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7.1 Introduction

When planning experiments with several factors it is sometimes necessary or desirable
to use experimental units of varying sizes. It might for instance be possible to use fairly
small units when dealing with different varieties in a field experiment whereas a given
level of fertilizer typically has to be applied to a larger area. A comparison of the effect
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of the different fertilizer levels is then most logically made with reference to the natu-
ral variation between these larger areas, which are called whole plots. The effect of the
different varieties and the interaction between variety and fertilizer level are naturally
compared to the random variation between the smaller units, which are called subplots.
Therefore it makes good sense to consider a model with random variation on both the
whole plot and the subplot levels. In this module a number of exact formulas are given
that applies to balanced cases. The ideas, principles and approaches still apply even if
everything is NOT well balanced.

7.2 The Split-Plot Model

In the basic split-plot design we have two factors of interest, A with the k levels a1, . . . , ak,
and B with the m levels b1, . . . , bm. We suppose that there are n replicates and consider
k · n whole plots each consisting of m subplots, so that we in total have k ·m · n subplots.
Ideally the whole plots should be randomized on the levels of A, which is called the
whole plot factor, and the subplots within each whole plot should be randomized on the
levels of B, which is the subplot factor. If we have k = 3 fertilizer levels, m = 4 varieties,
and n = 2 replicates then one possible split-plot design is given in the following table:

a3 b1 a1 b4 a1 b1 a2 b3 a3 b3 a2 b2
a3 b3 a1 b3 a1 b3 a2 b2 a3 b1 a2 b1
a3 b2 a1 b1 a1 b4 a2 b1 a3 b2 a2 b4
a3 b4 a1 b2 a1 b2 a2 b4 a3 b4 a2 b3

Typically we want to investigate the possibility of an interaction between the two factors
A and B so we also consider the product factor A× B. As the whole plots are the expe-
rimental units corresponding to the factor A it seems natural to assess the effect of the
whole plot factor based on the variation between the whole plots. This implies that we
should include the factor W, with levels 1, 2, · · · , k · n, in the analysis as a random effects
factor. Note that W is finer than the whole plot factor A. The factor diagram associated
with the split-plot experiment is depicted in Figure 7.1.

We suppose that we have observations Y1, . . . , YN, where N, the total number of obser-
vations, equals k ·m · n. The split-plot model is given by

Yi = γ(Ai, Bi) + d(Wi) + εi, i = 1, . . . , N, (7-1)

where

d(j) ∼ N(0, σ2
W), j = 1, . . . , k · n,

εi ∼ N(0, σ2), i = 1, . . . , N,



eNote 7 7.2 THE SPLIT-PLOT MODEL 4

[I]k(m−1)(n−1)
kmn

A × B(k−1)(n−1)
km

[W]k(n−1)
kn

Bm−1
m

Ak−1
k

01
1

Figur 7.1: The factor structure diagram for the split-plot experiment.

and all the variables d(1), . . . , d(kn) and ε1, . . . , εN are mutually independent. The split-
plot model is a mixed model. As in the case of the one-way analysis of variance model
with a random effect (the ”two-layer model”) we have that the variance of the observa-
tions is the sum of two components,

VarYi = σ2
W + σ2.

The variance parameter σ2 models the variation between subplots within whole plots
and σ2

W the variation between whole plots.

A test for no interaction between the two factors A and B corresponds to considering the
additive split-plot model

Yi = α(Ai) + β(Bi) + d(Wi) + εi, i = 1, . . . , N, (7-2)

where the same assumptions hold for the random variables as for the split-plot model
given by (7-1). From the factor diagram in Figure 7.1 we see that the interaction has to
be tested against the variation between subplots, that is we get exactly the same F-test
statistic as in the case where W is considered as a fixed effects factor,

F =
MSAB
MSe

,
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where MSAB is the difference between the residual sums of squares for the two models
(7-1) and (7-2) when η is treated as non-random, divided by (k − 1)(m− 1). Similarly
MSe is the residual sum of squares corresponding to the split-plot model (7-1) when η

is a fixed effect, divided by k(m − 1)(n − 1). Under the additive split-plot model F is
F((k− 1)(m− 1), k(m− 1)(n− 1))-distributed.

In the additive split-plot model the difference between two effects corresponding to the
whole plot factor, α(aj)− α(aj′), is estimated by

α̂(aj)− α̂(aj′) = Ȳaj − Ȳaj′ , j, j′ = 1, . . . , k,

with variance

Var(α̂(aj)− α̂(aj′)) =
2(mσ2

W + σ2)

mn
. (7-3)

Similarly for the subplot factor B we have that

Var(β̂(bj)− β̂(bj′)) =
2σ2

kn
, j, j′ = 1, . . . , m. (7-4)

From (7-3) and (7-4) we see that the effect of A is relatively less accurately estimated than
the effect of B since the expected whole plot variation given by mσ2

W + σ2 is larger than
the subplot variation σ2. This is especially the case if there is a large variation between
whole plots. The reason is that in this experimental design we have randomized the
levels of A on the whole plots so that an experimental unit corresponding to A is a whole
plot.

