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The previous modules have introduced a number of situations where models including
random effects are very useful. In Module 4 a fairly detailed description of the mixed
model theory framework was given. In this Module 10, we will elaborate one some of
the theoretical issues important for the practical work with mixed models. Hopefully
this will provide the reader with a better understanding of the structure and nature of
these models, along with an improved ability to interpret results from these models.

A general linear mixed model can be presented in matrix notation by:

y = Xβ + Zu + ε, where u ∼ N(0, G) and ε ∼ N(0, R).

The vector u is the collection of all the random effect coefficients (just like β for the fixed
effect parameters). The covariance matrix for the measurement errors R = var(ε) has
dimension n× n. In most examples R = σ2I, but in some examples to be described later
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in this course, it is convenient to use a different R. The covariance matrix for the random
effect coefficients G = var(u) has dimension q× q, where q is the number of random
effect coefficients. The structure of the G matrix can be very simple. If all the random
effect coefficients are independent, then G is a diagonal matrix with diagonal elements
equal to the variance of the random effect coefficients.

The covariance matrix V describing the covariance between any two observations in the
data set, can be calculated directly from the matrix representation of the model in the
following way:

V = var(y) = var(Xβ + Zu + ε) [from model]
= var(Xβ) + var(Zu) + var(ε) [all terms are independent]
= var(Zu) + var(ε) [variance of fixed effects is zero]
= Zvar(u)Z′ + var(ε) [Z is constant]
= ZGZ′ + R [from model]

10.1 Likelihood function and parameter estimation

In Chapter 4 th following was given: The likelihood function L is a function of the obser-
vations and the model parameters. It returns a measure of the probability of observing a
particular observation y, given a set of model parameters β and γ. Here β is the vector of
the fixed effect parameters, and γ is the vector of parameters used in the two covariance
matrices G and R, and hence in V. Instead of the likelihood function L itself, it is often
more convenient to work with negative log likelihood function, denoted `. The negative
log likelihood function for a mixed model is given by:

`(y, β, γ) =
1
2

{
n log(2π) + log |V(γ)|+ (y− Xβ)′(V(γ))−1(y− Xβ)

}
∝

1
2

{
log |V(γ)|+ (y− Xβ)′(V(γ))−1(y− Xβ)

}
(10-1)

The symbol ’∝’ reads ’proportional to’, and is used here to indicate that only an additive
constant (constant with respect to the model parameters) have been left out.

A natural and often used method for estimating model parameters, is the maximum
likelihood method. The maximum likelihood method take the actual observations and
chooses the parameters which make those observations most likely. In other words, the
parameter estimates are found by:

(β̂, γ̂) = argmin
(β,γ)

`(y, β, γ)
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In practice this minimum is found in three steps. 1) The estimate of the fixed effect
parameters β is expressed as a function of the random effect parameters γ, as it turns
out that no matter what value of the model parameters that minimize `, then β̂(γ) =
(X′(V(γ))−1X)−1X′(V(γ))−1y. 2) The estimate of the random effect parameters is fo-
und by minimizing `(y, β̂(γ), γ) as a function of γ. 3) The fixed effect parameters are
calculated by β̂ = β̂(γ̂).

The maximum likelihood method is widely used to obtain parameter estimates in stati-
stical models, because it has several nice properties. One nice property of the maximum
likelihood estimator is “functional invariance”, which means that for any function f ,
the maximum likelihood estimator of f (ψ) is f (ψ̂), where ψ̂ is the maximum likelihood
estimator of ψ. For mixed models however, the maximum likelihood method on avera-
ge tends to underestimate the random effect parameters, or in other words the estimator
is biased downwards.

A well known example of this bias is in a simple random sample. Consider a random
sample x = (x1, . . . , xN) from a normal distribution with mean µ and variance σ2. The
mean parameter is estimated by the average µ̂ = (1/n)∑ xi. The maximum likelihood
estimate of the variance parameter is σ̂2 = (1/n)∑(xi − µ̂)2. This estimate is not often
used, because it is known to be biased. Instead the unbiased estimate σ̂2 = (1/(n −
1))∑(xi − µ̂)2 is most often used. This estimate is known as the Restricted or Residual
maximum likelihood estimate (REML).

