Probabilistic Counting and Counting Distinct Elements

Christian Wulff-Nilsen
Algorithmic Techniques for Modern Data Models
DTU

October 31, 2025

• 2-universal hash functions

- 2-universal hash functions
- Distinct Elements:

- 2-universal hash functions
- Distinct Elements:
 - Tidemark algorithm

- 2-universal hash functions
- Distinct Elements:
 - o Tidemark algorithm
 - Analysis: expected output, concentration bounds

- 2-universal hash functions
- Distinct Elements:
 - o Tidemark algorithm
 - Analysis: expected output, concentration bounds
- Approximate Counting:

- 2-universal hash functions
- Distinct Elements:
 - Tidemark algorithm
 - Analysis: expected output, concentration bounds
- Approximate Counting:
 - Morris Counter

- 2-universal hash functions
- Distinct Elements:
 - Tidemark algorithm
 - Analysis: expected output, concentration bounds
- Approximate Counting:
 - Morris Counter
 - Analysis: expected output, concentration bounds

- 2-universal hash functions
- Distinct Elements:
 - Tidemark algorithm
 - Analysis: expected output, concentration bounds
- Approximate Counting:
 - Morris Counter
 - Analysis: expected output, concentration bounds
- Law of Total Expectation with proof (if time allows)

• Notation: for any positive integer a, $[a] = \{1, 2, \dots, a\}$

- Notation: for any positive integer a, $[a] = \{1, 2, \dots, a\}$
- A hash function $h:[m] \to [n]$ is 2-universal if

$$P[h(x_1) = y_1 \land h(x_2) = y_2] = \frac{1}{n^2}$$

for all distinct $x_1, x_2 \in [m]$ and for all $y_1, y_2 \in [n]$

- Notation: for any positive integer a, $[a] = \{1, 2, \dots, a\}$
- A hash function $h:[m] \to [n]$ is 2-universal if

$$P[h(x_1) = y_1 \land h(x_2) = y_2] = \frac{1}{n^2}$$

for all distinct $x_1, x_2 \in [m]$ and for all $y_1, y_2 \in [n]$

• Useful properties of a 2-universal hash function h:

- Notation: for any positive integer a, $[a] = \{1, 2, \dots, a\}$
- A hash function $h:[m] \to [n]$ is 2-universal if

$$P[h(x_1) = y_1 \land h(x_2) = y_2] = \frac{1}{n^2}$$

for all distinct $x_1, x_2 \in [m]$ and for all $y_1, y_2 \in [n]$

- Useful properties of a 2-universal hash function h:
 - \circ h is uniform:

$$\mathbf{P}[h(x) = y] = \frac{1}{n} \text{ for all } x \in [m], y \in [n]$$

- Notation: for any positive integer a, $[a] = \{1, 2, \dots, a\}$
- A hash function $h:[m] \to [n]$ is 2-universal if

$$P[h(x_1) = y_1 \land h(x_2) = y_2] = \frac{1}{n^2}$$

for all distinct $x_1, x_2 \in [m]$ and for all $y_1, y_2 \in [n]$

- Useful properties of a 2-universal hash function h:
 - \circ h is uniform:

$$\mathrm{P}[h(x) = y] = \frac{1}{n} \text{ for all } x \in [m], y \in [n]$$

 \circ h hashes any two distinct values x_1, x_2 independently:

$$P[h(x_1) = y_1 \land h(x_2) = y_2] = P[h(x_1) = y_1] \cdot P[h(x_2) = y_2]$$

• Given stream $\sigma = \langle a_1, \dots, a_m \rangle$ with each $a_i \in [n]$

- Given stream $\sigma = \langle a_1, \dots, a_m \rangle$ with each $a_i \in [n]$
- This defines a frequency vector $\mathbf{f} = (f_1, \dots, f_n)$

- Given stream $\sigma = \langle a_1, \dots, a_m \rangle$ with each $a_i \in [n]$
- This defines a frequency vector $\mathbf{f} = (f_1, \dots, f_n)$
- Example with n=4 and m=10:

$$\sigma = \langle 4, 2, 4, 1, 4, 2, 4, 4, 1, 2 \rangle$$

$$\mathbf{f} = (2, 3, 0, 5)$$

- Given stream $\sigma = \langle a_1, \dots, a_m \rangle$ with each $a_i \in [n]$
- This defines a frequency vector $\mathbf{f} = (f_1, \dots, f_n)$
- Example with n=4 and m=10:

$$\sigma = \langle 4, 2, 4, 1, 4, 2, 4, 4, 1, 2 \rangle$$

$$\mathbf{f} = (2, 3, 0, 5)$$

• Let $d = |\{j \mid f_j > 0\}|$ be the number of distinct elements

- Given stream $\sigma = \langle a_1, \dots, a_m \rangle$ with each $a_i \in [n]$
- This defines a frequency vector $\mathbf{f} = (f_1, \dots, f_n)$
- Example with n=4 and m=10:

$$\sigma = \langle 4, 2, 4, 1, 4, 2, 4, 4, 1, 2 \rangle$$

$$\mathbf{f} = (2, 3, 0, 5)$$

- Let $d = |\{j \mid f_j > 0\}|$ be the number of distinct elements
- In the example above, $d = |\{1, 2, 4\}| = 3$

- Given stream $\sigma = \langle a_1, \dots, a_m \rangle$ with each $a_i \in [n]$
- This defines a frequency vector $\mathbf{f} = (f_1, \dots, f_n)$
- Example with n=4 and m=10:

$$\sigma = \langle 4, 2, 4, 1, 4, 2, 4, 4, 1, 2 \rangle$$

$$\mathbf{f} = (2, 3, 0, 5)$$

- Let $d = |\{j \mid f_j > 0\}|$ be the number of distinct elements
- In the example above, $d=|\{1,2,4\}|=3$
- Algorithm output: an (ϵ, δ) -estimate d of d

- Given stream $\sigma = \langle a_1, \dots, a_m \rangle$ with each $a_i \in [n]$
- This defines a frequency vector $\mathbf{f} = (f_1, \dots, f_n)$
- Example with n=4 and m=10:

$$\sigma = \langle 4, 2, 4, 1, 4, 2, 4, 4, 1, 2 \rangle$$

$$\mathbf{f} = (2, 3, 0, 5)$$

- Let $d = |\{j \mid f_j > 0\}|$ be the number of distinct elements
- In the example above, $d=|\{1,2,4\}|=3$
- Algorithm output: an (ϵ, δ) -estimate d of d
- This means that \hat{d} should satisfy:

$$P\left[\left|\frac{\hat{d}}{d} - 1\right| > \epsilon\right] \le \delta$$

• For an integer $p \ge 0$, zeros(p) is the number of zeros that p ends with in its binary representation

- For an integer $p \ge 0$, zeros(p) is the number of zeros that p ends with in its binary representation
- Examples:

$$zeros(2) =$$

- For an integer $p \ge 0$, zeros(p) is the number of zeros that p ends with in its binary representation
- Examples:

$$zeros(2) = 1$$
 (2 is 10 in binary)

- For an integer $p \ge 0$, zeros(p) is the number of zeros that p ends with in its binary representation
- Examples:

$$zeros(2) = 1$$
 (2 is 10 in binary)
 $zeros(3) =$

- For an integer $p \ge 0$, zeros(p) is the number of zeros that p ends with in its binary representation
- Examples:

$$zeros(2) = 1$$
 (2 is 10 in binary)

$$zeros(3) = 0$$
 (3 is 11 in binary)

- For an integer $p \ge 0$, zeros(p) is the number of zeros that p ends with in its binary representation
- Examples:

$$zeros(2) = 1$$
 (2 is 10 in binary)
 $zeros(3) = 0$ (3 is 11 in binary)
 $zeros(16) =$

- For an integer $p \ge 0$, zeros(p) is the number of zeros that p ends with in its binary representation
- Examples:

$$zeros(2) = 1$$
 (2 is 10 in binary)
 $zeros(3) = 0$ (3 is 11 in binary)
 $zeros(16) = 4$ (16 is 10000 in binary)

- For an integer $p \ge 0$, zeros(p) is the number of zeros that p ends with in its binary representation
- Examples:

$$zeros(2) = 1$$
 (2 is 10 in binary)
 $zeros(3) = 0$ (3 is 11 in binary)
 $zeros(16) = 4$ (16 is 10000 in binary)
 $zeros(24) =$