Based on the additive split-plot model given by (7-2) a test for an effect of the whole plot
factor A, that is the hypothesis H0 : α(a1) = · · · = α(ak), is equivalent to considering
the model

Yi = β(Bi) + d(Wi) + εi, i = 1, . . . , N, (7-5)

with identical distributional assumptions about the random effects as for the split-plot
model given by (7-1). From the factor diagram in Figure 7.1 we see that A has to be tested
against the variation between whole plots, that is against the random factor W. The F-test
statistic is given by

F =
MSA
MSW

, (7-6)

where

MSA =
mn

k− 1

k

∑
j=1

(Ȳaj − Ȳ0)
2,

and MSW is the difference between the residual sums of squares in the split-plot model
(7-1) where W is treated as fixed, and the two-way analysis of variance model with the
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factors A and B (and the interaction between them), divided by k(n − 1). Under the
model (7-5) F is F(k− 1, k(n− 1))-distributed.

In a similar way we can test for an effect of the subplot factor B in the additive split-plot
model by considering the hypothesis H0 : β(b1) = · · · = β(bm), or equivalently the
model

Yi = α(Ai) + d(Wi) + εi, i = 1, . . . , N, (7-7)

with the same assumptions about the random effects as previously. Like the interaction
between A and B the effect of the factor B has to be tested against the subplot variation,
see Figure 7.1. The corresponding F-test statistic is given by

F =
MSB
MSe

, (7-8)

where

MSB =
kn

k− 1

m

∑
j=1

(Ȳbj − Ȳ0)
2,

and where MSe now is the residual sum of squares associated with the additive split-
plot model (7-2) divided by (kn− 1)(m− 1). If the model (7-7) holds then F is F(m−
1, (kn− 1)(m− 1))-distributed.

If we accept to describe data either by model (7-5) or (7-7) we would then proceed to test
for an effect of the remaining systematic factor. Since the two factors are tested against
different variations (the whole plot factor A against the whole plot variation, and the
subplot factor B against the subplot variation) we get exactly the same F-test statistics,
that is (7-6) in the case of model (7-7) and (7-8) in the case of model (7-5). Suppose that
we end up with model (7-7) as the final model then the estimated effects of the whole
plot factor are given by

α̂(aj) = Ȳaj , j = 1, . . . , k,

and a 95%-confidence interval is given by

α(aj) : Ȳaj ± t0.975,k(n−1)

√
MSW/(mn).

7.3 Example: Tenderness of pork.

To investigate the effect of the cooling process on the tenderness of meat, 24 porks were
slaughtered and cut in halves (right and left side). One side was then cooled by tunnel-
cooling (a very quick cooling denoted ‘TC’ below) and the other side by (conventional)
fast cooling (denoted ‘FC’ below). Furthermore the pigs were divided into two groups:
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12 pigs with high pH (ph-group 3) and 12 pigs with low pH (ph-group 2). Two registra-
tions associated with tenderness are recorded below: a sensory (subjective) evaluation
of tenderness (denoted tender) and the lenghts of ‘sarcomers’. Long sarcomers are su-
spected to be accociated with less tender meat and could be caused by too fat cooling.
The data are given in the following table:

Porker pH-group Tunnel Fast
1 low 7.22 5.56
2 low 3.11 3.33
3 low 7.44 7.00
4 low 4.33 4.89
5 low 6.78 6.56
6 low 5.56 5.67
7 low 7.33 6.33
8 low 4.22 5.67
9 low 3.89 4.00

10 low 5.78 5.56
11 low 6.44 5.67
12 low 8.00 5.33
13 high 8.44 8.44
14 high 7.11 6.00
15 high 6.00 5.78
16 high 7.56 7.67
17 high 5.11 4.56
18 high 8.67 8.00
19 high 5.78 7.67
20 high 6.11 5.67
21 high 7.44 7.56
22 high 7.67 6.11
23 high 8.00 8.22
24 high 8.78 8.44

In this experiment we have the 3 factors, C with levels tunnel and fast, pH with levels
low and high, and P with levels 1, . . . , 24. It is a split-plot design with porker as whole
plot and pH as whole plot factor, and side as subplot with C as subplot factor. We have
k = m = 2 and n = 12 replicates. The factor diagram is shown in Figure 7.2. We consider
the split-plot model given by (7-1) and the additive split-plot model given by (7-2).

