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12.1 Intro

This module describe a selection of models, with a covariance structure especially ai-
med at repeated measurements data. The simplest of these models is the random effects
model known from the previous module, where all measurements on the same indivi-
dual are equally correlated no matter how far apart. The models in this module elabo-
rates and extends the random effects approach to models with fairly flexible covariance
structures.

12.2 A different view on the random effects approach

Recall the random effects model presented in the last module, where the “individual”
variable was added as a random effect. The covariance structure in this model turned
out to be the structure where two measurements from the same individual are correla-
ted, but equally correlated no matter how far apart the measurements were taken.

Remember from the first theory module that any mixed model can be expressed as:

y ∼ N(Xβ, ZGZ′ + R),

where X is the design matrix for the fixed effects part of the model, β is the fixed ef-
fects parameters, and Z is the design matrix for the random effects. The two matrices
G and R describe the covariance between the random effects in the model (G), and the
residual/remaining measurement errors (R).

In the random effects approach for repeated measurements, the desired covariance struc-
ture for the observations y was obtained by adding the “individual” variable as a ran-
dom effect. In terms of the general mixed model setup this corresponds to:

• G being a diagonal matrix with the variance between individuals in the diagonal
and zeros everywhere else

• Z being the design matrix with one column for each individual with ones in the
rows where the corresponding observation is from that individual and zeros eve-
rywhere else

• R being a diagonal matrix with the variance of the independent measurement
error in the diagonal and zeros everywhere else
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The desired covariance structure for the observations y (described in the previous mo-
dule) is obtained by:

V = cov(y) = ZGZ′ + R

This random effects approach corresponds well with the intuition behind the data, but
in fact the exact same model could be obtained by leaving out the ZGZ′ term and put-
ting the desired variance structure directly into the R matrix.

The variance structure in the random effect model is:

cov(yi1 , yi2) =


0 , if individuali1 6= individuali2 and i1 6= i2
σ2
individual , if individuali1 = individuali2 and i1 6= i2

σ2
individual + σ2 , if i1 = i2

which simply states, that two measurements from the same individual are correlated,
but equally correlated no matter how far apart the measurements were taken. This va-
riance structure is known as compound symmetry.

12.2.1 Example: Activity of rats analyzed via compound symmetry mo-
del

The rats data set from the previous module is also used in this module. Recall the expe-
riment:

• 3 treatments: 1, 2, 3 (concentration)

• 10 cages per treatment

• 10 contiguous months

• The response is activity (log(count) of intersections of light beam during 57 hours).

In this setup the “individual” variable is cage.

The model is exactly the same as the random effects approach, but it will be written
slightly different to better illustrate this new way of specifying it.

lnc ∼ N(µ, V), where
µi = µ + α(treatmi) + β(monthi) + γ(treatmi, monthi), and

Vi1,i2 =


0 , if cagei1 6= cagei2 and i1 6= i2
σ2

d , if cagei1 = cagei2 and i1 6= i2
σ2

d + σ2 , if i1 = i2
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This way of specifying the model is very direct. It is specified that the observations
follow a multivariate normal distribution with a mean value depending on the fixed
effects, and a covariance structure explicitly specified.

In the following we implement this model in R. In R this model without random effects
cannot be specified using the function lme, nor with lmer but instead the function gls

in the package nlme can be used

library(nlme)

rats <- read.table("rats.txt", header=T, sep=",", dec=".")

rats$monthQ <- rats$month # Make the quantitative version

rats$month <- factor(rats$month) # Make the factor version

rats$treatm <- factor(rats$treatm)

rats$cage <- factor(rats$cage)

model1<-gls(lnc~month+treatm+month:treatm,

correlation = corCompSymm(form=~1|cage),data=rats)

The correlation structure is specified using the correlation argument. The value of this
argument should an corStruct object. Typing ?corClasses produces a list of predefi-
ned object classes. The given corCompSymm object corresponds to a compound symmetry
structure.

Compare with the random effects approach for this data set (in the previous module)
and notice that there is no random effect notation here - neither the lme-type nor the
lmer-type. Instead it is replaced with the correlation argument.

Some of the relevant output is listed below:

summary(model1)

Linear mixed-effects model fit by REML

Data: rats

AIC BIC logLik

72.61464 187.7641 -4.307319

Random effects:

Formula: ~1 | cage

(Intercept) Residual

StdDev: 0.1657654 0.1946757
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And the ANOVA:

xtable(anova(model1))

numDF F-value p-value
(Intercept) 1 85524.70 0.00

month 9 46.11 0.00
treatm 2 3.22 0.04

month:treatm 18 2.12 0.01

Compare with the output from the random effects approach, from Module 11 and see
that all estimates and tests are identical. This should be expected, as it is exactly the
same model. Note that the default anova given here is the Type 1 (type="sequential")
anova. Use e.g. (type="marginal") to get the type 3 table.