Now in this Chapter 10, before we elaborate on the REML approach let us detail the
basic ML approach using a simple example.

Example 10.1 One sample situation with NO random effects

Consider the simplest possible normal distribution setting:

yi = µ + ε i, where ε i ∼ N(0, σ2).

The ε i are all independent. The matrix notation for this model with n = 6 is:

y1

y2

y3

y4

y5

y6


︸ ︷︷ ︸

y

=



1
1
1
1
1
1


︸ ︷︷ ︸

X

(
µ
)︸ ︷︷ ︸

β

+



ε1

ε2

ε3

ε4

ε5

ε6


︸ ︷︷ ︸

ε

,

where ε ∼ N(0, σ2I). There is no random effects so the term with Z and u from the gene-
ral mixed linear model expression is not there at all. Notice how the matrix representation
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exactly correspond to model formulation, when the matrices are multiplied. And remember
that

V = var(y) = σ2I

=



σ2 0 0 0 0 0
0 σ2 0 0 0 0
0 0 σ2 0 0 0
0 0 0 σ2 0 0
0 0 0 0 σ2 0
0 0 0 0 0 σ2


So this V = V(γ) = σ2I can then be inserted into the likelihood to express the likelihood
function for this particular case: (where we have only a single variance parameter γ, and
only a single fixed effect parameter)

`(y, β, γ) =
1
2

{
n log(2π) + log |σ2I|+ (y− Xβ)′(σ2I)−1(y− Xβ)

}
=

1
2

{
n log(2π) + log(

n

∏
i=1

σ2) + (y− Xβ)′(y− Xβ)/σ2

}

=
1
2
{

n log(2π) + n log(σ2) + (y− µ)′(y− µ)/σ2}
=

1
2

{
n log(2π) + n log(σ2) +

n

∑
i=1

(yi − µ)2/σ2

}
where we have used a little knowledge of matrix algebra. We see how the multivariately
expressed likelihood for this simple setting boils down to a univariate normal based likeli-
hood, which would be expressed explicitly as the product of the densities of each of the n
independent normal observations:

L((y1, . . . , yn), µ, σ2) =
n

∏
i=1

1√
2πσ2

exp
(
− (yi − µ)2

2σ2

)
And hence the negative log-likelihood becomes:

`((y1, . . . , yn), µ, σ2) = log

[
n

∏
i=1

1√
2πσ2

exp
(
− (yi − µ)2

2σ2

)]

= −
n

∑
i=1

[
log
(

1√
2πσ2

)
+

(
− (yi − µ)2

2σ2

)]

which can be seen to be exactly the same as above. To find the maximum likelihood estimates
we find the derivatives of the negative log-likelihood function:

∂`(µ, σ2)

∂µ
=

1
2

[
n

∑
i=1

(−2)(yi − µ)/σ2

]

= (nµ−
n

∑
i=1

yi)/σ2
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and

∂`(µ, σ2)

∂σ2 =
1
2

[
n
σ2 −

∑n
i=1(yi − µ)2

(σ2)2

]
And if we solve the derivatives equal to zero we get:

µ̂ = ȳ

σ̂ =
1
n

n

∑
i=1

(yi − µ)2

=
1
n

n

∑
i=1

(yi − ȳ)2

Let us see how this looks in R. First we generate some data with n = 6:

n <- 6

mu=2

sigma <- sqrt(2)

set.seed(12345)

y <- rnorm(n, mu, sigma)

mydata <- data.frame(y)

Then the likelihood function is defined explicitly in three different ways: (and evaluated in
the maximum point)

## Using the mathematical expression:

minusloglik <- function(x){
0.5*(n*log(2*pi) + n*log(x[2]) + sum((y-x[1])^2)/x[2])

}
-minusloglik(c(mean(y), (n-1)*var(y)/n))

[1] -9.859

## Using the normal density function:

minusloglik2 <- function(x) -sum(log(dnorm(y, x[1], sqrt(x[2]))))

-minusloglik2(c(mean(y), (n-1)*var(y)/n))