The test of fixed effects are given in the following table:
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Figur 7.2: The factor structure diagram for the pork tenderness experiment

Source of Numerator degrees Denominator degrees F P-value
variation of freedom of freedom
phgroup 1 22 8.67 0.0075
cooling 1 22 2.25 0.1479
phgroup*cooling 1 22 0.18 0.6790

The interaction is clearly non-significant. Thus we clearly accept the additive split-plot
model. In the additive split-plot model we can then proceed to test whether there is an
effect of each of the whole plot factor and the subplot factor:

Source of Numerator degrees Denominator degrees F P-value
variation of freedom of freedom
phgroup 1 22 8.67 0.0075
cooling 1 22 2.33 0.1403

So that we would not accept to exclude the factor pH from the analysis but find no
significant effect of the factor C. Therefore we consider the model

Yi = α(pHi) + d(Pi) + εi, i = 1, . . . , 48,



eNote 7 7.4 MORE COMPLICATED SPLIT-PLOT DESIGNS 9

where

d(j) ∼ N(0, σ2
W), j = 1, . . . , 24,

εi ∼ N(0, σ2), i = 1, . . . , 48,

and all the random variables are assumed to be mutually independent. A test for the
hypothesis that there is no difference between the two pH-groups, that is

H0 : α(low) = α(high),

results in the same F-test statistic of F = 8.6665 and p-value of 0.0075 as in the additive
split-plot model, and thus we conclude that the systematic part of the model can not be
simplified any further.

Estimates of the fixed effects parameters can be seen to be given by

α̂(low) = 5.6529,
α̂(high) = 7.1163,

corresponding to the averages of the tenderness measurements for each pH-group. Esti-
mates for the variance components are given by

σ̂2
W = 1.2463,
σ̂2 = 0.4725.

As
MSP = 2.9651,

we get the following 95%-confidence intervals for the expected tenderness in the two
pH-groups,

α̂(low)± t0.975,22
√

2.9651/24 = 5.6529± 0.7289,

or [4.9240,6.3819]. Similarly we get [6.3873,7.8452] for α(high). All in all we conclude
that the tenderness is significantly higher if pH is high compared to if it is low.

7.4 More Complicated Split-Plot Designs

In the previous section we have considered the simplest split-plot design with only two
treatment factors. Naturally this model can be extended in various ways for example by
including blocks, covariates, or more complex treatment structures. In this section we
shall consider two examples of more complicated split-plot designs. In the first example
we look at a split-plot design with blocks.
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7.4.1 Yield of oats.

In a field experiment with three oats varieties v1, v2, and v3, and four equidistant levels
of nitrogen n0, n1, n2, and n3, the yield of oats in quarter pounds was observed. The va-
rieties were sown in 6 randomized blocks with three plots in each block, and with each
plot divided into four subplots. The data and design, from Yates (1935), are reproduced
in the following table:

n3 156 n2 118 n2 109 n3 99v3 n1 140 n0 105 n0 63 n1 70
v3

n0 111 n1 130 n0 80 n2 94v1 n3 174 n2 157 n3 126 n1 82
v2

n0 117 n1 114 n1 90 n2 100v2 n2 161 n3 141 n3 116 n0 62
v1

n2 104 n0 70 n3 96 n0 60v3 n1 89 n3 117 n2 89 n1 102
v2

n3 122 n0 74 n2 112 n3 86v1 n1 89 n2 81 n0 68 n1 64
v1

n1 103 n0 64 n2 132 n3 124v2 n2 132 n3 133 n1 129 n0 89
v3

n1 108 n2 126 n2 118 n0 53v2 n3 149 n0 70 n3 113 n1 74
v1

n3 144 n1 124 n3 104 n2 86v3 n2 121 n0 96 n0 89 n1 82
v2

n0 61 n3 100 n0 97 n1 99v1 n1 91 n2 97 n2 119 n3 121
v3
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Figur 7.3: Factor diagram for the oats experiment.

This is a split-plot design with blocks, meaning that the replicates are in different blocks.
Thus we have the factors V (variety), N (nitrogen), P (plot), and B (block) with levels

V v1, v2, v3
N n0, n1, n2, n3
P 1, 2, . . . , 18
B 1, 2, . . . , 6

V is the whole plot factor and N is the subplot factor. Furthermore, we have that P is finer
than B (knowing which plot the experimental unit is in means that we know which
block it is in). In fact P is equivalent to the interaction between B and V. Treating the
block factor as random we have the factor diagram given in Figure 7.3.

Letting Yi denote the yield of the i’th subplot we have that the model for the split-plot
design with blocks is given by

Yi = γ(Vi, Ni) + d(Bi) + f (Pi) + εi, i = 1, . . . , 72, (7-9)
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where

d(j) ∼ N(0, σ2
B),

f (j′) ∼ N(0, σ2
P),

εi ∼ N(0, σ2),

for j = 1, . . . , 6, j′ = 1, . . . , 18, and i = 1, . . . , 72, and with all the random variables
assumed to be mutually independent. We are interested in assessing whether there is
an interaction between the variety and the nitrogen factors and if not then subsequently
whether there is any effect of the two factors at all. The table of tests of fixed effects is
given by:

Source of Numerator degrees Denominator degrees F P-value
variation of freedom of freedom
fertil 3 45 37.69 <.0001
variety 2 10 1.49 0.2724
fertil*variety 6 45 0.30 0.9322

and leaving out the interaction term:

Source of Numerator degrees Denominator degrees F P-value
variation of freedom of freedom
fertil 3 51 41.05 <.0001
variety 2 10 1.49 0.2724

Thus we accept that there is no difference between the varieties but that there is a clear
effect of the nitrogen levels. This last conclusion is not altered when leaving out the
whole plot factor V from the analysis as that only influences the mean square correspon-
ding to the plot factor P, and the subplot factor N is tested against the subplot variation.
Therefore we have a final model given by

Yi = β(Ni) + d(Bi) + f (Pi) + εi, i = 1, . . . , 72, (7-10)

and the same assumptions about the random effects as previously. In Figure 7.4 the
average yield for the 12 combinations of variety and nitrogen is given. Since the four
nitrogen levels are equidistant, it makes sense to plot the averages versus the numbers
0, 1 , 2 and 3.
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Figur 7.4: Average yield as a function of nitrogen level for each variety.