- For an integer $p \ge 0$, zeros(p) is the number of zeros that p ends with in its binary representation
- Examples:

$$zeros(2) = 1$$
 (2 is 10 in binary)
 $zeros(3) = 0$ (3 is 11 in binary)
 $zeros(16) = 4$ (16 is 10000 in binary)
 $zeros(24) = 3$ (24 is 11000 in binary)

- For an integer $p \ge 0$, zeros(p) is the number of zeros that p ends with in its binary representation
- Examples:

$$zeros(2) = 1$$
 (2 is 10 in binary)
 $zeros(3) = 0$ (3 is 11 in binary)
 $zeros(16) = 4$ (16 is 10000 in binary)
 $zeros(24) = 3$ (24 is 11000 in binary)

• We can also write zeros(p) as

$$zeros(p) = max\{i \mid 2^i \text{ divides } p\}$$

- For an integer $p \ge 0$, zeros(p) is the number of zeros that p ends with in its binary representation
- Examples:

$$zeros(2) = 1$$
 (2 is 10 in binary)
 $zeros(3) = 0$ (3 is 11 in binary)
 $zeros(16) = 4$ (16 is 10000 in binary)
 $zeros(24) = 3$ (24 is 11000 in binary)

• We can also write zeros(p) as

$$zeros(p) = max\{i \mid 2^i \text{ divides } p\}$$

• Example: zeros(24) = 3 since $2^3 = 8$ is the largest power of 2 that divides 24

The Tidemark Algorithm (AMS Algorithm)

• Pseudo-code:

Tidemark Algorithm

Initialize:

Choose a 2-universal hash function $h:[n] \to [n]$ $z \leftarrow 0$

Process(token j): $z \leftarrow \max\{z, \operatorname{zeros}(h(j))\}$

Output: $2^{z+1/2}$

The Tidemark Algorithm (AMS Algorithm)

Pseudo-code:

Tidemark Algorithm

Initialize:

Choose a 2-universal hash function $h:[n] \to [n]$ $z \leftarrow 0$

Process(token
$$j$$
): $z \leftarrow \max\{z, \operatorname{zeros}(h(j))\}$

Output: $2^{z+1/2}$

• Thus, for stream $\sigma = \langle a_1, a_2, \dots, a_m \rangle$, the final z value is:

$$z = \max_{i \in [m]} \{ zeros(h(a_i)) \}$$

The Tidemark Algorithm (AMS Algorithm)

Pseudo-code:

Tidemark Algorithm

Initialize:

Choose a 2-universal hash function $h:[n] \to [n]$ $z \leftarrow 0$

Process(token
$$j$$
): $z \leftarrow \max\{z, \operatorname{zeros}(h(j))\}$

Output: $2^{z+1/2}$

• Thus, for stream $\sigma = \langle a_1, a_2, \dots, a_m \rangle$, the final z value is:

$$z = \max_{i \in [m]} \{ zeros(h(a_i)) \}$$

ullet We now analyze how good an estimate to d the algorithm obtains

Analysis: Intuition

ullet Every d'th value in [n] ends with at least $\log_2 d$ zeros

- Every d'th value in [n] ends with at least $\log_2 d$ zeros
- Example with d=4 and numbers of [19] written in binary:

```
1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1111 10000 10001 10010 10011
```

- Every d'th value in [n] ends with at least $\log_2 d$ zeros
- Example with d=4 and numbers of [19] written in binary:

```
1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1111 10000 10001 10010 10011
```

ullet Only few of these values have significantly more than $\log_2 d$ zeros

- Every d'th value in [n] ends with at least $\log_2 d$ zeros
- Example with d=4 and numbers of [19] written in binary:

```
1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1111 10000 10001 10010 10011
```

- ullet Only few of these values have significantly more than $\log_2 d$ zeros
- d values are hashed to [n] over the entire stream

- Every d'th value in [n] ends with at least $\log_2 d$ zeros
- Example with d=4 and numbers of [19] written in binary:

```
1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1111 10000 10001 10010 10011
```

- Only few of these values have significantly more than $\log_2 d$ zeros
- d values are hashed to [n] over the entire stream
- Since these values are hashed uniformly, z should be close to $\log_2 d$ at termination

- Every d'th value in [n] ends with at least $\log_2 d$ zeros
- Example with d=4 and numbers of [19] written in binary:

- \bullet Only few of these values have significantly more than $\log_2 d$ zeros
- d values are hashed to [n] over the entire stream
- Since these values are hashed uniformly, z should be close to $\log_2 d$ at termination
- This gives output:

$$2^{z+1/2} \approx 2^{\log_2 d + 1/2} \approx 2^{\log_2 d} = d$$

- Every d'th value in [n] ends with at least $\log_2 d$ zeros
- Example with d=4 and numbers of [19] written in binary:

- ullet Only few of these values have significantly more than $\log_2 d$ zeros
- d values are hashed to [n] over the entire stream
- Since these values are hashed uniformly, z should be close to $\log_2 d$ at termination
- This gives output:

$$2^{z+1/2} \approx 2^{\log_2 d + 1/2} \approx 2^{\log_2 d} = d$$

We now prove this more formally

• Consider a token $j \in [n]$ and any integer $r \ge 0$

- Consider a token $j \in [n]$ and any integer $r \ge 0$
- $X_{r,j}$: indicator variable for the event that h(j) has at least r zeros:

$$X_{r,j} = 1 \Leftrightarrow \operatorname{zeros}(h(j)) \ge r$$

- Consider a token $j \in [n]$ and any integer $r \ge 0$
- $X_{r,j}$: indicator variable for the event that h(j) has at least r zeros:

$$X_{r,j} = 1 \Leftrightarrow \operatorname{zeros}(h(j)) \ge r$$

• Let random variable Y_r count the number of such tokens:

$$Y_r = \sum_{j:f_j>0} X_{r,j}$$

- Consider a token $j \in [n]$ and any integer $r \ge 0$
- $X_{r,j}$: indicator variable for the event that h(j) has at least r zeros:

$$X_{r,j} = 1 \Leftrightarrow \operatorname{zeros}(h(j)) \ge r$$

• Let random variable Y_r count the number of such tokens:

$$Y_r = \sum_{j:f_j > 0} X_{r,j}$$

• Note: if token j occurs, e.g., $f_j=10$ times in the stream, it only contributes with 0 or 1 to Y_r

Relating Random Variables to Final \boldsymbol{z} Value

• In the following, let \mathbf{z}_{out} be the value of z at termination

Relating Random Variables to Final \boldsymbol{z} Value

- In the following, let z_{out} be the value of z at termination
- We have $\mathbf{z}_{out} \geq r$ if and only if for at least one token j, $\mathbf{z}eros(h(j)) \geq r$

Relating Random Variables to Final \boldsymbol{z} Value

- In the following, let z_{out} be the value of z at termination
- We have $\mathbf{z}_{out} \geq r$ if and only if for at least one token j, $\mathbf{z}\mathrm{eros}(h(j)) \geq r$
- Since Y_r counts the number of such tokens,

$$Y_r \ge 1 \Leftrightarrow \mathbf{z}_{out} \ge r$$

Relating Random Variables to Final z Value

- In the following, let z_{out} be the value of z at termination
- We have $\mathbf{z}_{out} \geq r$ if and only if for at least one token j, $\mathbf{z}\mathrm{eros}(h(j)) \geq r$
- Since Y_r counts the number of such tokens,

$$Y_r \ge 1 \Leftrightarrow z_{out} \ge r$$

Equivalently,

$$Y_r = 0 \Leftrightarrow \mathbf{z}_{out} \le r - 1$$

• Since $X_{r,j}$ is an indicator variable,

$$E[X_{r,j}] = P[X_{r,j} = 1] = P[zeros(h(j)) \ge r]$$

• Since $X_{r,j}$ is an indicator variable,

$$E[X_{r,j}] = P[X_{r,j} = 1] = P[zeros(h(j)) \ge r]$$

• h is 2-universal $\Rightarrow h$ is uniform:

$$\mathbf{P}[h(x)=i]=\frac{1}{n} \text{ for each } i,x\in[n]$$

• Since $X_{r,j}$ is an indicator variable,

$$E[X_{r,j}] = P[X_{r,j} = 1] = P[zeros(h(j)) \ge r]$$

• h is 2-universal $\Rightarrow h$ is uniform:

$$P[h(x) = i] = \frac{1}{n} \text{ for each } i, x \in [n]$$

• How many $i \in [n]$ have $zeros(i) \ge r$?