This section has described a different way to specify the random effects approach for
repeated measurements. This is not very useful in itself, but this way of directly speci-
fying the variance structure can be extended to include covariance structures that could
not be specified by random effects alone. For instance time (or space) dependent corre-
lation structures. Covariance structures depending on “how far” observations are apart
are known as spatial covariance structures, also when the distance is time.

The two approaches can also be used in combination with each other. The correlation

part only specifies the R matrix. Random effects can be added with the lme random
effect notation.

12.3 Gaussian model of spatial correlation

The main problem with the random effects model (by now also known as the compo-
und symmetry model) is that all measurements within the same individual are equally
correlated. This is counterintuitive if some measurements are close (in time or space)
and some are far apart. To fix this the following model has been proposed:

y ∼ N(µ, V), where
µi = . . . (depends on fixed effects of the model), and

Vi1,i2 =


0 , if individual i1 6= individual i2 and i1 6= i2

ν2 + τ2 exp
{
−(ti1

−ti2 )
2

ρ2

}
, if individual i1 = individual i2 and i1 6= i2

ν2 + τ2 + σ2 , if i1 = i2
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Figur 12.1: The Gaussian serial correlation illustrated. Two observations “very close” to-
gether have covariance ν2 + τ2 and two observations “very far” apart have covariance
ν2. The curve indicate how the correlation drops as a function of the distance between
the observations. How fast this decline from ν2 + τ2 to ν2 occur depends on the para-
meter ρ, as indicated on the graph (0.83 ≈

√
log(2))

The covariance structure of this model is an extension of the compound symmetry struc-
ture.

• Two observations from different individuals are independent

• Two observations “very close” together have covariance ν2 + τ2 and two obser-
vations “very far” apart have covariance ν2. How fast this decline in covariance
from ν2 + τ2 to ν2 occur depends on the parameter ρ. The shape of this decline is
illustrated in figure 12.1

• The total variance of a single observation is ν2 + τ2 + σ2

This structure is know as spatial Gaussian correlation, because the covariance declines like
the density of a normal/Gaussian distribution (see figure12.1).
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12.3.1 Example: Activity of rats analyzed via spatial Gaussian correla-
tion model

The natural model for the rats data set is a model where the correlation between two
measurements on the same cage depends on how far apart the measurements are taken.
One such model is the Gaussian serial correlation model.

lnc ∼ N(µ, V), where
µi = µ + α(treatmi) + β(monthi) + γ(treatmi, monthi), and

Vi1,i2 =


0 , if cagei1 6= cagei2 and i1 6= i2

ν2 + τ2 exp
{
−(monthi1

−monthi2 )
2

ρ2

}
, if cagei1 = cagei2 and i1 6= i2

ν2 + τ2 + σ2 , if i1 = i2

Notice that this is the same model as the random effects model, except for the added
term in the covariance structure. The following lines implement this model in R:

model2<-lme(lnc~month+treatm+month:treatm,

random=~1|cage,

correlation=corGaus(form=~as.numeric(month)|cage,nugget=T),

data=rats)

VarCorr(model2)

cage = pdLogChol(1)

Variance StdDev

(Intercept) 0.01971373 0.1404056

Residual 0.04715671 0.2171559

-2*logLik(model2)

’log Lik.’ -105.3134 (df=34)

intervals(model2, which = "var-cov")

Approximate 95% confidence intervals

Random Effects:

Level: cage
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lower est. upper

sd((Intercept)) 0.0880286 0.1404056 0.2239468

Correlation structure:

lower est. upper

range 1.8411387 2.3863954 3.0931310

nugget 0.1440834 0.2186743 0.3175538

attr(,"label")

[1] "Correlation structure:"

Within-group standard error:

lower est. upper

0.1881918 0.2171559 0.2505779

And the anova table:

xtable(anova(model2), digits = 3)

numDF denDF F-value p-value
(Intercept) 1 243.000 79826.321 0.000

month 9 243.000 41.449 0.000
treatm 2 27.000 2.131 0.138

month:treatm 18 243.000 1.663 0.047

The spatial Gaussian correlation structure is specified in the correlation argument gi-
ving the object corGaus which has a first argument form specifying the time variab-
le after ∼ and the grouping variable (independence between groups) after — and a
second argument nugget taking a logical value deciding whether or not a fourth vari-
ance parameter should be added to the model. Notice the as.numeric around month in
the specification of the correlation structure. The time variable (here month) should not
be a factor, but a covariate.