Based on Figure 7.4 it might seem surprising that we did not find any significant effect
of V in the analysis as the 3 curves are clearly shifted compared to each other. One has
to remember, however, that the effect of the varieties is less accurately determined than
the effect of the nitrogen level, and that a shift in the curves exactly corresponds to a
whole plot variation.

Estimates for the variance components are

σ̂2
B = 210.42,

σ̂2
P = 121.85,

σ̂2 = 162.56.

It is typically not of interest to test whether there is a significant block or plot effect so
we will not do that in this example.

Estimates of the expected yield for the four nitrogen levels (LSMEANS) and the 95%
confidence bands are given by:
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n0 n1 n2 n3
LSMEANS 79.4 98.9 114.2 123.4
Lower 62.3 81.8 97.2 106.3
Upper 96.4 116.0 131.3 140.4

Pair-wise comparisons of nitrogen levels show that n1 gives a significantly larger yield
than n0 (P-value < 0.0001), n2 significantly larger than n1 (P-value 0.0007)and n3 signi-
ficantly larger than n2 (P-value < 0.0358). In other words we see a clear increase in the
yield with increasing levels of nitrogen. However, the increase from n2 to n3 is not so
pronounced though still just significant.

In the second example we consider a split-plot experiment where the subplot factor is
the interaction between two factors.

7.4.2 Example: Rancidness of steaks.

In order to investigate the effect of two different types of feed (1 and 2) and 6 different
storage conditions on the rancidness of steaks from cattle given the feeds, 4 cows were
randomized on the two types of feed so that 2 cows were given each type. After slaugh-
tering 6 steaks from each animal were used in a storage experiment. Two types of pack-
aging (A and B) were used along with 3 storage periods (2, 5, and 8 weeks). After the
storage period the rancidness of each steak was determined by an LTBA-measurement.
The data, which are part of a larger experiment, are given in the following table:

A B
Animal Feed 2 5 8 2 5 8

1 1 2.0 2.3 2.3 0.6 2.1 2.1
2 2 0.8 1.7 1.4 0.4 0.8 1.2
3 1 1.2 2.1 2.7 0.9 1.5 1.9
4 2 0.4 0.9 1.3 0.1 1.1 0.9

In this experiment we have 4 factors ANIMAL or A, FEED or F, PACKAGING or P, and STORAGE

PERIOD or S with levels

A 1, 2, 3, 4
F 1, 2
P A, B
S 2, 5, 8
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Figur 7.5: Factor diagram for the rancidness experiment.

A split-plot design is used with animal as whole plot and feed as whole plot factor. The
steaks are subplots and the subplot factor is the combination of the packaging type and
storage period, that is the interaction between P and S, P× S. All of the three factors (and
their interactions) making up the whole plot factor and the subplot factor are of interest
in this experiment. The factor diagram is depicted in Figure 7.5.

We let Yi denote the LTBA-measurement for the i’th steak and consider the following
split-plot model

Yi = δ(Fi, Pi, Si) + d(Ai) + εi, i = 1, . . . , 24, (7-11)

where

d(j) ∼ N(0, σ2
A),

εi ∼ N(0, σ2),

for j = 1, . . . , 4, and i = 1, . . . , 24, and where we assume that all the random variables
are mutually independent. The table of tests of fixed effects is given by:
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Source of Numerator degrees Denominator degrees F P-value
variation of freedom of freedom
feed 1 2 30.37 0.0314
pack 1 10 14.15 0.0037
feed*pack 1 10 1.05 0.3291
storage 2 10 21.90 0.0002
feed*storage 2 10 0.51 0.6154
pack*storage 2 10 0.34 0.7187
feed*pack*storage 2 10 0.29 0.7510

Reducing the full model one step at a time starting with the 3-way interaction followed
by each 2-way interaction (we do not give all the details) leads to the model with only
main effects:

Yi = α(Fi) + β(Pi) + γ(Si) + d(Ai) + εi, i = 1, . . . , 24, (7-12)

In this model the table of tests of fixed effects is is given by:

Source of Numerator degrees Denominator degrees F P-value
variation of freedom of freedom
feed 1 2 30.37 0.0314
pack 1 17 18.02 0.0005
storage 2 17 27.90 <.0001

We see that all main effects are significant even though it is fairly close regarding the
effect of the type of feed. This might be because of the fact that F is the whole plot factor
and as such is tested against the variation between the whole plots, here the animals. It
makes sense that it is hard to find a significant effect of the type of feed since we only
have 4 experimental units for this factor. Nevertheless there is a significant effect of feed
in this experiment. But note how an F-statistic of 30.37 usually extremely significant is
just barely so in this case. Often significance tests with very low denominator degrees
of freedom are meaningless, since the typical non-significant result really says nothing.
This is so because the statistical power of such a test is extremely low, or in different
words: even rather large treatment differences will typically NOT be detected.