• Since $X_{r,j}$ is an indicator variable,

$$E[X_{r,j}] = P[X_{r,j} = 1] = P[zeros(h(j)) \ge r]$$

• h is 2-universal $\Rightarrow h$ is uniform:

$$P[h(x) = i] = \frac{1}{n} \text{ for each } i, x \in [n]$$

• How many $i \in [n]$ have $zeros(i) \ge r$? Only a $1/2^r$ fraction

• Since $X_{r,j}$ is an indicator variable,

$$E[X_{r,j}] = P[X_{r,j} = 1] = P[zeros(h(j)) \ge r]$$

• h is 2-universal $\Rightarrow h$ is uniform:

$$\mathbf{P}[h(x)=i] = \frac{1}{n} \text{ for each } i, x \in [n]$$

- How many $i \in [n]$ have $zeros(i) \ge r$? Only a $1/2^r$ fraction
- Thus, h(x) has only a $1/2^r$ chance of hitting one such i

• Since $X_{r,j}$ is an indicator variable,

$$E[X_{r,j}] = P[X_{r,j} = 1] = P[zeros(h(j)) \ge r]$$

• h is 2-universal $\Rightarrow h$ is uniform:

$$\mathrm{P}[h(x)=i]=\frac{1}{n} \text{ for each } i,x\in[n]$$

- How many $i \in [n]$ have $zeros(i) \ge r$? Only a $1/2^r$ fraction
- Thus, h(x) has only a $1/2^r$ chance of hitting one such i
- This gives:

$$E[X_{r,j}] = P[zeros(h(j)) \ge r] = \frac{1}{2^r}$$

• Since $X_{r,j}$ is an indicator variable,

$$E[X_{r,j}] = P[X_{r,j} = 1] = P[zeros(h(j)) \ge r]$$

• h is 2-universal $\Rightarrow h$ is uniform:

$$\mathbf{P}[h(x)=i] = \frac{1}{n} \text{ for each } i, x \in [n]$$

- How many $i \in [n]$ have $zeros(i) \ge r$? Only a $1/2^r$ fraction
- Thus, h(x) has only a $1/2^r$ chance of hitting one such i
- This gives:

$$E[X_{r,j}] = P[zeros(h(j)) \ge r] = \frac{1}{2^r}$$

By linearity of expectation:

$$E[Y_r] = \sum_{j:f_j>0} E[X_{r,j}] = \frac{d}{2^r}$$

Concentration Bounds

 $\bullet \quad \mbox{Let } \hat{d} = 2^{\mathbf{z}_{out} + 1/2} \mbox{ be the estimate of } d \mbox{ by the algorithm}$

Concentration Bounds

- Let $\hat{d}=2^{\mathbf{z}_{out}+1/2}$ be the estimate of d by the algorithm
- We will bound the probability that it deviates too much from d:

$$P[\hat{d} \ge 3d] \le \frac{\sqrt{2}}{3} \approx 0.47$$
 $P[\hat{d} \le d/3] \le \frac{\sqrt{2}}{3} \approx 0.47$

 $\bullet \quad \text{Let a be the smallest integer with $2^{a+1/2} \geq 3d$}$

- Let a be the smallest integer with $2^{a+1/2} \ge 3d$
- a is the smallest z_{out} giving output $\hat{d} \geq 3d$, so:

- Let a be the smallest integer with $2^{a+1/2} \ge 3d$
- a is the smallest z_{out} giving output $\hat{d} \geq 3d$, so:

$$P[\hat{d} \ge 3d] = P[2^{z_{out} + 1/2} \ge 3d]$$

- $\bullet \quad \text{Let a be the smallest integer with $2^{a+1/2} \geq 3d$}$
- a is the smallest z_{out} giving output $\hat{d} \geq 3d$, so:

$$P[\hat{d} \ge 3d] = P[2^{z_{out} + 1/2} \ge 3d] = P[z_{out} \ge a]$$

- Let a be the smallest integer with $2^{a+1/2} \ge 3d$
- a is the smallest z_{out} giving output $\hat{d} \geq 3d$, so:

$$P[\hat{d} \ge 3d] = P[2^{z_{out} + 1/2} \ge 3d] = P[z_{out} \ge a] = P[Y_a \ge 1]$$

- Let a be the smallest integer with $2^{a+1/2} \ge 3d$
- a is the smallest z_{out} giving output $\hat{d} \geq 3d$, so:

$$P[\hat{d} \ge 3d] = P[2^{z_{out} + 1/2} \ge 3d] = P[z_{out} \ge a] = P[Y_a \ge 1]$$

By Markov's inequality,

$$P[Y_a \ge 1] \le \frac{E[Y_a]}{1}$$

- Let a be the smallest integer with $2^{a+1/2} \ge 3d$
- a is the smallest z_{out} giving output $\hat{d} \geq 3d$, so:

$$P[\hat{d} \ge 3d] = P[2^{z_{out} + 1/2} \ge 3d] = P[z_{out} \ge a] = P[Y_a \ge 1]$$

By Markov's inequality,

$$P[Y_a \ge 1] \le \frac{E[Y_a]}{1} = \underbrace{E[Y_a] = \frac{d}{2^a}}_{\text{shown earlier}}$$

- Let a be the smallest integer with $2^{a+1/2} \ge 3d$
- a is the smallest z_{out} giving output $\hat{d} \geq 3d$, so:

$$P[\hat{d} \ge 3d] = P[2^{z_{out} + 1/2} \ge 3d] = P[z_{out} \ge a] = P[Y_a \ge 1]$$

By Markov's inequality,

$$P[Y_a \ge 1] \le \frac{E[Y_a]}{1} = \underbrace{E[Y_a] = \frac{d}{2^a}}_{\text{shown earlier}}$$

We then get:

$$P[\hat{d} \ge 3d] = P[Y_a \ge 1] \le \frac{d}{2^a}$$

- Let a be the smallest integer with $2^{a+1/2} \ge 3d$
- a is the smallest z_{out} giving output $\hat{d} \geq 3d$, so:

$$P[\hat{d} \ge 3d] = P[2^{z_{out} + 1/2} \ge 3d] = P[z_{out} \ge a] = P[Y_a \ge 1]$$

By Markov's inequality,

$$P[Y_a \ge 1] \le \frac{E[Y_a]}{1} = \underbrace{E[Y_a] = \frac{d}{2^a}}_{\text{shown earlier}}$$

• We then get:

$$P[\hat{d} \ge 3d] = P[Y_a \ge 1] \le \underbrace{\frac{d}{2^a}}_{\text{by definition of } a} \le \underbrace{\frac{2^{a+1/2}/3}{2^a}}_{\text{by definition of } a}$$

- Let a be the smallest integer with $2^{a+1/2} \ge 3d$
- a is the smallest z_{out} giving output $\hat{d} \geq 3d$, so:

$$P[\hat{d} \ge 3d] = P[2^{z_{out} + 1/2} \ge 3d] = P[z_{out} \ge a] = P[Y_a \ge 1]$$

By Markov's inequality,

$$P[Y_a \ge 1] \le \frac{E[Y_a]}{1} = \underbrace{E[Y_a] = \frac{d}{2^a}}_{\text{shown earlier}}$$

We then get:

$$P[\hat{d} \ge 3d] = P[Y_a \ge 1] \le \underbrace{\frac{d}{2^a}}_{\text{by definition of } a} = \frac{\sqrt{2}}{3}$$

 $\bullet \quad \text{Let b be the largest integer with $2^{b+1/2} \leq d/3$}$

- Let b be the largest integer with $2^{b+1/2} \le d/3$
- b is the largest z_{out} giving output $\hat{d} \leq d/3$, so:

- Let b be the largest integer with $2^{b+1/2} \le d/3$
- b is the largest z_{out} giving output $\hat{d} \leq d/3$, so:

$$P[\hat{d} \le d/3] = P[2^{z_{out} + 1/2} \le d/3]$$

- Let b be the largest integer with $2^{b+1/2} \le d/3$
- b is the largest z_{out} giving output $\hat{d} \leq d/3$, so:

$$P[\hat{d} \le d/3] = P[2^{z_{out} + 1/2} \le d/3] = P[z_{out} \le b]$$

- Let b be the largest integer with $2^{b+1/2} \le d/3$
- b is the largest z_{out} giving output $\hat{d} \leq d/3$, so:

$$P[\hat{d} \le d/3] = P[2^{z_{out}+1/2} \le d/3] = P[z_{out} \le b] = P[Y_{b+1} = 0]$$

- Let b be the largest integer with $2^{b+1/2} \le d/3$
- b is the largest z_{out} giving output $\hat{d} \leq d/3$, so:

$$P[\hat{d} \le d/3] = P[2^{z_{out}+1/2} \le d/3] = P[z_{out} \le b] = P[Y_{b+1} = 0]$$

We will use Chebyshev's inequality to show that for any r:

$$P[Y_r = 0] \le \frac{2^r}{d}$$

- Let b be the largest integer with $2^{b+1/2} \le d/3$
- b is the largest z_{out} giving output $\hat{d} \leq d/3$, so:

$$P[\hat{d} \le d/3] = P[2^{z_{out}+1/2} \le d/3] = P[z_{out} \le b] = P[Y_{b+1} = 0]$$

We will use Chebyshev's inequality to show that for any r:

$$P[Y_r = 0] \le \frac{2^r}{d}$$

• Since $d \ge 3 \cdot 2^{b+1/2}$, we get:

$$P[\hat{d} \le d/3] = P[Y_{b+1} = 0]$$

- Let b be the largest integer with $2^{b+1/2} \le d/3$
- b is the largest z_{out} giving output $\hat{d} \leq d/3$, so:

$$P[\hat{d} \le d/3] = P[2^{z_{out}+1/2} \le d/3] = P[z_{out} \le b] = P[Y_{b+1} = 0]$$

We will use Chebyshev's inequality to show that for any r:

$$P[Y_r = 0] \le \frac{2^r}{d}$$

• Since $d \geq 3 \cdot 2^{b+1/2}$, we get:

$$P[\hat{d} \le d/3] = P[Y_{b+1} = 0] \le \frac{2^{b+1}}{d}$$

- $\bullet \quad \text{Let b be the largest integer with $2^{b+1/2} \leq d/3$}$
- b is the largest z_{out} giving output $\hat{d} \leq d/3$, so:

$$P[\hat{d} \le d/3] = P[2^{z_{out}+1/2} \le d/3] = P[z_{out} \le b] = P[Y_{b+1} = 0]$$

We will use Chebyshev's inequality to show that for any r:

$$P[Y_r = 0] \le \frac{2^r}{d}$$

• Since $d \geq 3 \cdot 2^{b+1/2}$, we get:

$$P[\hat{d} \le d/3] = P[Y_{b+1} = 0] \le \frac{2^{b+1}}{d} \le \frac{2^{b+1}}{3 \cdot 2^{b+1/2}}$$

- Let b be the largest integer with $2^{b+1/2} \le d/3$
- b is the largest z_{out} giving output $\hat{d} \leq d/3$, so:

$$P[\hat{d} \le d/3] = P[2^{z_{out}+1/2} \le d/3] = P[z_{out} \le b] = P[Y_{b+1} = 0]$$

• We will use Chebyshev's inequality to show that for any r:

$$P[Y_r = 0] \le \frac{2^r}{d}$$

• Since $d \geq 3 \cdot 2^{b+1/2}$, we get:

$$P[\hat{d} \le d/3] = P[Y_{b+1} = 0] \le \frac{2^{b+1}}{d} \le \frac{2^{b+1}}{3 \cdot 2^{b+1/2}} = \frac{\sqrt{2}}{3}$$

- Let b be the largest integer with $2^{b+1/2} \le d/3$
- b is the largest z_{out} giving output $\hat{d} \leq d/3$, so:

$$P[\hat{d} \le d/3] = P[2^{z_{out}+1/2} \le d/3] = P[z_{out} \le b] = P[Y_{b+1} = 0]$$

We will use Chebyshev's inequality to show that for any r:

$$P[Y_r = 0] \le \frac{2^r}{d}$$

• Since $d \geq 3 \cdot 2^{b+1/2}$, we get:

$$P[\hat{d} \le d/3] = P[Y_{b+1} = 0] \le \frac{2^{b+1}}{d} \le \frac{2^{b+1}}{3 \cdot 2^{b+1/2}} = \frac{\sqrt{2}}{3}$$

ullet To use Chebyshev, we need $\mathrm{Var}[Y_r]$

• Recall: 2-universality of $h \Rightarrow h$ hashes any two values independently

- Recall: 2-universality of $h \Rightarrow h$ hashes any two values independently
- Since the $X_{r,j}$ -variables are functions of hash values, these variables are 2-independent (exercise)

- Recall: 2-universality of $h \Rightarrow h$ hashes any two values independently
- Since the $X_{r,j}$ -variables are functions of hash values, these variables are 2-independent (exercise)
- 2-independence allows us to use linearity of variance:

- Recall: 2-universality of $h \Rightarrow h$ hashes any two values independently
- Since the $X_{r,j}$ -variables are functions of hash values, these variables are 2-independent (exercise)
- 2-independence allows us to use linearity of variance:

$$Var[Y_r] = Var[\sum_{j:f_j>0} X_{r,j}]$$

- Recall: 2-universality of $h \Rightarrow h$ hashes any two values independently
- Since the $X_{r,j}$ -variables are functions of hash values, these variables are 2-independent (exercise)
- 2-independence allows us to use linearity of variance:

$$\operatorname{Var}[Y_r] = \operatorname{Var}\left[\sum_{j:f_j>0} X_{r,j}\right] = \sum_{j:f_j>0} \operatorname{Var}[X_{r,j}]$$

- Recall: 2-universality of $h \Rightarrow h$ hashes any two values independently
- Since the $X_{r,j}$ -variables are functions of hash values, these variables are 2-independent (exercise)
- 2-independence allows us to use linearity of variance:

$$Var[Y_r] = Var[\sum_{j:f_j>0} X_{r,j}] = \sum_{j:f_j>0} Var[X_{r,j}]$$

• Shown later: for any random variable X, $Var[X] \leq E[X^2]$

- Recall: 2-universality of $h \Rightarrow h$ hashes any two values independently
- Since the $X_{r,j}$ -variables are functions of hash values, these variables are 2-independent (exercise)
- 2-independence allows us to use linearity of variance:

$$\operatorname{Var}[Y_r] = \operatorname{Var}\left[\sum_{j:f_j>0} X_{r,j}\right] = \sum_{j:f_j>0} \operatorname{Var}[X_{r,j}]$$

- Shown later: for any random variable X, $Var[X] \leq E[X^2]$
- Since $X_{r,j}$ is an indicator variable, $X_{r,j}^2 = X_{r,j}$

- Recall: 2-universality of $h \Rightarrow h$ hashes any two values independently
- Since the $X_{r,j}$ -variables are functions of hash values, these variables are 2-independent (exercise)
- 2-independence allows us to use linearity of variance:

$$Var[Y_r] = Var[\sum_{j:f_j>0} X_{r,j}] = \sum_{j:f_j>0} Var[X_{r,j}]$$

- Shown later: for any random variable X, $Var[X] \leq E[X^2]$
- Since $X_{r,j}$ is an indicator variable, $X_{r,j}^2 = X_{r,j}$
- Since $E[X_{r,j}] = 1/2^r$, this gives:

$$\operatorname{Var}[Y_r] = \sum_{j:f_j>0} \operatorname{Var}[X_{r,j}]$$

- Recall: 2-universality of $h \Rightarrow h$ hashes any two values independently
- Since the $X_{r,j}$ -variables are functions of hash values, these variables are 2-independent (exercise)
- 2-independence allows us to use linearity of variance:

$$Var[Y_r] = Var[\sum_{j:f_j>0} X_{r,j}] = \sum_{j:f_j>0} Var[X_{r,j}]$$

- Shown later: for any random variable X, $\mathrm{Var}[X] \leq E[X^2]$
- Since $X_{r,j}$ is an indicator variable, $X_{r,j}^2 = X_{r,j}$
- Since $E[X_{r,j}] = 1/2^r$, this gives:

$$Var[Y_r] = \sum_{j:f_j>0} Var[X_{r,j}] \le \sum_{j:f_j>0} E[X_{r,j}^2]$$

- Recall: 2-universality of $h \Rightarrow h$ hashes any two values independently
- Since the $X_{r,j}$ -variables are functions of hash values, these variables are 2-independent (exercise)
- 2-independence allows us to use linearity of variance:

$$\operatorname{Var}[Y_r] = \operatorname{Var}\left[\sum_{j:f_j>0} X_{r,j}\right] = \sum_{j:f_j>0} \operatorname{Var}[X_{r,j}]$$