The parameterisation is not exactly the same as the parameterisation used in the mo-
del expression. The square of the estimated residual standard deviation equals the sum
σ̂2 + τ̂2 of parameters in the model, the parameter estimate under range equals ρ̂2 and
the parameter estimate under nugget equals σ̂2/(σ̂2 + τ̂2). The estimated variance com-
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ponent for cage is the same in the two parameterisations. Thus we have the equations

ν̂2 = 0.140405622,
τ̂2 = (1− 0.2186744) · 0.21715592 = 0.03684473,

ρ̂2 = 2.3863954,
σ̂2 = 0.2186744 · 0.21715592 = 0.01031196.

From the ANOVA table it is seen that the interaction between treatment and month
is not significant. The P–value is 0.047, which is just slightly below the the usual 5%
level. This result is different from the random effects model where the same P–value
was 0.0059. Judging from this, it made an important difference to extend the covariance
structure. In the next section, a way to formally compare these two covariance structu-
res, will be described.

We should note here that the ANOVA table produced for lme-results does NOT use the
correction of degrees of freedom (Satterthwaithe and/or Kenward Roger) that we have
otherwised used. (From a SAS analysis it has been seen that Satterthwaite corrected
denominator degrees of freedom becomes 85.6 and the interaction p-value then becomes
0.0626 instead)

12.4 Test for model reduction

To test a reduction in the variance structure a restricted/residual likelihood ratio test can be
used. A likelihood ratio test is used to compare two models A and B, where B is a sub-
model of A. Typically the model including some variance components (model A), and
the model without these variance components (model B) is to be compared. To do this
the negative restricted/residual log-likelihood values (`(A)

re and `
(B)
re ) from both models

must be computed. The test can now be computed as:

GA→B = 2`(B)
re − 2`(A)

re

The likelihood ratio test statistic follows a χ2
d f –distribution, where d f is the difference

between the number of parameters in A and the number of parameters in B. In the case
of comparing the spatial Gaussian correlation model (A) with the random effects model
(B) d f = 2.

The following table show this comparison for the rats data set:
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xtable(as.matrix(anova(model1, model2))[,-1])

Model df AIC BIC logLik Test L.Ratio p-value
model1 1 32 72.61464 187.76414 -4.307319
model2 2 34 -37.31339 85.03296 52.656695 1 vs 2 113.928 0

Or differently expressed:

Model 2`re G–value df P–value
(A) Spatial Gaussian -105.3 GA→B = 113.9 2 PA→B < 0.0001
(B) Random effects 8.6

It follows that the spatial Gaussian correlation model cannot be reduced random effects
model.

12.5 Other serial correlation structures

The spatial Gaussian correlation structure is only one among several possible covariance
structures implemented in R. A few options are listed in the following table:

Write in R Name Correlation term

corGaus Gaussian τ2 exp{−(ti1
−ti2 )

2

ρ2 }

corExp exponential τ2 exp{−|ti1
−ti2 |

ρ }
corAR1 autoregressive(1) τ2ρ|i1−i2|

corSymm unstructured τ2
i1,i2

This list only gives a brief idea about the different possible structures. A complete list
can be found by writing ?corClasses.

With all these possible covariance structures it would be nice with a bulletproof method
to choose “the right one”. Unfortunately such a method does not exist in general. The re-
stricted/residual likelihood ratio test can only be used in those cases where the models
are sub–models of each other, and even in some of those cases the χ2–approximation
can be dubious.

Graphical methods can in some cases be used to aid the selection of covariance structu-
re. These methods consists of estimating the correlation from the model residuals, and
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then plotting these correlations as a function of the time difference. A variation of the-
se plots is known as the (semi)–variogram. The semi–variogram can be used to get an
impression of the shape of the spatial correlation, but it typically requires “many” ob-
servations on each individual to be able to distinguish between the different covariance
structures1.

R computes a few numerical information criteria, which can be used as a guideline when
choosing between different covariance structures. Two of these are: Akaike Information
Criterion (AIC), and Bayesian Information Criterion (BIC). Both are computed as the
negative log–likelihood plus some penalty for the number of parameters used in the
model. (BIC) gives a harder penalty for many parameters that (AIC). The best covarian-
ce structure (according to these criteria) is the one with the lowest criteria value.

For the rats data set the two criteria for the compound symmetry model is: AIC=12.6
and BIC=15.4, and for the spatial Gaussian model: AIC=-97.3 and BIC=-91.7. In this case
there is little doubt that the spatial Gaussian is the better model (but this was already
known from the likelihood ratio test).