[1] -9.859

## Using the MULTIVARIATE normal density function:

library(mvtnorm)

minusloglik3 <- function(x) dmvnorm(y, rep(x[1], n), diag(x[2], n), log=TRUE)

-minusloglik3(c(mean(y), (n-1)*var(y)/n))
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[1] 9.859

Let us check that we get the same from the logLik function:

lmfit <- lm(y~., data=mydata)

logLik(lmfit)

’log Lik.’ -9.859 (df=2)

And finally, we can see that we could directly optimize the likelihood (by minimizing minus
the log-likelihood) using the R-optimizer function optim:

MLoptimize <- optim(c(1,1), minusloglik)

## The results:

MLoptimize$par

[1] 1.887 1.566

## Commpare with:

c(mean(y), var(y)*(n-1)/n)

[1] 1.887 1.566

Let’s look at the likelihood for the variance for µ = ȳ, or rather the relative likelihood, where
we divide by the maximal value:

L(ȳ, σ2)

L(ȳ, σ̂2 · 5/6)

loglik2 <- function(x) prod(dnorm(y, x[1], sqrt(x[2])))

sigmalikelihood <- function(sig){loglik2(c(mean(y), sig))}

maxlikelihood <- sigmalikelihood(var(y)*(n-1)/n)

x <- seq(0.1, 10, 0.1)

llvals <- rep(0, length(x))

j <- 0

for (i in x){
j <- j + 1

llvals[j] <- sigmalikelihood(i)

}
plot(x, llvals/maxlikelihood, type="l")

abline(v = var(y)*(n-1)/n)
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The maximum point is shown.

10.2 Model testing and comparison by likelihood

We have previously used that we can investigate a hypothesis/submodel about a set of
multidimensional model parameters θ ∈ Θ by comparing the fit of the model under the
hypothesis

H0 : θ ∈ Θ0,

where Θ0 is a subspace of Θ. We do this by computing the maximum likelihood estima-
tes and fits under both assumptions, and then finding minus twice the ratio of the two
log-likelihoods:

G = −2 log
maxSubmodel L(θ)

maxModel L(θ)
= −2 log

maxΘ0 L(θ)
maxΘ L(θ)

= 2(`(θ̂)− `(θ̂0))

Under certain conditions this statistic will be approximately χ2-distributed with degrees
of freedom being the difference in model dimensions, that is, in the number of parame-
ters in the two models, that is again, the number of parameters being ”tested away”.

We also saw that for testing single variance parameters equal to zero these conditions
are not met, and we use either of two approaches: divide the p-value with 2 or use
1/2 as degrees of freedom for the test. The problem is that 0 is on the boundary of the
parameter space, so for testing other values than zero it would still be OK to use the
χ2

1-distribution.
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It is also possible to compare different models by likelihood methods even though they
are not nested within each other, as just discussed. Then typically the AIC and/or BIC
values would be used:

AIC = −2 · log L(θ̂) + 2 · p
BIC = −2 · log L(θ̂) + log(n)p

where n is the number of observations and p is the number of parameters in the model.
One would then chose the model with the smallest AIC or BIC value. In R these can be
extracted from model objects just as the likelihood value:

Example 10.2 One sample situation with NO random effects

npar <- 2

AIC(lmfit)

[1] 23.72

-2*logLik(lmfit) + 2*npar

’log Lik.’ 23.72 (df=2)

BIC(lmfit)

[1] 23.3

-2*logLik(lmfit) + log(n)*npar

’log Lik.’ 23.3 (df=2)
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Remark 10.3

For linear hypotheses within linear normal models it can be found that the G-statistic
coming from comapring the likelihoods is in one-to-one correspondence with the
well-known F-statistic:

G = h(F)

where h is a monotone function. This means that probability statements for G can
be re-expressed to probability statements for F, and since under linear and normal
assumptions the F-statistic is EXACTLY F-distributed (under the null hypothesis),
whereas the G-statistic is only approximately χ2-distributed, it is for these situations
better to use the F (as we have always done anyway). But it is re-assuring to know
now, that this is in fact also likelihood ratio testing.