Estimates of the variance components are

σ̂2 = 0.0699,
σ̂2

A = 0.0145.
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Note that the variation between animals is much smaller than the variation between
steaks when it comes to rancidness in this experiment.

Estimates of differences between two effects, with corresponding 95%-confidence inter-
vals, are

α̂(1)− α̂(2) = 0.89, [ 0.20, 1.59],
β̂(A)− β̂(B) = 0.46, [ 0.23, 0.69],
γ̂(2)− γ̂(8) = −0.93, [−1.20,−0.65],
γ̂(5)− γ̂(8) = −0.16, [−0.44, 0.12].

So we see an increase in the expected rancidness of steaks from cattle receiving feed of
type 1 compared to feed of type 2. Similarly, the expected rancidness of steaks stored
in packaging of type A is higher compared to packaging of type B. Finally we see an
increase in the expected rancidness with the length of the storage period, though there
is not a significant difference between the expected rancidness of steaks stored for 5
weeks and 8 weeks.

7.5 R-TUTORIAL: Analysing Split-plot data

7.5.1 Tenderness of pork

Consider the analysis of the data cooling.txt described above and also in eNote13. First
we import the data, and define the factors:

cooling <- read.table("cooling.txt", sep=",", header=TRUE)

cooling$pigno <- factor(cooling$pigno)

cooling$phgroup <- factor(cooling$phgroup)

Then we run the full model with the interaction term cooling×phgroup. For compari-
son with the standard anova table we first run a fully fixed version:

lm1 <- lm(tender ~ cooling + phgroup + cooling:phgroup

+ pigno, data = cooling)

library(xtable)

print(xtable(anova(lm1)))

Then we run the proper mixed one:

http://www2.compute.dtu.dk/courses/02429/Data/datafiles/cooling.txt
http://02429.compute.dtu.dk/enote/afsnit/NUID193/
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Df Sum Sq Mean Sq F value Pr(>F)
cooling 1 1.04 1.04 2.25 0.1479
phgroup 1 25.70 25.70 55.35 0.0000
pigno 22 65.23 2.96 6.39 0.0000
cooling:phgroup 1 0.08 0.08 0.18 0.6790
Residuals 22 10.21 0.46

library(lmerTest)

model1 <- lmer(tender ~ cooling + phgroup + cooling:phgroup

+ (1 | pigno), data = cooling)

print(xtable(anova(model1)))

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
cooling 1.04 1.04 1.00 22.00 2.25 0.1479
phgroup 4.02 4.02 1.00 22.00 8.67 0.0075
cooling:phgroup 0.08 0.08 1.00 22.00 0.18 0.6790

The interaction is not significant and therefore the model can be reduced to the additive
model

library(lmerTest)

model2 <- lmer(tender ~ cooling + phgroup + (1 | pigno), data = cooling)

print(xtable(anova(model2)))

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
cooling 1.04 1.04 1.00 23.00 2.33 0.1403
phgroup 3.88 3.88 1.00 22.00 8.67 0.0075

The factor cooling is not significant, resulting in the model

model3 <- lmer(tender ~ phgroup-1 + (1 | pigno), data = cooling)

which cannot be reduced any more. Due to eh simplicity of the model we can get most
of the interesting information by using the confint function:
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print(xtable(confint(model3)))

2.5 % 97.5 %
.sig01 0.74 1.52

.sigma 0.53 0.94
phgroup2 4.97 6.34
phgroup3 6.43 7.80

Removal of lmer objects once the analysis is done using the function rm

rm(model1, model2, model3)

7.5.2 Yield of oats

Consider the analysis of the data oatyield.txt described above and also in eNote13. First
we import the data, and define the necessary factors:

oatyield <- read.table("oatyield.txt", sep=",", header=TRUE)

oatyield$block <- factor(oatyield$block)

The oatyield experiment is a split-plot design with blocks. In comparison to the cooling
experiment this implies that there are two random factors corresponding to the blocks
and the whole plots. The random factors are specified by the factor block and the pro-
duct factor block×variety.