Notice that even if the main interest is in the fixed effects it is important not to choose a
wrong covariance structure. In the rats example the P–value for no interaction term in
the compound symmetry model is 0.0059, and the same P–value in the spatial Gaussian
model is 0.047, which could lead to different conclusions about the treatment effect.

12.6 Analysis strategy

Figure 12.2 shows a strategy that can adopted when analyzing repeated measurements
via the mixed model. The first step is to identify the “individuals”, within which the
observations might be correlated. It need not be an animal or a person. Depending on
the problem at hand it can be fields, test–tubes, meat–slices or something completely
different. Once the “individuals” have been identified, the fixed effects of the model can
be selected. The main and interaction terms of interest are included, just like in a pure
fixed effects model.

The third step is to select a covariance structure. This is the tricky part. The choice can
be aided by the different information criteria, but for short individual series this is really
the modelers choice. The significance of the parameters of the covariance structure can
be tested with a likelihood ratio test. This is indicated by the “change model” arrow on
the left side of the diagram.

1In the field of geo-statistics the semi–variogram is a standard tool to investigate the covariance struc-
ture. In geo–statistics long data series are common.
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Once the covariance structure is selected (and possibly reduced), the significance of the
fixed effects part of the model can be tested. Whenever the fixed effects structure is
reduced, the covariance structure should ideally be re–validated, which is indicated by
the “change model” arrow on the right side of the diagram. This step is often omitted
mainly for simplicity, but also by the argument that a non–significant change in the
mean parameters should not change the covariance structure much. The final model
can now be used draw inference (estimate parameters, setup confidence intervals and
interpret results).

Given the nature and complexity of this type of models, it is recommended that main
conclusions of a given study should be cross–validated with one of the simple methods
from the last module whenever possible. For instance if a model with the spatial Gaus-
sian covariance structure show a significant treatment effect, it might also be possible to
validate this effect by analyzing a good summary measure.

12.7 The semi-variogram

This additional section briefly introduces the semi-variogram, mentioned above. Con-
sider repeated measurements Y1, . . . , Yn taken over time at time points t1, . . . , tn for a
single subject, and denote by λ(|ti − tj|) the serial correlation between two measure-
ments taken at time ti and tj. For simplicity denote u = |ti − tj| (u ≥ 0).

For the spatial Gaussian correlation model the correlation function is

λ(u) = exp{−u2/ρ2}.

The parameter ρ2 is sometimes called the range. In addition to the serial correlation,
the spatial Gaussian correlation model (or any other spatial correlation model) usually
also contains a random factor reflecting the variation in the subjects, resulting in the
following covariance within a subject for measurements time |ti − tj| apart

ν2 + τ2λ(u). (12-1)

It follows from (12-1) that the variance is ν2 + τ2 (setting u = 0). Finally there is the
residual variation which adds a component (sometimes called a nugget effect) to the
variance

cov(Yi, Yj) = σ2 + ν2 + τ2.

Having this decomposition of the variation in mind, we proceed to define the semi-
variogram as the function

γ(u) = τ2(1− λ(u)
)
.
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Figur 12.2: The strategy for analyzing repeated measurements via the mixed model
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Figur 12.3: The structure of the (semi)variogram

The semi-variogram can be estimated from the data using residuals from a model wit-
hout any spatial correlation structure. This estimate is called an empirical semi-variogram
and, to be precise, it is an estimate of σ2 + γ(u). As u approaches ∞ γ(u) tends to τ2,
implying that for large values of u the value of the empirical semi-variogram is close
to σ2 + τ2. The difference between this term and the total variation is the contribution
from the random factor (ν2). This can be seen from the figure below for an idealised
empirical semi-variogram.

Thus the dashed upper line indicates the total amount of variation in the data (remem-
ber that all measurements have the same variance in the spatial Gaussian correlation
model), and in the spatial Gaussian correlation model this variation is then divided into
three components: σ2, τ2 and ν2. From the figure we get the following values

σ2 = 0.5,
τ2 = 2,
ν2 = 1.

The points in the empirical semi-variogram will tend to be more variable as the time
difference increases, because there are less points far apart than close. Therefore focus
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should be on the section of the empirical semi-variogram corresponding to small time
differences.

A model check is obtained by plotting both the empirical semi-variogram and the esti-
mated (model-based) semi-variogram for the spatial correlation model.

The empirical semi-variogram can also be used to obtain initial values of the parame-
ter estimates σ2, τ2 and ν2 to facilitate the estimation of these parameters in the spatial
Gaussian correlation model. These are simply read off the empirical semi-variogram (as
described above).