10.3 Wald Confidence intervals

Most classically, confidence intervals for parameter estimates within the likelihood ap-
proach would be based on a quadratic approximation of the likelihood, also called the
Wald interval: (also called the asymptotic normality property, a version of the Central
Limit Theorem)

θ̂i ± z1−α/2SEθ̂i

where the standard error then is found from the curvature of the likelihood in the maxi-
mum point, that is, from the second derivative of the log-likelihood function, the Hessi-
an matrix if there is more then a single model parameter, then also called the (observed)
Information matrix:

SEθ̂i
=
√
(I(θ̂)−1)i

where I(θ) is the matrix of second derivatives of the negative log-likelihood function:

I(θ) = `
′′
(θ)

Example 10.4 One sample situation with NO random effects

Continuing the one-sample normal example from above, we can find the second derivatives.
Here we give only one of the four entries of the 2× 2 matrix:

∂2`(µ, σ2)

∂µ2 =
n
σ2
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It can be shown (cf. Exercise 1) that when inserting the estimated mean and variance into

∂2`(µ, σ2)

∂µ∂(σ2)

we get a zero, so the off-diagonal element of the observed Fisher information is zero:

I(θ̂)12 = 0

This means that the inverse of the Fisher information is just the inverse of each diagonal
element, so:

SEµ̂ =
√
(I(µ̂, σ̂2)−1)11 =

√
σ̂2

n
This confirms, what we allready new about the variance of the mean!

For the variance, it can be shown that (cf. Exercise 1)

SEσ̂2 =
√
(I(µ̂, σ̂2)−1)22 =

√
2(σ̂2)2

n

So the Wald confidence interval for the variance would be:

σ̂2 ± z1−α/2σ̂2

√
2
n

which for the example data becomes:

sig2hat <- var(y)*(n-1)/n

sig2hat + c(-1, 1)*qnorm(0.975)*sig2hat*sqrt(2/n)

[1] -0.206 3.338

The Wald confidence interval for a variance is not a good one. The sampling ditribu-
tion of the variance estimate is not nicely approximated by a normal distribution with
as low an n as in this case. From basic introductory statistics classes we also know that
we would usually find a confidence interval for a variance from the more proper (small
sample) χ2-distribution which one can derive from the normal assumption on the resi-
duals in a linear normal model.

10.4 Likelihood Confidence intervals

Generally, confidence intervals should be based on the proper sampling distribution.
For the mean and variance of a single normal distribution, we can find these, as already
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discussed. More generally, and for us when it comes to parameters of the variance-
covariance structure of a mixed model in general, where the estimates do not have ana-
lytical expressions and just appear as the maximum point of a computer based likeli-
hood optimization, it is not possible to easily find and definitely not express analytically
these small sample sampling distributions.

A very good general alternative, as it shows, is to construct a confidence interval based
directly on the likelihood function. Or differently put, let us use the following classical
way of thinking of the confidence interval: The interval is containing the possible values
for the parameter that we accept by a (two-tailed) hypothesis test. And then let us use
the likelihood ratio approach to do the testing, as shown above. A single parameter
testing situation will be using the χ2-distribution with 1 degrees of freedom and the test
statistic for the hypothesis H0 : θ = θ0 would be:

−2 log
L(θ0)

L(θ̂)

as the maximum of a single value of a single parameter only can be the same value
inserted

Method 10.5 The likelihood confidence interval

The (1− α)100% likelihood confidence interval for θ (in a one-parameter setting) is
given by {

θ| − 2 log
L(θ)
L(θ̂)

< χ2
1−α(1)

}
So the 95%-confidence interval becomes:{

θ| − 2 log
L(θ)
L(θ̂)

< 3.84
}

equivalent to: {
θ|L(θ)

L(θ̂)
> exp (−3.84/2)

}

So the 95%-confidence interval for a parameter consists of all those values with a relative
likelihood value greater than 0.1466. This confidence interval will generally have much
better small sample properties, than the Wald interval.
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10.5 Profile likelihood

The likelihood based confidence interval approach just presented was presented as a
single parameter interval in a single parameter setting. It is possible to extend this to
multi-parameter confidence regions for multi-parameter settings. What is mostly ne-
eded and used in practice, though, is single-parameter confidence intervals in multi-
parameter settings. For this we need the so-called profile likelihood principle where sub-
sets of the parameter space, e.g. a single parameter, can be profiled by maximizing all
the other parameters (given the chosen one(s)), hence expressing a profile likelihood
only as a function of the chosen (single) parameter.

