate with other groups on this
project, except for discussing the text of the project with teachers and students
enrolled on the course this semester. It is not allowed to communicate (or make
available) solutions or parts of solutions to the project to other people. It is not
allowed to use solutions from previous years, or solutions found on the internet or
elsewhere.

* You can freely use code from the exercises when you solve the project, for instance
the dynamical programming algorithm.

* Your overall evaluation will be based on your written answers and your UNITGRADE
score. They will be weighted based on an assessment of the required work.

Preparing the hand-in:

Hand in these three files (please do not hand in a .zip file as this confuses DTU learn):

A .tex file with your written answers: Prepared this by modifying the template in
irlc/project4/Latex/02465project4_handin.tex . Simply write your answers where
it says YOUR SOLUTION HERE. I recommend keeping the layout as it is.

A .paf file corresponding to this .tex file

A .token file containing your python-solutions: Generate this file by running the script
irlc/project4/project4_grade.py . It is very important you do not modify this file.

In order to hand in the assignment on DTU Learn you must be part of a group. You can
join a group on DTU learn from My Course — Groups.

EXERCISE May 11th, 2026

Contribution table

DTUs exam rules require that each students contribution to the report is clearly specified.
Therefore, for each element in the report, specify which student was responsible for it in
the table in the template. A report must contain this documentation to be accepted.
The responsibility assignment must be individualized. This means:

* For reports made by 3 students: Each section must have a student who is 40% or
more responsible.

* For reports made by 2 students: Each section must have a student who is 60% or
more responsible.

This is an external requirement. Ask me if you have any questions.

Code hand-in:

* Please keep the structure of the iric -folder. All of your code which is specific to
this report should be in the irlc/project4a/ directory. Solutions which use code
outside the iric folder cannot be verified and therefore cannot be evaluated.

* If you wish to use additional third-party libraries please discuss them with me first
to ensure you are on the right track.

* Breaking or tampering with the UNITGRADE framework, for instance by reporting a
false number of points or making your solution unverifiable, is potentially cheating.
Code which is obfuscated to the point of being unreadable cannot be evaluated.

* This is not a programming course: Strange, long, undocumented, or downright
disturbing solutions will be evaluated simply based on whether they work or not.

1 Finding the rebels using UCB-exploration (rebels.py)

Things have been tense after the rebels blew up the boss death-star, and finding them has
become a top priority. This is done using search-droids, who must explore the various
star systems the rebels may be hiding in. Practically, a search droid moves around on a
grid, and gets a positive reward depending on how many rebels it finds, or a negative
reward for flying into a dangerous zone and being destroyed. The problem, therefore,
resembles the standard grid-world problem. You are particularly interested in the two
scenarios show in the top row of fig. |1| (basic and bridge).

The existing exploration-approach (random e-greedy; i.e. what the current Q-learning
method does) was designed by the same person who made the curriculum at the marks-
manship school for storm troopers, and your job is to see if you can do better — specifically,
you want to use an UCB-inspired strategy.

To elaborate on this, it is useful to first refresh how regular Q)-learning uses the reg-
ular e-greedy bandit exploration method (see [SB18, Equation (2.5)]) when making
decisions as explained by [[SB18]:

* You have as many bandit-problems as there are states

EXERCISE May 11th, 2026

Figure 1: Top row: The basic and bridge rebel-locating scenario. Check the
rebels_demo.py file to see how they are plotted and try to play in them yourself. Bot-
tom row: The ()-values as obtained using a ()-learning agent for 3000 episodes (!) and
an UCB-exploration agent for just 300 episodes.

 The actions for the bandit-problem in state s is A(s)

* When the bandit, in state s, takes an action a € .A(s), the bandit-algorithm obtains
a reward:

Rt = Tt11 + ’YIH;}X Q<St+17 CL/). (1)

* The ()-learning agent then learns by updating the)-values using this reward:

Q(Sv CL) — Q(S7 CL) + a(Rt - Q(sa CL))
just as in the regular bandit-learning algorithm [[SB18, Equation (2.5)].

* Finally, the bandit in state s implements the e-greedy rule: i.e. select the action
with the highest ()-value with probability 1 — ¢ and otherwise a random action in
A(s)

To use UCB for exploration simply modify the above as follows:
* You have as many UCB-bandit-problems as there are states
* The actions for the bandit-problem in state s is .A(s)

* When the bandit, in state s, takes an action a € A(s), the UCB-bandit-algorithm
once again obtains a reward of R; (see eq.).

EXERCISE May 11th, 2026

* The bandit (specific for state s) is trained and selects actions using the UCB-algorithm
(see [[SB18, Eq. (2.10)]) using the reward R;.