Again, the full model is fit first by a fully fixed model:

lm1 <- lm(yield ~ fertil + variety + fertil:variety

+ block + block:variety, data = oatyield)

print(xtable(anova(lm1)))

And then the mixed version:

http://www2.compute.dtu.dk/courses/02429/Data/datafiles/oatyield.txt
http://02429.compute.dtu.dk/enote/afsnit/NUID193/
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Df Sum Sq Mean Sq F value Pr(>F)
fertil 3 20020.50 6673.50 37.69 0.0000
variety 2 1786.36 893.18 5.04 0.0106
block 5 15875.28 3175.06 17.93 0.0000
fertil:variety 6 321.75 53.62 0.30 0.9322
variety:block 10 6013.31 601.33 3.40 0.0023
Residuals 45 7968.75 177.08

model1 <- lmer(yield ~ fertil + variety + fertil:variety

+ (1|block) + (1|block:variety), data = oatyield)

print(xtable(anova(model1)))

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
fertil 20020.50 6673.50 3.00 45.00 37.69 0.0000
variety 526.06 263.03 2.00 10.00 1.49 0.2724
fertil:variety 321.75 53.62 6.00 45.00 0.30 0.9322

The interaction is not significant and the reduced model is

model2 <- lmer(yield ~ fertil + variety

+ (1|block) + (1|block:variety), data = oatyield)

print(xtable(anova(model2)))

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
fertil 20020.50 6673.50 3.00 51.00 41.05 0.0000
variety 482.91 241.46 2.00 10.00 1.49 0.2724

The final model only contains fertil in the fixed effects part

model3 <- lmer(yield ~ fertil

+ (1|block) + (1|block:variety), data = oatyield)

print(xtable(anova(model3)))

We could have gotten to this, including a check of the two random effect by the step

function of lmerTest: (but some people would prefer to include the two random effects
in the model whether they are signnificant or not)
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Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
fertil 20020.50 6673.50 3.00 51.00 41.05 0.0000

mystep <- step(model1)

print(xtable(mystep$rand.table))

Chi.sq Chi.DF elim.num p.value
block 5.97 1 kept 0.01

block:variety 9.19 1 kept 0.00

print(xtable(mystep$anova.table))

Sum Sq Mean Sq NumDF DenDF F.value elim.num Pr(>F)
fertil:variety 321.75 53.62 6 45.00 0.30 1 0.93

variety 482.91 241.46 2 10.00 1.49 2 0.27
fertil 20020.50 6673.50 3 51.00 41.05 kept 0.00

Pairwise comparisons could be obtained by extracting the LSMEANS differences from
this:

mystep <- step(model1)

print(xtable(mystep$diffs.lsmeans.table))

Remember to use your own ’Bonferroni’ correction when looking at the p-values: mul-
tiply them all with 6. Or we could do the posthoc analysis with the multcomp-package:

library(multcomp)

tuk3 <- glht(model3, linfct = mcp(fertil = "Tukey"))

tuk.cld <- cld(tuk3)

old.par <- par(mai=c(1,1,1.25,1), no.readonly=TRUE)

plot(tuk.cld, col=2:6)
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Estimate Standard Error DF t-value Lower CI Upper CI p-value
fertil n0-n1 -19.50 4.25 51.00 -4.59 -28.03 -10.97 0.00
fertil n0-n2 -34.83 4.25 51.00 -8.20 -43.37 -26.30 0.00
fertil n0-n3 -44.00 4.25 51.00 -10.35 -52.53 -35.47 0.00
fertil n1-n2 -15.33 4.25 51.00 -3.61 -23.87 -6.80 0.00
fertil n1-n3 -24.50 4.25 51.00 -5.76 -33.03 -15.97 0.00
fertil n2-n3 -9.17 4.25 51.00 -2.16 -17.70 -0.63 0.04
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And the confidence limits of the standard deviations in the model:

print(xtable(confint(model3, 1:3)))

2.5 % 97.5 %
.sig01 6.28 19.25
.sig02 3.21 28.86

.sigma 10.38 15.15

And what about model diagnostics, first from the fixed model:

par(mar=c(1,1,2,3))

par(mfrow=c(2,2))

plot(lm1, which = 1:4)
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And then the random effects normality:

par(mar=c(1,1,2,3))

par(mfrow=c(1,2))

qqnorm(ranef(model3)$’block:variety’[,1])

qqnorm(ranef(model3)$block[,1])
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7.5.3 Rancidness of steaks

Consider the analysis of the data rancid.txt described above and also in eNote13. First
we import the data, and define the necessary factors:

rancid <- read.table("rancid.txt", sep=",", header=TRUE)

rancid$animal <- factor(rancid$animal)

rancid$feed <- factor(rancid$feed)

rancid$storage <- factor(rancid$storage)

http://www2.compute.dtu.dk/courses/02429/Data/datafiles/rancid.txt
http://02429.compute.dtu.dk/enote/afsnit/NUID193/
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The design in the data set rancid is a split-plot design without blocks. Three factors
describe the fixed effects part of the model, and the full model with a three-way intera-
ction is specified

model1 <- lmer(LTBA ~ feed * pack * storage + (1|animal),

data = rancid)

mystep <- step(model1, reduce.random=FALSE, ddf="Kenward-Roger")

print(xtable(mystep$anova.table))

Sum Sq Mean Sq NumDF DenDF F.value elim.num Pr(>F)
feed:pack:storage 0.05 0.03 2 10.00 0.29 1 0.75

pack:storage 0.06 0.03 2 12.00 0.39 2 0.69
feed:storage 0.09 0.05 2 14.00 0.63 3 0.55

feed:pack 0.09 0.09 1 16.00 1.37 4 0.26
feed 2.12 2.12 1 2.00 30.37 kept 0.03
pack 1.26 1.26 1 17.00 18.02 kept 0.00

storage 3.90 1.95 2 17.00 27.90 kept 0.00

And post hoc:

print(xtable(confint(model1, 1:2)))