Example 10.6 One sample situation with NO random effects

The profile likelihood function for the mean µ is:

Lp(µ) = L(µ, σ̂2(µ))

where σ̂2(µ) means the functional expression where the maximum point of L(µ, σ2) with
respect to σ2 for a fixed µ is given. We found this above, and can insert:

Lp(µ) = L(µ,
1
n

n

∑
i=1

(yi − µ)2)

=
n

∏
i=1

1√
2π 1

n ∑n
i=1(yi − µ)2

exp

(
− (yi − µ)2

2 1
n ∑n

i=1(yi − µ)2

)

Now this is a single parameter expression where the likelihood confidence interval approach
as given can be applied. For simple linear models this is overly complicated as we have a
perfect approach based on the t-distribution. And in fact the confint function that for mixed
models would use something similar to the above to find the profile likelihood intervals for
the fixed effect parameters, will for lm objects do nothing else but show the t-based intervals.

Similarly, the profile likelihood for the variance σ2 can be expressed:

Lp(σ
2) = L(µ̂(σ2), σ2)

= L(ȳ, σ2)

This becomes particularly simple, as the µ-estimate does not depend on the σ, so the profile
likelihood is simply the two-parameter likelihood with the µ̂ = ȳ inserted for the mean µ.
And, in fact we allready studied this above. Let us repeat this and show the 95%-cut off limits
0.1466:
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lik2 <- function(x) prod(dnorm(y, x[1], sqrt(x[2])))

sigmalikelihood <- function(sig){lik2(c(mean(y), sig))}

maxlikelihood <- sigmalikelihood(var(y)*(n-1)/n)

x <- seq(0.1, 10, 0.1)

llvals <- rep(0, length(x))

j <- 0

for (i in x){
j <- j + 1

llvals[j] <- sigmalikelihood(i)

}
plot(x, llvals/maxlikelihood, type="l")

abline(v = var(y)*(n-1)/n, h = exp(-3.84/2))
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To actually get the cut-off points exactly one would have to solve for them in R:

CIfun <- function(sig) sigmalikelihood(sig)/maxlikelihood-exp(-3.84/2)

uniroot(CIfun, lower=0.001, upper=sig2hat)$root

[1] 0.604

uniroot(CIfun, lower=sig2hat, upper=1000)$root
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[1] 6.294

Note how different this confidence interval is from the Wald based found above. Again, for
lm objects, the confint function will not give this interval - it only provides the fixed effect
intervals.

10.6 REstricted/REsidual Maximum Likelihood estimation
(REML)

In Chapter 4 the following was written: The restricted (also known as residual) maxi-
mum likelihood method is a modification of the maximum likelihood method. Instead
of minimizing the negative log likelihood function ` in step 2), the function `re is mini-
mized, where `re is given by:

1
2

{
log |V(γ)|+ (y− Xβ)′(V(γ))−1(y− Xβ) + log |X′(V(γ))−1X|

}
The two other steps 1) and 3) are exactly the same.

The intuition behind the raw maximum likelihood method, is that it should return the
estimates that makes the actual observations most likely. The intuition behind the restri-
cted likelihood method is almost the same, but instead of optimizing the likelihood of
the observations directly, it optimizes the likelihood of the full residuals. The full residu-
als are defined as the observations minus the fixed effects part of the model. This focus
on the full residuals can be theoretically justified, as it turns out, that these full residuals
contain all information about the variance parameters.

This modification ensures, at least in balanced cases, that the random effect parameters
are estimated without bias, and for this reason the REML estimator is generally prefer-
red in mixed models.