* In this equation, note that (); has the same meaning as before (and should therefore
be updated the same way), but you need to define NN, and ¢ to be specific for this
state. Le., keep track of how many times we have seen the state ¢, and how many
times we have played a given action NV;(a) in the state.

* The UCB-algorithm in [[SB18] has the following corner-cases:

— If two actions have the same priority (i.e., same value of the UCB-bound ac-
cording to what is inside the argmax, in [[SB18, Eq. (2.10)], we prefer the
action with the lowest index (i.e. we prefer a = 1 over a = 3 etc.)

- If an actions have not been tried before, so that N (a) = 0, it has infinitely high
priority and will always be selected. L.e. the method will first try all actions
once in order: a = 0,1,2,....

In the first of the two scenarios shown in fig. [1| (basic), the agent can take one of
four actions in the starting state, and from there it must take a single extra action to
(deterministically) transition to the terminal state with the reward shown as the numbers
in the figure. Since there is one relevant state (the starting state), the problem will
closely resemble the standard UCB bandit problem. One slight annoyance is that the
last (dummy) action in an episode have no effect in the gridworld-environment and we
will therefore discard it. You can find an example (see the rebels_demo.py)-file which
illustrates how you can generate actions using an agent and discard the last (dummy)
action:

Trajectory O: States traversed [(1, 1), (1, 2), 'Terminal state'] actions taken [0, 0]

Trajectory 1: States traversed [(1, 1), (0, 1), 'Terminal state'] actions taken [3, 0]

All actions taken in 16 episodes, excluding the terminal (dummy) action [[0], [3], [0], [0], [0], [np.int64(2)], [0], [0], [0], [0], [O],
— [0], [0], [0], [0], [0]]

The file also contains code for visualizations, and how to turn on keyboard-inputs so
you can play with your UCB-agent.

ﬁ[Problem 1 UCB-based exploration] N

Implement the function get_ucb_actions. The function should accept a gridworld
layout, the parameter « controlling the learning rate in the)-learning algorithm,
the exploration parameter ¢ (the constant which control exploration in the UCB al-
gorithm), and a number of episodes to simulate. You can assume that v = 1 in all
experiments.

The function should return a list simply consisting of all actions the agent takes
but excluding the last dummy action. i.e., simply remove the last action in each
episode and concatenate the action-sequences together. Example code for doing
this is included in the rebels_demo.py file. The return value should thus be a list of
integers, and in case of the basic grid, it should have the same length as the number
of episodes.

EXERCISE May 11th, 2026

Info:

Overall hints:

The Gridworld-environment does not have the same number of actions avail-
able in each state. In fig. 1| (top, left), the starting state will have |A(s)| = 4
actions, but the exit states (those with an white inner border and a number)
will have | A(s)| = 1 action. We deal with varying action spaces in the manner
prescribed by openai Gym; c.f. the code for the Q)-learning agent or the online
documentation for part 3 of the project.

Since the method will be based on @-learning, the code for the ()-learning
agent is probably a good place to start. Note in particular the Q)-values are
updated the same in the UCB and e-greedy method.

You can turn the grid layout (a list of lists of strings) into a gym Env using the
methods from the toolbox. See the rebels_demo.py file for more details.

If you write an agent, you can use the train -function to get a list of trajectories,
and you can simply concatenate them together to get the list of all actions. See
the rebels_demo.py -script for details.

Note that to implement the UCB-algorithm, you must keep track of how many
times each state has been visited, and how many times an action has been taken
in that state. In other words, you must keep track of the N-values (see [SB18,
Eqg. (2.10)]). Note this data structure closely resemble ()-values.

Again, if you look at [SB18, Eq. (2.10)], the ¢-parameter must actually be equal
to: t = Y N,(a). This can potentially reduce what you need to keep track of.

Remember that in the basic-environment, with a single state, there is a single
UCB-bandit problem and it will therefore be quite simple to reason about/keep
track of.

Implementation and self-check hints: UCB is a simple algorithm and you can
reason about what the method will do. Two cases are particularly interesting:

The first four episodes will compute the same action sequence regardless of the
rewards. Figure out why and check your result.

Actually, the first 8 episodes will always be the same independent of the re-
wards. To explain this, you should consider eq. (1), and that each episode in
the basic-environment consists of two actions and three states.

From here, you can manually run the UCB algorithm and figure out the actions
taken.

EXERCISE May 11th, 2026

References

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018. (Freely available online).

	Finding the rebels using UCB-exploration (rebels.py)