12.7.1 Rats data example

To assess whether or not the correlation structure specified in the model is appropriate,
the empirical semi-variogram and the estimated, model-based semi-variogram can be
plotted using the function Variogram. This function also works for an lme object with
no correlation argument, but in this case no model-based semi-variogram is supplied;
instead the empirical semi-variogram is enhanced by adding a smoother to the plot. The
arguments to Variogram are an lme object (the fitted model), a form argument indicating
the time variable and the grouping variable for the spatial correlation model and a data

argument containing the relevant data set (here rats).

print(plot(Variogram(model2, form = ~as.numeric(month) | cage, data = rats)))
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Notice that the y-axis is scaled to 1, meaning that the empirical semi-variogram in R
cannot be used to to provide initial parameter estimates.

The agreement between the empirical semi-variogram and the spatial Gaussian cor-
relation structure is not too good. Therefore two other correlation structures are fit: the
spatial exponential correlation (corExp) and the autoregressive correlation (corAR1).

model3 <- lme(lnc ~ month + treatm + month:treatm, random = ~1 |

cage, correlation = corExp(form = ~as.numeric(month) |

cage, nugget = T), data = rats)

print(plot(Variogram(model3, form = ~as.numeric(month) | cage, data = rats)))



eNote 12 12.7 THE SEMI-VARIOGRAM 18

Distance

S
em

iv
ar

io
gr

am

0.2

0.4

0.6

0.8

1.0

2 4 6 8

●

●

●

●

●

●

●

●

●

model4 <- lme(lnc ~ month + treatm + month:treatm, random = ~1 |

cage, correlation = corAR1(form = ~as.numeric(month) |

cage), data = rats)

print(plot(Variogram(model4, form = ~as.numeric(month) | cage, data = rats)))
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It seems that both of them provide a somewhat better agreement with the empirical
semi-variogram than the Gausian.

Comparison of model2, model3 and model4 by means of information criteria can be ac-
complished using the function anova:

xtable(as.matrix(anova(model2, model3, model4))[,-c(1,7:9)])

Model df AIC BIC logLik
model2 1 34 -37.31339 85.03296 52.65669
model3 2 34 -42.71200 79.63434 55.35600
model4 3 33 -44.71200 74.03592 55.35600

The information criteria seem to favour the autoregressive correlation structure. We see
that this is due to the fact that this model has one less variance parameter. If we look at
the variance parameters of the spatial exponential correlation model:
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summary(model3)

Correlation Structure: Exponential spatial correlation

Formula: ~as.numeric(month) | cage

Parameter estimate(s):

range nugget

3.556503e+00 3.341370e-08

we see that the nugget variance is basically zero, so let’s try the Exponential spatial
correlation but without the nugget:

model3b <- lme(lnc ~ month + treatm + month:treatm, random = ~1 |

cage, correlation = corExp(form = ~as.numeric(month) |

cage, nugget = FALSE), data = rats)

xtable(as.matrix(anova(model3b, model4))[,-1])

Model df AIC BIC logLik
model3b 1 33 -44.712 74.03592 55.356

model4 2 33 -44.712 74.03592 55.356

So these two models are giving exactly the same fit.

Some summary results:

xtable(anova(model3b))

numDF denDF F-value p-value
(Intercept) 1 243.00 78044.63 0.00

month 9 243.00 37.55 0.00
treatm 2 27.00 1.68 0.20

month:treatm 18 243.00 1.72 0.04

library(lsmeans)

lsmeans(model3b, "treatm", by="month")
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month = 1:

treatm lsmean SE df lower.CL upper.CL

1 9.874280 0.08315533 29 9.704208 10.044352

2 9.706260 0.08315533 27 9.535639 9.876881

3 9.737014 0.08315533 27 9.566393 9.907635

month = 2:

treatm lsmean SE df lower.CL upper.CL

1 9.591410 0.08315533 29 9.421338 9.761482

2 9.503630 0.08315533 27 9.333009 9.674251

3 9.509809 0.08315533 27 9.339188 9.680430

month = 3:

treatm lsmean SE df lower.CL upper.CL

1 9.675270 0.08315533 29 9.505198 9.845342

2 9.751012 0.08315533 27 9.580391 9.921633

3 9.823261 0.08315533 27 9.652640 9.993882

month = 4:

treatm lsmean SE df lower.CL upper.CL

1 9.492995 0.08315533 29 9.322923 9.663067

2 9.485335 0.08315533 27 9.314714 9.655956

3 9.687759 0.08315533 27 9.517138 9.858380

month = 5:

treatm lsmean SE df lower.CL upper.CL

1 9.409991 0.08315533 29 9.239919 9.580063

2 9.459219 0.08315533 27 9.288598 9.629840

3 9.685679 0.08315533 27 9.515058 9.856300

month = 6:

treatm lsmean SE df lower.CL upper.CL

1 9.300140 0.08315533 29 9.130068 9.470212

2 9.285450 0.08315533 27 9.114829 9.456071

3 9.573260 0.08315533 27 9.402639 9.743881

month = 7:

treatm lsmean SE df lower.CL upper.CL

1 9.162416 0.08315533 29 8.992344 9.332488

2 9.260123 0.08315533 27 9.089502 9.430744
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3 9.497330 0.08315533 27 9.326709 9.667951

month = 8:

treatm lsmean SE df lower.CL upper.CL

1 9.236198 0.08315533 29 9.066126 9.406270

2 9.271053 0.08315533 27 9.100432 9.441674

3 9.564056 0.08315533 27 9.393435 9.734677

month = 9:

treatm lsmean SE df lower.CL upper.CL

1 9.149882 0.08315533 29 8.979810 9.319954

2 9.227982 0.08315533 27 9.057361 9.398603

3 9.456433 0.08315533 27 9.285812 9.627054

month = 10:

treatm lsmean SE df lower.CL upper.CL

1 8.972452 0.08315533 29 8.802380 9.142524

2 8.854316 0.08315533 27 8.683695 9.024937

3 9.037345 0.08315533 27 8.866724 9.207966

Confidence level used: 0.95

12.8 Analysing the time structure by polynomial regression

So far we have modelled the fixed effect time dependence with the time as a factor, hen-
ce a very general model of the patterns with no particular assumptions of the structure.
This is often a good starting point for exactly that reason: It does not make any assump-
tions and the residual correlation structure is modelled for the ”pure” residuals, hence
not running the risk of modelling a ”fixed time structure” as correlations in a fixed effect
mis-specified model.

However, it may also sometimes provide a not so powerfull examination of time effects
and/or time-treatment interaction effects, or differently put: it might, in some cases,
be a perfectly reasonable model to express the time dependence either on average or by
treatment as a function depending on the time. Linear regressions or more generally po-
lynomial regressions are generic such functions that can be used for such models. And
if nothing else, they could be used for a decomposition of the potential time dependence
structures into linear, curvature etc. components.
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Different analysis strategies could be used for this. What we suggest in the following is
strongly influenced by what is easy for us to do using the two main linear mixed model
functions in R: lme and lmer:

1. Do the factor based analysis as shown above.

2. Do some explorative plotting of individual and treatment average regression li-
nes/curves.

3. Potentially make a ”high degree” decomposition based on the simple ”split-plot”
repeated measures model using lmer and lmerTest.

4. Check if a linear or quadratic regression model could be used as an alternative
to the factor based model: Fit the model by lme and compare by maximum likeli-
hood. (Use the proper and chosen correlation structure)

5. IF a regression approach seems to capture what is going on, then try to fit the
random coefficient model as an alternativ to the correlation structure used from
above - chose the best one at the end.

6. A possibility is that a factor based model is needed for the main effect of time,
whereas a quantitative model would fit the interaction effect. This model is not
so easily fitted by lme due to some limitations of lme in handling over-specified
fixed effects structures. Both lm and lmer handle those situations fine, so this com-
bination is only (easily for us) available combined with either a random coefficient
variance structure and/or the simple split-plot structure.

12.8.1 Example: Regression models for the rats data

First let’s do some plotting of individual and treatment average curves. We make the
quantitative power versions of the time variable: (we re-scale them for numeric stability
in the mixed model fitting)

rats$monthQ2 <- scale(rats$monthQ^2)

rats$monthQ3 <- scale(rats$monthQ^3)

rats$monthQ4 <- scale(rats$monthQ^4)

we do the plotting by fitting various linear models by lm and then plotting the fitted
values from these, first average patterns, where we include the first four polynomials
within each treatment group on a single plot:
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library(ggplot2)

p <- qplot(monthQ, lnc, data = rats)

lmQ <- lm(lnc ~ monthQ*treatm,data = rats)

lmQ2 <- lm(lnc ~ monthQ*treatm + monthQ2*treatm, data = rats)

lmQ3 <- lm(lnc ~ monthQ*treatm + monthQ2*treatm + monthQ3*treatm, data = rats)

lmQ4 <- lm(lnc ~ monthQ*treatm + monthQ2*treatm + monthQ3*treatm

+ monthQ4*treatm, data = rats)

p<- p + geom_line(aes(x=monthQ, y=fitted(lmQ), group=treatm, colour=treatm))