- Shown later: for any random variable X, $Var[X] \leq E[X^2]$
- Since $X_{r,j}$ is an indicator variable, $X_{r,j}^2 = X_{r,j}$
- Since $E[X_{r,j}] = 1/2^r$, this gives:

$$Var[Y_r] = \sum_{j:f_j>0} Var[X_{r,j}] \le \sum_{j:f_j>0} E[X_{r,j}^2]$$
$$= \sum_{j:f_j>0} E[X_{r,j}]$$

- Recall: 2-universality of $h \Rightarrow h$ hashes any two values independently
- Since the $X_{r,j}$ -variables are functions of hash values, these variables are 2-independent (exercise)
- 2-independence allows us to use linearity of variance:

$$\operatorname{Var}[Y_r] = \operatorname{Var}\left[\sum_{j:f_j>0} X_{r,j}\right] = \sum_{j:f_j>0} \operatorname{Var}[X_{r,j}]$$

- Shown later: for any random variable X, $Var[X] \leq E[X^2]$
- Since $X_{r,j}$ is an indicator variable, $X_{r,j}^2 = X_{r,j}$
- Since $E[X_{r,j}] = 1/2^r$, this gives:

$$Var[Y_r] = \sum_{j:f_j>0} Var[X_{r,j}] \le \sum_{j:f_j>0} E[X_{r,j}^2]$$
$$= \sum_{j:f_j>0} E[X_{r,j}] = \frac{d}{2^r}$$

Have shown:

$$E[Y_r] = \frac{d}{2^r} \qquad Var[Y_r] \le \frac{d}{2^r}$$

• Have shown:

$$E[Y_r] = \frac{d}{2^r}$$
 $Var[Y_r] \le \frac{d}{2^r}$

We have the following implication between events:

$$Y_r = 0 \Rightarrow |Y_r - E[Y_r]| = |E[Y_r]| \ge \frac{d}{2^r}$$

Have shown:

$$E[Y_r] = \frac{d}{2^r}$$
 $Var[Y_r] \le \frac{d}{2^r}$

We have the following implication between events:

$$Y_r = 0 \Rightarrow |Y_r - E[Y_r]| = |E[Y_r]| \ge \frac{d}{2^r}$$

Thus, the left-hand side is not more likely that the right-hand side

Have shown:

$$E[Y_r] = \frac{d}{2^r}$$
 $Var[Y_r] \le \frac{d}{2^r}$

We have the following implication between events:

$$Y_r = 0 \Rightarrow |Y_r - E[Y_r]| = |E[Y_r]| \ge \frac{d}{2^r}$$

Thus, the left-hand side is not more likely that the right-hand side

$$P[Y_r = 0] \le P\left[|Y_r - E[Y_r]| \ge \frac{d}{2^r}\right]$$
 right form for Chebyshev

Have shown:

$$E[Y_r] = \frac{d}{2^r}$$
 $Var[Y_r] \le \frac{d}{2^r}$

We have the following implication between events:

$$Y_r = 0 \Rightarrow |Y_r - E[Y_r]| = |E[Y_r]| \ge \frac{d}{2^r}$$

Thus, the left-hand side is not more likely that the right-hand side

$$P[Y_r = 0] \le P\left[|Y_r - E[Y_r]| \ge \frac{d}{2^r}\right]$$
 right form for Chebyshev

$$P[Y_r = 0] \le P\left[|Y_r - E[Y_r]| \ge \frac{d}{2^r}\right]$$

Have shown:

$$E[Y_r] = \frac{d}{2^r}$$
 $Var[Y_r] \le \frac{d}{2^r}$

We have the following implication between events:

$$Y_r = 0 \Rightarrow |Y_r - E[Y_r]| = |E[Y_r]| \ge \frac{d}{2^r}$$

Thus, the left-hand side is not more likely that the right-hand side

$$P[Y_r = 0] \le P\left[|Y_r - E[Y_r]| \ge \frac{d}{2^r}\right]$$
 right form for Chebyshev

$$P[Y_r = 0] \le P\left[|Y_r - E[Y_r]| \ge \frac{d}{2^r}\right] \le \frac{\operatorname{Var}[Y_r]}{(d/2^r)^2}$$

Have shown:

$$E[Y_r] = \frac{d}{2^r}$$
 $Var[Y_r] \le \frac{d}{2^r}$

We have the following implication between events:

$$Y_r = 0 \Rightarrow |Y_r - E[Y_r]| = |E[Y_r]| \ge \frac{d}{2^r}$$

Thus, the left-hand side is not more likely that the right-hand side

$$P[Y_r = 0] \le P\left[|Y_r - E[Y_r]| \ge \frac{d}{2^r}\right]$$
 right form for Chebyshev

$$P[Y_r = 0] \le P\left[|Y_r - E[Y_r]| \ge \frac{d}{2^r}\right] \le \frac{Var[Y_r]}{(d/2^r)^2} \le \frac{d/2^r}{(d/2^r)^2}$$

Have shown:

$$E[Y_r] = \frac{d}{2^r}$$
 $Var[Y_r] \le \frac{d}{2^r}$

We have the following implication between events:

$$Y_r = 0 \Rightarrow |Y_r - E[Y_r]| = |E[Y_r]| \ge \frac{d}{2^r}$$

Thus, the left-hand side is not more likely that the right-hand side

$$P[Y_r = 0] \le P\left[|Y_r - E[Y_r]| \ge \frac{d}{2^r}\right]$$
 right form for Chebyshev

$$P[Y_r = 0] \le P\left[|Y_r - E[Y_r]| \ge \frac{d}{2^r}\right] \le \frac{\text{Var}[Y_r]}{(d/2^r)^2} \le \frac{d/2^r}{(d/2^r)^2} = \frac{2^r}{d}$$

• Lemma: For any random variable X, we have

$$Var[X] = E[X^2] - E[X]^2$$

• Lemma: For any random variable X, we have

$$Var[X] = E[X^2] - E[X]^2$$

• Proof:

• Lemma: For any random variable X, we have

$$Var[X] = E[X^2] - E[X]^2$$

• Proof:

$$Var[X] \stackrel{\text{def}}{=} E[(X - E[X])^2]$$

• Lemma: For any random variable X, we have

$$Var[X] = E[X^2] - E[X]^2$$

• Proof:

$$Var[X] \stackrel{\text{def}}{=} E[(X - E[X])^2]$$
$$= E[X^2 + E[X]^2 - 2XE[X]]$$

• Lemma: For any random variable X, we have

$$Var[X] = E[X^2] - E[X]^2$$

Proof:

$$Var[X] \stackrel{\text{def}}{=} E[(X - E[X])^2]$$

$$= E[X^2 + E[X]^2 - 2XE[X]]$$

$$= E[X^2] + E[X]^2 - 2E[X]^2$$

• Lemma: For any random variable X, we have

$$Var[X] = E[X^2] - E[X]^2$$

Proof:

$$Var[X] \stackrel{\text{def}}{=} E[(X - E[X])^2]$$

$$= E[X^2 + E[X]^2 - 2XE[X]]$$

$$= E[X^2] + E[X]^2 - 2E[X]^2$$

$$= E[X^2] - E[X]^2$$

• Lemma: For any random variable X, we have

$$Var[X] = E[X^2] - E[X]^2$$

Proof:

$$Var[X] \stackrel{\text{def}}{=} E[(X - E[X])^2]$$

$$= E[X^2 + E[X]^2 - 2XE[X]]$$

$$= E[X^2] + E[X]^2 - 2E[X]^2$$

$$= E[X^2] - E[X]^2$$

• Corollary: For any random variable X, we have $\mathrm{Var}[X] \leq E[X^2]$

Showing $Var[X] \leq E[X^2]$ (Used Earlier)