2.5 % 97.5 %
.sig01 0.00 0.27

.sigma 0.16 0.30

print(xtable(mystep$lsmeans.table))

feed pack storage Estimate Standard Error DF t-value Lower CI Upper CI p-value
feed 1 1 1.81 0.11 2.00 15.81 1.32 2.30 0.00
feed 2 2 0.92 0.11 2.00 8.01 0.42 1.41 0.02

pack A A 1.59 0.10 4.10 16.37 1.32 1.86 0.00
pack B B 1.13 0.10 4.10 11.65 0.87 1.40 0.00

storage 2 2 0.80 0.11 6.50 7.19 0.53 1.07 0.00
storage 5 5 1.56 0.11 6.50 14.05 1.30 1.83 0.00
storage 8 8 1.73 0.11 6.50 15.51 1.46 1.99 0.00
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print(xtable(mystep$diffs.lsmeans.table))

Estimate Standard Error DF t-value Lower CI Upper CI p-value
feed 1-2 0.89 0.16 2.00 5.51 0.20 1.59 0.03

pack A-B 0.46 0.11 17.00 4.25 0.23 0.69 0.00
storage 2-5 -0.76 0.13 17.00 -5.77 -1.04 -0.48 0.00
storage 2-8 -0.92 0.13 17.00 -7.00 -1.20 -0.65 0.00
storage 5-8 -0.16 0.13 17.00 -1.23 -0.44 0.12 0.24

7.6 Exercises

Exercise 1 Yield of wheat

An experiment with 6 varieties of wheat concerning the treatment of a fungus attack
was carried out on an experimental field with 5 blocks each consisting of 12 plots. The
experimental design and the yield (hkg/ha) for each plot are given in the following tab-
le, where the treatment (T=treated, U=untreated) and the variety (an=anja, ci=citadel,
ko=kosack, kr=kraka, sl=sleipner, vu=vuka) are also given.

U U U U U U T T T T T T
kr sl ko an ci vu ko sl vu ci an kr

58.5 58.6 59.6 32.8 57.8 30.6 75.2 74.2 63.1 76.4 69.4 75.6

U U U U U U T T T T T T
an vu sl kr ko ci ci ko vu sl an kr

30.5 28.5 52.0 54.1 56.1 54.4 79.8 74.4 62.2 76.5 65.4 64.8

T T T T T T U U U U U U
kr ko ci an vu sl vu kr an ko ci sl

64.2 75.2 80.1 61.3 57.9 78.2 27.1 55.0 31.4 62.7 60.1 59.5

U U U U U U T T T T T T
an sl kr ci vu ko vu ko ci kr an sl

26.7 54.9 47.9 54.7 24.4 53.8 57.3 77.2 84.4 62.7 58.9 82.2
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T T T T T T U U U U U U
an sl ko ci vu kr ci vu sl ko kr an

61.9 80.2 73.3 77.5 63.1 62.1 53.2 25.9 60.6 60.4 52.9 31.1

a) What kind of experimental design is used here? How should the randomization
be performed in such an experiment?

b) Draw the factor diagram and write up a statistical model for the data.

c) Analyze the data and make conclusions.

The data file can be downloaded as: fungus.txt and is described also in eNote13.

Exercise 2 Yield of oats

Consider the example with the yield of oats from the main text of this module. Assume
that the following nitrogen levels were used:

Name Level
n0 0
n1 1
n2 2
n3 3

a) Investigate whether the yield dependence of nitrogen level can be expressed by a
linear function, and if so use this to summarize the results.

http://www2.compute.dtu.dk/courses/02429/Data/datafiles/fungus.txt
http://02429.compute.dtu.dk/enote/afsnit/NUID193/
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Exercise 3 Rooting of Hibiscus

The data below (kindly supplied by Lise Bertram, KVL) origin from an experiment in-
vestigating the effect of conductivity in the water bath on the rooting of Hibiscus.

There were 16 water baths, four for each of the four levels of conductivity: 0.5, 1.0, 1.5
and 2.0 micro-Siemens per square meter (coded as 1, 2, 3, 4 in the data set). There were 10
cuttings of each of three varieties (Casablanca, Red rosa-sinensis, and Holiday) in each
water bath, but only data from the latter two varieties are used here. The 30 cuttings
were placed at random in the water bath. For each cutting the number roots (rootno)
and the weight of roots (rootwt) were registered after 28 days. The four conductivity
treatments were randomized on the 16 water baths. The results were (with one line per
cutting)

variety bathno conduct rootno rootwt

h 1 1 9 .0096

h 1 1 4 .001

h 1 1 5 .0007

h 1 1 6 .0069

h 1 1 7 .0116

h 1 1 3 .0102

h 1 1 5 .0011

h 1 1 10 .0116

h 1 1 9 .0167

h 1 1 10 .0309

h 5 1 6 .0123

h 5 1 8 .0025

. . . . . . . . . . . (320 lines in total)

r 10 4 5 .0269

r 10 4 10 .0275

The data file can be downloaded as: conduct.txt and is described also in eNote13.

a) Write down all the factors relevant for the analysis, and their levels and mutual
structure. Are they crossed or nested, for example?

b) Specify a statistical model, including the specification of random and fixed effects.

http://www2.compute.dtu.dk/courses/02429/Data/datafiles/conduct.txt
http://02429.compute.dtu.dk/enote/afsnit/NUID193/
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c) Analyse the root weight and draw conclusions.