p<- p + geom_line(aes(x=monthQ, y=fitted(lmQ2), group=treatm, colour=treatm))

p<- p + geom_line(aes(x=monthQ, y=fitted(lmQ3), group=treatm, colour=treatm))

p<- p + geom_line(aes(x=monthQ, y=fitted(lmQ4), group=treatm, colour=treatm))

print(p)
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Next individual patterns where we make a plot for each degree of the polynomial:
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p <- qplot(monthQ, lnc, data = rats)

lmQ <- lm(lnc ~ monthQ*cage,data = rats)

p<- p + geom_line(aes(x=monthQ, y=fitted(lmQ), group=cage, colour=treatm))

print(p)
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p <- qplot(monthQ, lnc, data = rats)

lmQ2 <- lm(lnc ~ monthQ*cage + monthQ2*cage,data = rats)

p<- p + geom_line(aes(x=monthQ, y=fitted(lmQ2), group=cage, colour=treatm))

print(p)
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p <- qplot(monthQ, lnc, data = rats)

lmQ3 <- lm(lnc ~ monthQ*cage + monthQ2*cage+ monthQ3*cage,data = rats)

p<- p + geom_line(aes(x=monthQ, y=fitted(lmQ3), group=cage, colour=treatm))

print(p)
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p <- qplot(monthQ, lnc, data = rats)

lmQ4 <- lm(lnc ~ monthQ*cage + monthQ2*cage+ monthQ3*cage+ monthQ4*cage,data = rats)

p<- p + geom_line(aes(x=monthQ, y=fitted(lmQ4), group=cage, colour=treatm))

print(p)
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Let us try to do a ”high degree” (4th order) decomposition: (this could easily be exten-
ded even higher)

lmerQ4 <- lmer(lnc ~ monthQ + monthQ2 + monthQ3 + monthQ4 + month +treatm

+ monthQ:treatm + monthQ2:treatm + monthQ3:treatm +

monthQ4:treatm + month:treatm +(1|cage),data = rats)

fixed-effect model matrix is rank deficient so dropping 12 columns / coefficients

xtable(anova(lmerQ4, type=1))

fixed-effect model matrix is rank deficient so dropping 12 columns / coefficients

fixed-effect model matrix is rank deficient so dropping 12 columns / coefficients

fixed-effect model matrix is rank deficient so dropping 12 columns / coefficients

fixed-effect model matrix is rank deficient so dropping 12 columns / coefficients

fixed-effect model matrix is rank deficient so dropping 12 columns / coefficients

fixed-effect model matrix is rank deficient so dropping 12 columns / coefficients
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fixed-effect model matrix is rank deficient so dropping 12 columns / coefficients

fixed-effect model matrix is rank deficient so dropping 12 columns / coefficients

fixed-effect model matrix is rank deficient so dropping 12 columns / coefficients

fixed-effect model matrix is rank deficient so dropping 12 columns / coefficients

fixed-effect model matrix is rank deficient so dropping 12 columns / coefficients

fixed-effect model matrix is rank deficient so dropping 12 columns / coefficients

fixed-effect model matrix is rank deficient so dropping 12 columns / coefficients

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
monthQ 13.09 13.09 1.00 260.42 345.43 0.0000
monthQ2 0.40 0.40 1.00 260.42 10.48 0.0014
monthQ3 0.21 0.21 1.00 260.42 5.49 0.0199
monthQ4 0.24 0.24 1.00 260.42 6.24 0.0131
month 1.80 0.36 5.00 260.43 9.48 0.0000
treatm 0.24 0.12 2.00 67.83 3.22 0.0461
monthQ:treatm 0.55 0.28 2.00 260.40 7.28 0.0008
monthQ2:treatm 0.68 0.34 2.00 260.42 9.01 0.0002
monthQ3:treatm 0.04 0.02 2.00 260.42 0.50 0.6061
monthQ4:treatm 0.06 0.03 2.00 260.42 0.81 0.4459
month:treatm 0.11 0.01 10.00 260.43 0.30 0.9818

Note: we are NOT using the correct correlation structure here. The concern would typi-
cally be that the tests from this analysis then would be ”too siginificant”. We see that the
interaction effect seems to be nicely described by the first two components (linear and
quadratic) (all other effects are non significant), whereas the main (average) time effect
is not even closely described by a 4th order polynomium: The month effect as a factor is
still clearly significant here.