Now let us as a new thing in this chapter 10 elaborate some more on how the REML
likelihood appears. The REML likelihood is the likelihood function expressed for the
residuals. It can argued that as only the residuals contain information about the variance
parameters, we should focus on these already in the likelihood expression. This is the
premise for the REML likelihod approach. The ”known variance” residuals in a mixed
model are expressed as:

e = (y− Xβ̂)

where
β̂ = (X′V−1X)−1X′V−1y
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By ”known variance” we mean that we use the true variance V in the expression. In a
simple linear normal model the estimated residuals do not depend on the variance, and
in these models actual residuals are independent from the mean parameter estimates.
E.g. in the simplest of cases: The mean ȳ is stochastically independent from the sample
variance s2. In the mixed model the ”known variance” residuals are independent from
the ”known variance” fixed effect estimates, and the actual residuals are ”almost” inde-
pendent from the actual fixed effect estimates. If this independency property is used, we
can express the likelihood function of the original data as the product of the likelihoods
for residuals and parameter estimates:

L(y, β, γ) = L(e, β, γ) · L(β̂, β, γ)

Then isolating the residual likelihood and applying the log, we get: (remember that we
use ` to denote the negative log-likelihood: ` = − log L)

−`(e, β, γ) = −`(y, β, γ) + `(β̂, β, γ)

We see how the residual likelihood becomes the orginial likelihood minus the likelihood
for the parameter estimates. Seen as a likelihood for the variance parameters, the orginal
likelihood express the zero mean ”true β” residuals multivariate normal part, whereas
the second part express that the βs are actually estimated.

The (sampling) distribution of the β̂ is, again expressed with the known variance is a
well known thing from a general linear model point of view:

β̂ ∼ N(β, (X′V−1X)−1)

So expressing the multivariate normal negative log-likelihood for this distribution gi-
ves: (assume the number of parameters is p)

`(β̂, β, γ) =
1
2

{
p log(2π) + log |(X′V(γ)−1X)−1|+ (β− β̂)′(X′V(γ)−1X)−1(β− β̂)

}
The last term of this likelihood will end up having no contribution as the β will be
estimated at β̂ anyway (the β-estimate is unbiased) but inserting the first two, will then
give the RE log-likelihood:

`re(β, γ) =
1
2

{
n log(2π) + log |V(γ)|+ (y− Xβ)′(V(γ))−1(y− Xβ)

−p log(2π)− log |(X′(V(γ))−1X)−1|
}

=
1
2

{
(n− p) log(2π) + log |V(γ)|+ (y− Xβ)′(V(γ))−1(y− Xβ)

+ log |X′(V(γ))−1X|
}

∝
1
2

{
log |V(γ)|+ (y− Xβ)′(V(γ))−1(y− Xβ) + log |X′(V(γ))−1X|

}
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where we used that the matrix determinant of the inverse of a square matrix A equals
the reciprocal value of the determinant, and hence changing the sign of the additional
term in the likelihood.

Remark 10.7

The mixed model REML likelihood expression can also be justified by other approa-
ches than the original residual likelihood approach. In Pawitan Y: In All Likelihood:
Statistical modeling and inference using likelihood. Oxford University Press (2001)
it is shown that a Baysian approach can also lead to the same likelihood expres-
sion. And also in Pawitan, one can read about the general principle of modified profile
likelihood, and the REML likelihood function also appears as the modified profile
likelihod for the variance parameters of the mixed model.

Example 10.8 One sample situation with NO random effects

Let us return the to simplest of all settings again. To express the RE-log-likelihood, we just
need to find the additional term - the µ-sampling error term:

log |X′(V(γ))−1X| = log |X′X/σ2|
= log |n/σ2|
= log(n)− log(σ2)

Inserting this, will then give the Restricted negative log-likelihood function:

`RE(y, β, γ) =
1
2

{
(n− 1) log(2π) + n log(σ2) +

n

∑
i=1

(yi − µ)2/σ2 + log(n)− log(σ2)

}

=
1
2

{
log(n) + (n− 1) log(2π) + (n− 1) log(σ2) +

n

∑
i=1

(yi − µ)2/σ2

}

∝
1
2

{
(n− 1) log(σ2) +

n

∑
i=1

(yi − µ)2/σ2

}

We see how the RE-likelihood corresponds to the original likelihood with just the single chan-
ge of n into n− 1. This has no effect on the µ-estimate but changes exactly the σ2-estimate the
well-known way, when the derivatives are found and solved:

σ̂2 =
1

n− 1

n

∑
i=1

(yi − ȳ)2
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And we can then profile this likelihood to get a confidence interval for this one:

REminusloglik <- function(x){
(n-1)*log(x[2]) + sum((y-x[1])^2)/x[2]

}
optim(c(1,1), REminusloglik)$par

[1] 1.887 1.879

c(mean(y), var(y))

[1] 1.887 1.879

sigmalikelihood <- function(sig){exp(-REminusloglik(c(mean(y), sig)))}

maxlikelihood <- sigmalikelihood(var(y))

x <- seq(0.1, 10, 0.1)

llvals <- rep(0, length(x))

j <- 0

for (i in x){
j <- j + 1

llvals[j] <- sigmalikelihood(i)

}
plot(x, llvals/maxlikelihood, type="l")

abline(v = var(y), h = exp(-3.84/2))
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To actually get the cut-off points exactly one would have to solve for them in R:

CIfun <- function(sig) sigmalikelihood(sig)/maxlikelihood-exp(-3.84/2)

uniroot(CIfun, lower=0.001, upper=sig2hat)$root

[1] 0.8744

uniroot(CIfun, lower=sig2hat, upper=1000)$root

[1] 5.239

Let us just finally compare with the χ2-based confidence interval, that would be the usual
choice in a linear model:

(n-1)*var(y)/qchisq(0.975, n-1)

[1] 0.7321

(n-1)*var(y)/qchisq(0.025, n-1)

[1] 11.3

With low n = 6 still, the likelihood interval is considerably too low on the upper limit com-
pared to the χ2-based. With n a bit higher the likelihood interval becomes better.

Example 10.9 One way ANOVA with random effects

Consider the one way analysis of variance model with random effect. The case with two
observations withing each of three levels is used.

yij = µ + bi + ε ij, where bi ∼ N(0, σ2
B) and ε ij ∼ N(0, σ2).

Here i = 1, 2, 3, j = 1, 2 and the random effects bi and ε ij are all independent. The matrix
notation for this model is:

y11

y12

y21

y22

y31

y32


︸ ︷︷ ︸

y

=



1
1
1
1
1
1


︸ ︷︷ ︸

X

(
µ
)︸ ︷︷ ︸

β

+



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


︸ ︷︷ ︸

Z

 b1

b2

b3


︸ ︷︷ ︸

u

+



ε11

ε12

ε21

ε22

ε31

ε32


︸ ︷︷ ︸

ε

,
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where u ∼ N(0, G) and ε ∼ N(0, σ2I). The covariance matrix G for the random effects is in
this case a 3× 3 diagonal matrix with diagonal elements σ2

B. Notice how the matrix represen-
tation exactly correspond to model formulation, when the matrices are multiplied.

V = var(y) = ZGZ′ + σ2I

=



σ2 + σ2
B σ2

B 0 0 0 0
σ2

B σ2 + σ2
B 0 0 0 0

0 0 σ2 + σ2
B σ2

B 0 0
0 0 σ2

B σ2 + σ2
B 0 0

0 0 0 0 σ2 + σ2
B σ2

B
0 0 0 0 σ2

B σ2 + σ2
B


And it can be shown that: (If no errors were made in the derivations)

log |V(γ)| = 3 log(σ2) + 3 log(σ2 + 2σ2
B)

log |X′(V(γ))−1X| = log(n)− log(σ2 + 2σ2
B)

(y− Xβ)′(V(γ))−1(y− Xβ) =
1

σ2(σ2 + 2σ2
B)
×(

(σ2 + σ2
B)

3

∑
i=1

2

∑
j=1

(yij − µ)2 − 2σ2
B

3

∑
i=1

(yi1 − µ)(yi2 − µ)

)
All of this comes from the fact that we can handle the 2× 2-matrix

U =

(
σ2 + σ2

B σ2
B

σ2
B σ2 + σ2

B

)
det(U) = |U| = (σ2 + σ2

B)
2 − (σ2

B)
2 = σ2(σ2 + 2σ2

B)

U−1 =
1

σ2(σ2 + 2σ2
B)

(
σ2 + σ2

B −σ2
B

−σ2
B σ2 + σ2

B

)
So:

`RE(µ, σ2, σ2
B) ∝ 3 log(σ2) + 3 log(σ2 + 2σ2

B)− log(σ2 + 2σ2
B)

+
1

σ2(σ2 + 2σ2
B)

(
(σ2 + σ2

B)
3

∑
i=1

2

∑
j=1

(yij − µ)2 − 2σ2
B

3

∑
i=1

(yi1 − µ)(yi2 − µ)

)

From this, one could insert µ = ȳ, as this indeed will be the estimate here and then take the
derivative with respect to the two variance parameters, equate with zero and solve. And we
would get the following solution:

σ̂2 = MSE

σ̂2
B =

MSE−MSB

2
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So in this case the REML approach gives the same results as the moments method based
on the so-called expected mean squares (EMS) expressions. We mentioned these in the
Chapter on hierarchical models in relation to a discussion of alternative ways of obtai-
ning confidence intervals for variance parameters. For balanced settings it is possible
to easily derive the EMS-expressions. And it can be done based on the factor structure
diagram:

Method 10.10 Expected Mean Squares

For a random effect F, the expected mean square is

E(MSF) = nFσ2
F + ∑

G:G>F
nGσ2

G

where nF is the number of observations for each level of the factor F and the sum-
mation is over all those factors finer than F, that is, all those factors that can be ”hit”
by going backwards in the diagram starting from F.

Using one expression for each random effect gives a linear system of equations that
can be solved for the variance components. In these balanced settings these estima-
tes will coincide with the REML estimates. Or differently put: the system of equa-
tions coming out of the derivatives of the REML log-likelihood will in these cases be
this system of EMS-values.

Example 10.11 One way ANOVA with random effects

The expected mean squares will then be:

E(MSB) = 2σ2
B + σ2

and
E(MSE) = σ2

leading to the solution already expressed.

Slightly more general, if fixed effects are also present in the model, or if possibly some
inbalance occur, one may still estimate variance components by a so-called moment
method. In such other cases, expected mean squares are almost impossible to deduce
by hand calculation. However, infact , for instance SAS PROC GLM can do this for us
by means listing all the random effects in an additional RANDOM statement like:
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proc glm;

class treat sub;

model y=treat sub;

Random sub;

This is not so easily available in R. But working with the REML approach would in any
case be better for these cases.

10.7 Prediction of random effect coefficients

A model with random effects is typically used in situations where the subjects (or blo-
cks) in the study are to be considered as representatives from a greater population. As
such, the main interest is usually not in the actual levels of the randomly selected sub-
jects, but in the variation among them. It is however possible to obtain predictions of
the individual subject levels u. The formula is given in matrix notation as:

û = GZ′V−1(y− Xβ̂)

If G and R are known, û can be shown to be ’the best linear unbiased predictor’ (BLUP)
of u. Here, ’best’ means minimum mean squared error. In real applications G and R are
always estimated, but the predictor is still referred to as the BLUP.

Example 10.12 One way ANOVA with random effects

Using the notation from above we can find that

ûi =
(
σ2

B, σ2
B
)

U−1
(

yi1 − ȳ
yi2 − ȳ

)
=

(
σ2σ2

B, σ2σ2
B
) ( yi1 − ȳ

yi2 − ȳ

)
/σ2(σ2 + 2σ2

B)

=
ȳi − ȳ
σ2

2σ2
B
+ 1

Note how these predictions are shrinkage versions of the fixed effect estimates: They will
always be closer towards zero. The level of shrinkage depends on the ratio of the two varian-
ces: the smaller the group differences - the more shrinkage.
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10.8 Exercises

Exercise 1 One-sample normal model with no random effects

a) Find the second derivatives of the log-likelihood function and use that to find the
two standard errors as claimed in the example of the Chapter.

Exercise 2 One way ANOVA with random effects

a) Work with the second example of the chapter. Implement the REML-likelihood
explicitly in R and optimize it with some toy data and compare that you get the
same as you should AND the same as lmer.

b) Profile the likelihood with respect to each of the two variance parameters and
compare with the results from confint applied to the lmer results.

c) Verify how the expression for the random effects BLUPs comes up and/or check
that this is what lmer also finds on some toy data.
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