Exercise 4 Desease in cucumbers

A greenhouse experiment was carried out to investigate how the spread of a disease
(agurkesyge) in cucumbers depended on climate and on amount of fertilizer for two va-
rieties. The following data (kindly supplied by Eigil de Neergård, Department of Plant
Pathology, KVL) are an extract from the experiment. Two climates were used, (1) change
to day temperature 3 hours before sunrise, and (2) normal change to day temperature.
Three amounts of fertilizer were applied, normal (2.0 units), high (3.5 units), and extra
high (4.0 units). The two varieties were Aminex and Dalibor.

At a certain time the plants were ‘standardized’ to have equally many leaves, and then
(on day 0, say) the plants were contaminated with the disease. On 8 particular sub-
sequent days the amount of infection (in percent) was registred. From the resulting cur-
ve of infection two summary measures were calculated (in a way not specified here),
namely the rate of spread of the disease, and the level of infection at the end of the
period.

There were 3 blocks each consisting of 2 sections, a section being a part of the green-
house. Each section consisted of 3 plots, which were each divided into 2 subplots, each
of which had 6-8 plants. Thus there were a total of 36 subplots. Results were recorded
for each subplot.

The experimental factors were randomly allocated to the different units as follows: the
2 climates were allocated to the 2 sections within each block, the 3 amounts of ferti-
lizer were allocated to the 3 plots within each section, and finally the 2 varieties were
allocated to the 2 subplots within each plot. Thus, in summary, there were

3 blocks

2 sections per block (given 2 different climates)

3 plots per section (given 3 different amounts of fertilizer)

2 subplots per plot (with 2 different varieties)
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The results were

block section plot climate fert variety rate level

1 1 1 2 2.0 aminex 48.8981 0.06915

1 1 1 2 2.0 dalibor 42.2463 0.06595

1 1 2 2 3.5 aminex 48.2108 0.04679

1 1 2 2 3.5 dalibor 41.6767 0.04881

1 1 3 2 4.0 aminex 55.4369 0.04025

1 1 3 2 4.0 dalibor 40.9562 0.04859

1 2 4 1 2.0 aminex 51.5573 0.09353

1 2 4 1 2.0 dalibor 36.7739 0.10353

1 2 5 1 3.5 aminex 47.9937 0.05327

1 2 5 1 3.5 dalibor 47.8723 0.04397

1 2 6 1 4.0 aminex 57.9171 0.05225

1 2 6 1 4.0 dalibor 37.7185 0.09324

2 3 7 2 2.0 aminex 60.1747 0.04182

2 3 7 2 2.0 dalibor 45.6937 0.06983

2 3 8 2 3.5 aminex 51.0017 0.08863

2 3 8 2 3.5 dalibor 52.2796 0.03622

2 3 9 2 4.0 aminex 51.1251 0.05875

2 3 9 2 4.0 dalibor 48.7217 0.08169

2 4 10 1 2.0 aminex 51.6001 0.07001

2 4 10 1 2.0 dalibor 50.4463 0.09907

2 4 11 1 3.5 aminex 48.3387 0.05788

2 4 11 1 3.5 dalibor 38.6538 0.06834

2 4 12 1 4.0 aminex 51.3147 0.05695

2 4 12 1 4.0 dalibor 38.2488 0.07908

3 5 13 1 2.0 aminex 49.6958 0.07218

3 5 13 1 2.0 dalibor 29.6786 0.11351

3 5 14 1 3.5 aminex 46.6692 0.08825

3 5 14 1 3.5 dalibor 36.5892 0.09107

3 5 15 1 4.0 aminex 56.0320 0.04532

3 5 15 1 4.0 dalibor 36.0955 0.08712

3 6 16 2 2.0 aminex 45.9790 0.08882

3 6 16 2 2.0 dalibor 37.2489 0.12796

3 6 17 2 3.5 aminex 40.7277 0.06418

3 6 17 2 3.5 dalibor 38.4831 0.08540

3 6 18 2 4.0 aminex 44.5242 0.06215

3 6 18 2 4.0 dalibor 34.3907 0.09651

The data file can be downloaded as: cucumber.txt and is described also in eNote13.

a) Write down all the factors relevant for the analysis, and their levels and mutual

http://www2.compute.dtu.dk/courses/02429/Data/datafiles/cucumber.txt
http://02429.compute.dtu.dk/enote/afsnit/NUID193/
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structure. Are they crossed or nested, for example?

b) Analyse the rate of spread of the disease to investigate the effect of the different
factors.

c) Analyse also the level of infection.
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