We could still try (for the sake of the example) to test, using the correct, from above
chosen, correlation structure, whether a polynomial approach ”describes everything”:
(and let us try to go as high as a 6th degree poloynomial structure)

rats$monthQ5 <- scale(rats$monthQ^5)

rats$monthQ6 <- scale(rats$monthQ^6)

model4 <- lme(lnc ~ monthQ + monthQ2 + monthQ3 + monthQ4+ monthQ5 + monthQ6

+treatm + monthQ:treatm + monthQ2:treatm + monthQ3:treatm +

monthQ4:treatm + monthQ5:treatm + monthQ6:treatm,

random = ~1 | cage, correlation =

corExp(form = ~as.numeric(month) | cage, nugget = F), data = rats)
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logLik(model4, REML=FALSE)

’log Lik.’ 88.85816 (df=24)

logLik(model3b, REML=FALSE)

’log Lik.’ 115.6872 (df=33)

1-pchisq(2*(logLik(model3b, REML=FALSE)-logLik(model4, REML=FALSE)), 9)

’log Lik.’ 2.19253e-08 (df=33)

Note that the factor terms have been omitted here - both in the main effect as in the
interaction part. We see that even the 6th degree polynomiaum does not fit the data in
this case.

Finally, let us try the random coefficient structure on the model with factor structure on
the main part and a 2nd order quantitative model for the interaction. We use maximum
likelihood (not REML) to be able to compare the AIC values with the full fixed effect
model using the proper correlation structure:

lmer3_ml <- lmer(lnc ~ month +treatm + monthQ:treatm + monthQ2:treatm

+(1 + monthQ + monthQ2|cage), data = rats, REML = FALSE)

fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients

model3b_ml <- lme(lnc ~ month + treatm + month:treatm, random = ~1 |

cage, correlation = corExp(form = ~as.numeric(month) |

cage, nugget = F), data = rats, method = "ML")

logLik(lmer3_ml)

’log Lik.’ 101.4523 (df=23)

logLik(model3b_ml)
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’log Lik.’ 115.6872 (df=33)

AIC(lmer3_ml)

[1] -156.9046

AIC(model3b_ml)

[1] -165.3743

As expected, the analysis favors the model with full factor structure for this particular
data.

Post hoc and summary of treatment-time interactions could potentially be nicer descri-
bed by different slopes and/or curvatures than a by-time treatment story as given in the
previous section.

Remark 12.1

A couple of model possibilitties not explicitly mentioned so far:

• It would be possible to combine random coefficient structures with residual
correlation structures. This requires the handling of random coefficient models
in lme, see e.g. the ”old” course material: http://www.imm.dtu.dk/~perbb/
st113/Module09/R.html

• It can be considered whether some simple transformation of either the obser-
vations OR the time scale could linearize the time profiles to make the story
simple on a transformed scale - e.g. log(Y) as function of time and/or log(time).

12.9 Exercises

http://www.imm.dtu.dk/~perbb/st113/Module09/R.html
http://www.imm.dtu.dk/~perbb/st113/Module09/R.html
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Exercise 1 PH in pigs

To investigate the effect of injection of Porcine Growth Hormone (PGH) on pH (among
other things) a block experiment was carried out with two pigs from each of 6 litters (=
blocks). There were two treatments:

1) control

2) pgh (daily injection with 0.08 mg Porcine Growth Hormone)

Apart from several other measurements the pH in the meat was measured 20 times from
30 minutes after until 24 hours after slaughter. There were 10 litters in the experiment
but pH was measured for only 6 of these. The order of the data is: treatment, litter, pig
number, followed by pH measurements at 30, 45, 60, 75, 90, 105, 120, 150, 180, 210, 240,
270, 300, 330, 360, 390, 420, 450, 480, 1440 minutes after slaughter.

The data file can be downloaded as: pgh.txt and is described also in eNote13 and has e
following structure:

treatm litter pigno min ph

1 2 21 30 6.45

2 2 22 30 6.07

1 4 41 30 6.77

2 4 42 30 6.8

. . . . .

. . . . .(240 lines total)

. . . . .

2 10 102 1440 5.46

In this analysis the focus should be on the effect of the treatment over time.

a) Make one or more plots of the data. Comment on the plot(s).

b) Setup a suitable model for this data set, including both fixed and random effects,
but no correlation structure. (Notice that besides the “pig” variable we also have
information about litter, which could be included as an additional random effect.)

http://www2.compute.dtu.dk/courses/02429/Data/datafiles/pgh.txt
http://02429.compute.dtu.dk/enote/afsnit/NUID193/
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c) Reduce the initial model (if possible), both the random effects and fixed effects
parts.

d) Extend the model by adding a correlation structure.

e) Use information criteria and/or semi-variograms to select an appropriate correla-
tion structure.

f) Explain in words the correlation structure that was chosen.

g) Repeat the model reduction process.

h) What is the conclusion about the treatment?
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