• Lemma: For any random variable X, we have

$$Var[X] = E[X^2] - E[X]^2$$

Proof:

$$Var[X] \stackrel{\text{def}}{=} E[(X - E[X])^2]$$

$$= E[X^2 + E[X]^2 - 2XE[X]]$$

$$= E[X^2] + E[X]^2 - 2E[X]^2$$

$$= E[X^2] - E[X]^2$$

- Corollary: For any random variable X, we have $Var[X] \leq E[X^2]$
- Proof:

Showing $Var[X] \leq E[X^2]$ (Used Earlier)

• Lemma: For any random variable X, we have

$$Var[X] = E[X^2] - E[X]^2$$

Proof:

$$Var[X] \stackrel{\text{def}}{=} E[(X - E[X])^2]$$

$$= E[X^2 + E[X]^2 - 2XE[X]]$$

$$= E[X^2] + E[X]^2 - 2E[X]^2$$

$$= E[X^2] - E[X]^2$$

- Corollary: For any random variable X, we have $Var[X] \leq E[X^2]$
- Proof:

$$Var[X] = E[X^2] - \overbrace{E[X]^2}^{\geq 0}$$

Showing $Var[X] \leq E[X^2]$ (Used Earlier)

• Lemma: For any random variable X, we have

$$Var[X] = E[X^2] - E[X]^2$$

Proof:

$$Var[X] \stackrel{\text{def}}{=} E[(X - E[X])^2]$$

$$= E[X^2 + E[X]^2 - 2XE[X]]$$

$$= E[X^2] + E[X]^2 - 2E[X]^2$$

$$= E[X^2] - E[X]^2$$

- Corollary: For any random variable X, we have $Var[X] \leq E[X^2]$
- Proof:

$$Var[X] = E[X^2] - \overbrace{E[X]^2}^{\geq 0} \leq E[X^2]$$

- Problem:
 - \circ Count the length n of the stream seen so far $(n \leq m)$

- Problem:
 - \circ Count the length n of the stream seen so far $(n \leq m)$
 - Use as few bits as possible for this

- Problem:
 - Count the length n of the stream seen so far $(n \le m)$
 - Use as few bits as possible for this
- Trivial with $O(\log m)$ bits (how?)

- Problem:
 - Count the length n of the stream seen so far $(n \le m)$
 - Use as few bits as possible for this
- Trivial with $O(\log m)$ bits (how?)
- This is in fact optimal

- Problem:
 - Count the length n of the stream seen so far $(n \le m)$
 - Use as few bits as possible for this
- Trivial with $O(\log m)$ bits (how?)
- This is in fact optimal
- We can do better if we only need an estimate of m:

- Problem:
 - Count the length n of the stream seen so far $(n \le m)$
 - Use as few bits as possible for this
- Trivial with $O(\log m)$ bits (how?)
- This is in fact optimal
- We can do better if we only need an estimate of m:
 - We analyze the *Morris counter*

- Problem:
 - Count the length n of the stream seen so far $(n \le m)$
 - Use as few bits as possible for this
- Trivial with $O(\log m)$ bits (how?)
- This is in fact optimal
- We can do better if we only need an estimate of *m*:
 - We analyze the *Morris counter*
 - \circ With slight modifications, it can obtain an (ϵ, δ) -estimate using only $O(\log \log m)$ bits (for constant ϵ and δ) (exercise)

- Problem:
 - Count the length n of the stream seen so far $(n \le m)$
 - Use as few bits as possible for this
- Trivial with $O(\log m)$ bits (how?)
- This is in fact optimal
- We can do better if we only need an estimate of m:
 - We analyze the *Morris counter*
 - \circ With slight modifications, it can obtain an (ϵ, δ) -estimate using only $O(\log \log m)$ bits (for constant ϵ and δ) (exercise)
 - \circ Instead, we show that its output is an unbiased estimator of n

• Space-efficient version:

Morris Counter

Initialize: $x \leftarrow 0$

Process(token): with probability 2^{-x} update $x \leftarrow x + 1$

Output: $2^x - 1$

Space-efficient version:

Morris Counter

Initialize: $x \leftarrow 0$

Process(token): with probability 2^{-x} update $x \leftarrow x + 1$

Output: $2^x - 1$

Space-inefficient version:

Space-inefficient Morris Counter

Initialize: $c \leftarrow 1$

Process(token): with probability 1/c update $c \leftarrow 2c$

Output: c-1

Space-efficient version:

Morris Counter

Initialize: $x \leftarrow 0$

Process(token): with probability 2^{-x} update $x \leftarrow x + 1$

Output: $2^x - 1$

Space-inefficient version:

Space-inefficient Morris Counter

Initialize: $c \leftarrow 1$

Process(token): with probability 1/c update $c \leftarrow 2c$

Output: c-1

The algorithms give the same output

Space-efficient version:

Morris Counter

Initialize: $x \leftarrow 0$

Process(token): with probability 2^{-x} update $x \leftarrow x + 1$

Output: $2^x - 1$

Space-inefficient version:

Space-inefficient Morris Counter

Initialize: $c \leftarrow 1$

Process(token): with probability 1/c update $c \leftarrow 2c$

Output: c-1

• The algorithms give the same output since in each iteration, $c=2^x$

Space-efficient version:

Morris Counter

Initialize: $x \leftarrow 0$

Process(token): with probability 2^{-x} update $x \leftarrow x + 1$

Output: $2^x - 1$

Space-inefficient version:

Space-inefficient Morris Counter

Initialize: $c \leftarrow 1$

Process(token): with probability 1/c update $c \leftarrow 2c$

Output: c-1

- The algorithms give the same output since in each iteration, $c=2^x$
- We focus on the second version since it is easier to analyze

• Pseudo-code:

Space-inefficient Morris Counter

Initialize: $c \leftarrow 1$

Process(token): with probability 1/c update $c \leftarrow 2c$

Output: c-1

• Pseudo-code:

Space-inefficient Morris Counter

Initialize: $c \leftarrow 1$

Process(token): with probability 1/c update $c \leftarrow 2c$

Output: c-1

• Let C_i be c after processing i tokens ($C_0 = 1$)

Pseudo-code:

Space-inefficient Morris Counter

Initialize: $c \leftarrow 1$

Process(token): with probability 1/c update $c \leftarrow 2c$

Output: c-1

- Let C_i be c after processing i tokens ($C_0 = 1$)
- The output after n tokens is C_n-1

Pseudo-code:

Space-inefficient Morris Counter

Initialize: $c \leftarrow 1$

Process(token): with probability 1/c update $c \leftarrow 2c$

Output: c-1

- Let C_i be c after processing i tokens ($C_0 = 1$)
- The output after n tokens is $C_n 1$
- Need to show that $C_n 1$ is an *unbiased estimator* of n:

$$E[C_n - 1] = n$$

• Pseudo-code:

Space-inefficient Morris Counter

Initialize: $c \leftarrow 1$

Process(token): with probability 1/c update $c \leftarrow 2c$

Output: c-1

• Z_i : indicates if c doubles when processing token i+1

• Pseudo-code:

Space-inefficient Morris Counter

Initialize: $c \leftarrow 1$

Process(token): with probability 1/c update $c \leftarrow 2c$

Output: c-1

- Z_i : indicates if c doubles when processing token i+1
- Thus, Z_i is 1 if $C_{i+1} = 2C_i$ and 0 if $C_{i+1} = C_i$:

Pseudo-code:

Space-inefficient Morris Counter

Initialize: $c \leftarrow 1$

Process(token): with probability 1/c update $c \leftarrow 2c$

Output: c-1

- Z_i : indicates if c doubles when processing token i+1
- Thus, Z_i is 1 if $C_{i+1} = 2C_i$ and 0 if $C_{i+1} = C_i$:

$$C_{i+1} = C_i(1 + Z_i)$$

Pseudo-code:

Space-inefficient Morris Counter

Initialize: $c \leftarrow 1$

Process(token): with probability 1/c update $c \leftarrow 2c$

Output: c-1

- Z_i : indicates if c doubles when processing token i+1
- Thus, Z_i is 1 if $C_{i+1} = 2C_i$ and 0 if $C_{i+1} = C_i$:

$$C_{i+1} = C_i(1 + Z_i)$$

• When processing token i+1, the probability 1/c is $1/C_i$ (not $1/C_{i+1}$) since we update c to C_{i+1} after the random choice:

Pseudo-code:

Space-inefficient Morris Counter

Initialize: $c \leftarrow 1$

Process(token): with probability 1/c update $c \leftarrow 2c$

Output: c-1

- Z_i : indicates if c doubles when processing token i+1
- Thus, Z_i is 1 if $C_{i+1} = 2C_i$ and 0 if $C_{i+1} = C_i$:

$$C_{i+1} = C_i(1 + Z_i)$$

• When processing token i+1, the probability 1/c is $1/C_i$ (not $1/C_{i+1}$) since we update c to C_{i+1} after the random choice:

$$E[Z_i \mid C_i] = P[Z_i = 1 \mid C_i]$$

Pseudo-code:

Space-inefficient Morris Counter

Initialize: $c \leftarrow 1$

Process(token): with probability 1/c update $c \leftarrow 2c$

Output: c-1

- Z_i : indicates if c doubles when processing token i+1
- Thus, Z_i is 1 if $C_{i+1} = 2C_i$ and 0 if $C_{i+1} = C_i$:

$$C_{i+1} = C_i(1 + Z_i)$$

• When processing token i+1, the probability 1/c is $1/C_i$ (not $1/C_{i+1}$) since we update c to C_{i+1} after the random choice:

$$E[Z_i \mid C_i] = P[Z_i = 1 \mid C_i] = 1/C_i$$

• Indicator variable Z_i : is 1 if $C_{i+1} = 2C_i$ and 0 if $C_{i+1} = C_i$

$$C_{i+1} = C_i(1 + Z_i)$$
 $E[Z_i \mid C_i] = 1/C_i$

• Indicator variable Z_i : is 1 if $C_{i+1}=2C_i$ and 0 if $C_{i+1}=C_i$

$$C_{i+1} = C_i(1+Z_i)$$
 $E[Z_i \mid C_i] = 1/C_i$

ullet Law of total expectation: for any random variables X and Y:

$$E[X] = E[E[X \mid Y]]$$

• Indicator variable Z_i : is 1 if $C_{i+1} = 2C_i$ and 0 if $C_{i+1} = C_i$

$$C_{i+1} = C_i(1+Z_i)$$
 $E[Z_i \mid C_i] = 1/C_i$

ullet Law of total expectation: for any random variables X and Y:

$$E[X] = E[E[X \mid Y]]$$

• Indicator variable Z_i : is 1 if $C_{i+1} = 2C_i$ and 0 if $C_{i+1} = C_i$

$$C_{i+1} = C_i(1+Z_i)$$
 $E[Z_i \mid C_i] = 1/C_i$

ullet Law of total expectation: for any random variables X and Y:

$$E[X] = E[E[X \mid Y]]$$

$$E[C_{i+1}] = E[E[C_{i+1} \mid C_i]]$$

• Indicator variable Z_i : is 1 if $C_{i+1} = 2C_i$ and 0 if $C_{i+1} = C_i$

$$C_{i+1} = C_i(1+Z_i)$$
 $E[Z_i \mid C_i] = 1/C_i$

ullet Law of total expectation: for any random variables X and Y:

$$E[X] = E[E[X \mid Y]]$$

$$E[C_{i+1}] = E[E[C_{i+1} \mid C_i]]$$

= $E[E[C_i(1 + Z_i) \mid C_i]]$

• Indicator variable Z_i : is 1 if $C_{i+1} = 2C_i$ and 0 if $C_{i+1} = C_i$

$$C_{i+1} = C_i(1+Z_i)$$
 $E[Z_i \mid C_i] = 1/C_i$

ullet Law of total expectation: for any random variables X and Y:

$$E[X] = E[E[X \mid Y]]$$

$$E[C_{i+1}] = E[E[C_{i+1} | C_i]]$$

$$= E[E[C_i(1 + Z_i) | C_i]]$$

$$= E[C_i(1 + E[Z_i | C_i])]$$

• Indicator variable Z_i : is 1 if $C_{i+1} = 2C_i$ and 0 if $C_{i+1} = C_i$

$$C_{i+1} = C_i(1 + Z_i)$$
 $E[Z_i \mid C_i] = 1/C_i$

• Law of total expectation: for any random variables X and Y:

$$E[X] = E[E[X \mid Y]]$$

$$E[C_{i+1}] = E[E[C_{i+1} | C_i]]$$

$$= E[E[C_i(1 + Z_i) | C_i]]$$

$$= E[C_i(1 + E[Z_i | C_i])]$$

$$= E[C_i(1 + 1/C_i)]$$

• Indicator variable Z_i : is 1 if $C_{i+1} = 2C_i$ and 0 if $C_{i+1} = C_i$

$$C_{i+1} = C_i(1+Z_i)$$
 $E[Z_i \mid C_i] = 1/C_i$

• Law of total expectation: for any random variables X and Y:

$$E[X] = E[E[X \mid Y]]$$

$$E[C_{i+1}] = E[E[C_{i+1} | C_i]]$$

$$= E[E[C_i(1 + Z_i) | C_i]]$$

$$= E[C_i(1 + E[Z_i | C_i])]$$

$$= E[C_i(1 + 1/C_i)]$$

$$= 1 + E[C_i]$$

• Have shown that for each *i*:

$$E[C_{i+1}] = 1 + E[C_i]$$

• Have shown that for each *i*:

$$E[C_{i+1}] = 1 + E[C_i]$$

$$E[C_1] = 1 + E[C_0] = 1 + 1 = 2$$

• Have shown that for each *i*:

$$E[C_{i+1}] = 1 + E[C_i]$$

$$E[C_1] = 1 + E[C_0] = 1 + 1 = 2$$

 $E[C_2] = 1 + E[C_1] = 1 + 2 = 3$

• Have shown that for each *i*:

$$E[C_{i+1}] = 1 + E[C_i]$$

$$E[C_1] = 1 + E[C_0] = 1 + 1 = 2$$

 $E[C_2] = 1 + E[C_1] = 1 + 2 = 3$
...
 $E[C_n] = 1 + E[C_{n-1}] = n + 1$

• Have shown that for each *i*:

$$E[C_{i+1}] = 1 + E[C_i]$$

• Since $C_0 = 1$, we have:

$$E[C_1] = 1 + E[C_0] = 1 + 1 = 2$$

 $E[C_2] = 1 + E[C_1] = 1 + 2 = 3$
...
 $E[C_n] = 1 + E[C_{n-1}] = n + 1$

• Thus $E[C_n-1]=n$

• Have shown that for each *i*:

$$E[C_{i+1}] = 1 + E[C_i]$$

$$E[C_1] = 1 + E[C_0] = 1 + 1 = 2$$

 $E[C_2] = 1 + E[C_1] = 1 + 2 = 3$
...
 $E[C_n] = 1 + E[C_{n-1}] = n + 1$

- Thus $E[C_n 1] = n$
- ullet In words, C_n-1 is an unbiased estimator of n

• Have shown that for each *i*:

$$E[C_{i+1}] = 1 + E[C_i]$$

$$E[C_1] = 1 + E[C_0] = 1 + 1 = 2$$

 $E[C_2] = 1 + E[C_1] = 1 + 2 = 3$
...
 $E[C_n] = 1 + E[C_{n-1}] = n + 1$

- Thus $E[C_n-1]=n$
- In words, $C_n 1$ is an unbiased estimator of n
- Next step: if possible, show that $Var[C_n] = Var[C_n 1]$ is small in order to get a high concentration bound with Chebyshev

• Our Lemma from earlier gives: $Var[C_n] = E[C_n^2] - E[C_n]^2$

- Our Lemma from earlier gives: $Var[C_n] = E[C_n^2] E[C_n]^2$
- We already showed $E[C_n] = n + 1$ so $E[C_n]^2 = (n + 1)^2$

- Our Lemma from earlier gives: $Var[C_n] = E[C_n^2] E[C_n]^2$
- We already showed $E[C_n] = n + 1$ so $E[C_n]^2 = (n + 1)^2$
- We will show:

$$E[C_n^2] = 1 + \frac{3n(n+1)}{2}$$

- Our Lemma from earlier gives: $Var[C_n] = E[C_n^2] E[C_n]^2$
- We already showed $E[C_n] = n + 1$ so $E[C_n]^2 = (n + 1)^2$
- We will show:

$$E[C_n^2] = 1 + \frac{3n(n+1)}{2}$$

• This will give us:

- Our Lemma from earlier gives: $Var[C_n] = E[C_n^2] E[C_n]^2$
- We already showed $E[C_n] = n + 1$ so $E[C_n]^2 = (n + 1)^2$
- We will show:

$$E[C_n^2] = 1 + \frac{3n(n+1)}{2}$$

• This will give us:

$$Var[C_n] = E[C_n^2] - E[C_n]^2$$

- Our Lemma from earlier gives: $Var[C_n] = E[C_n^2] E[C_n]^2$
- We already showed $E[C_n] = n + 1$ so $E[C_n]^2 = (n + 1)^2$
- We will show:

$$E[C_n^2] = 1 + \frac{3n(n+1)}{2}$$

• This will give us:

$$Var[C_n] = E[C_n^2] - E[C_n]^2$$

$$= 1 + \frac{3n(n+1)}{2} - (n+1)^2$$

- Our Lemma from earlier gives: $Var[C_n] = E[C_n^2] E[C_n]^2$
- We already showed $E[C_n] = n + 1$ so $E[C_n]^2 = (n + 1)^2$
- We will show:

$$E[C_n^2] = 1 + \frac{3n(n+1)}{2}$$

This will give us:

$$Var[C_n] = E[C_n^2] - E[C_n]^2$$

$$= 1 + \frac{3n(n+1)}{2} - (n+1)^2$$

$$= 1 + \frac{3}{2}n^2 + \frac{3}{2}n - n^2 - 1 - 2n$$

- Our Lemma from earlier gives: $Var[C_n] = E[C_n^2] E[C_n]^2$
- We already showed $E[C_n] = n + 1$ so $E[C_n]^2 = (n + 1)^2$
- We will show:

$$E[C_n^2] = 1 + \frac{3n(n+1)}{2}$$

This will give us:

$$Var[C_n] = E[C_n^2] - E[C_n]^2$$

$$= 1 + \frac{3n(n+1)}{2} - (n+1)^2$$

$$= 1 + \frac{3}{2}n^2 + \frac{3}{2}n - n^2 - 1 - 2n$$

$$= \frac{n(n-1)}{2}$$

- Our Lemma from earlier gives: $Var[C_n] = E[C_n^2] E[C_n]^2$
- We already showed $E[C_n] = n + 1$ so $E[C_n]^2 = (n + 1)^2$
- We will show:

$$E[C_n^2] = 1 + \frac{3n(n+1)}{2}$$

This will give us:

$$Var[C_n] = E[C_n^2] - E[C_n]^2$$

$$= 1 + \frac{3n(n+1)}{2} - (n+1)^2$$

$$= 1 + \frac{3}{2}n^2 + \frac{3}{2}n - n^2 - 1 - 2n$$

$$= \frac{n(n-1)}{2}$$

This variance is too large for Chebyshev to be useful

- Our Lemma from earlier gives: $Var[C_n] = E[C_n^2] E[C_n]^2$
- We already showed $E[C_n] = n + 1$ so $E[C_n]^2 = (n + 1)^2$
- We will show:

$$E[C_n^2] = 1 + \frac{3n(n+1)}{2}$$

This will give us:

$$Var[C_n] = E[C_n^2] - E[C_n]^2$$

$$= 1 + \frac{3n(n+1)}{2} - (n+1)^2$$

$$= 1 + \frac{3}{2}n^2 + \frac{3}{2}n - n^2 - 1 - 2n$$

$$= \frac{n(n-1)}{2}$$

- This variance is too large for Chebyshev to be useful
- We deal with this in Exercise 4-1 (Streaming notes)

$$E[C_{i+1}^2] = E[E[C_{i+1}^2 \mid C_i]]$$

$$E[C_{i+1}^2] = E[E[C_{i+1}^2 \mid C_i]]$$

= $E[E[((1 + Z_i)C_i)^2 \mid C_i]]$

$$E[C_{i+1}^{2}] = E[E[C_{i+1}^{2} \mid C_{i}]]$$

$$= E[E[((1 + Z_{i})C_{i})^{2} \mid C_{i}]]$$

$$= E[E[(Z_{i}^{2} + 2Z_{i} + 1)C_{i}^{2} \mid C_{i}]]$$

$$E[C_{i+1}^{2}] = E[E[C_{i+1}^{2} \mid C_{i}]]$$

$$= E[E[((1 + Z_{i})C_{i})^{2} \mid C_{i}]]$$

$$= E[E[(Z_{i}^{2} + 2Z_{i} + 1)C_{i}^{2} \mid C_{i}]]$$

$$= E[E[(3Z_{i} + 1)C_{i}^{2} \mid C_{i}]]$$

$$E[C_{i+1}^{2}] = E[E[C_{i+1}^{2} \mid C_{i}]]$$

$$= E[E[((1 + Z_{i})C_{i})^{2} \mid C_{i}]]$$

$$= E[E[(Z_{i}^{2} + 2Z_{i} + 1)C_{i}^{2} \mid C_{i}]]$$

$$= E[E[(3Z_{i} + 1)C_{i}^{2} \mid C_{i}]]$$

$$= E[3C_{i}^{2}E[Z_{i} \mid C_{i}] + C_{i}^{2}]$$

$$E[C_{i+1}^{2}] = E[E[C_{i+1}^{2} \mid C_{i}]]$$

$$= E[E[((1 + Z_{i})C_{i})^{2} \mid C_{i}]]$$

$$= E[E[(Z_{i}^{2} + 2Z_{i} + 1)C_{i}^{2} \mid C_{i}]]$$

$$= E[E[(3Z_{i} + 1)C_{i}^{2} \mid C_{i}]]$$

$$= E[3C_{i}^{2}E[Z_{i} \mid C_{i}] + C_{i}^{2}]$$

$$= E[3C_{i}^{2} \cdot 1/C_{i} + C_{i}^{2}]$$

$$E[C_{i+1}^{2}] = E[E[C_{i+1}^{2} \mid C_{i}]]$$

$$= E[E[((1 + Z_{i})C_{i})^{2} \mid C_{i}]]$$

$$= E[E[(Z_{i}^{2} + 2Z_{i} + 1)C_{i}^{2} \mid C_{i}]]$$

$$= E[E[(3Z_{i} + 1)C_{i}^{2} \mid C_{i}]]$$

$$= E[3C_{i}^{2}E[Z_{i} \mid C_{i}] + C_{i}^{2}]$$

$$= E[3C_{i}^{2} \cdot 1/C_{i} + C_{i}^{2}]$$

$$= E[3C_{i} + C_{i}^{2}]$$

$$E[C_{i+1}^2] = E[E[C_{i+1}^2 \mid C_i]]$$

$$= E[E[((1+Z_i)C_i)^2 \mid C_i]]$$

$$= E[E[(Z_i^2 + 2Z_i + 1)C_i^2 \mid C_i]]$$

$$= E[E[(3Z_i + 1)C_i^2 \mid C_i]]$$

$$= E[3C_i^2 E[Z_i \mid C_i] + C_i^2]$$

$$= E[3C_i^2 \cdot 1/C_i + C_i^2]$$

$$= E[3C_i + C_i^2]$$

$$= 3E[C_i] + E[C_i^2]$$

$$E[C_{i+1}^2] = E[E[C_{i+1}^2 \mid C_i]]$$

$$= E[E[((1+Z_i)C_i)^2 \mid C_i]]$$

$$= E[E[(Z_i^2 + 2Z_i + 1)C_i^2 \mid C_i]]$$

$$= E[E[(3Z_i + 1)C_i^2 \mid C_i]]$$

$$= E[3C_i^2 E[Z_i \mid C_i] + C_i^2]$$

$$= E[3C_i^2 \cdot 1/C_i + C_i^2]$$

$$= E[3C_i + C_i^2]$$

$$= 3E[C_i] + E[C_i^2]$$

$$= 3(i+1) + E[C_i^2]$$

 $\bullet \quad \text{Have shown } E[C^2_{i+1}] = 3(i+1) + E[C^2_i] \text{ for } i \geq 0$

- $\bullet \quad \text{Have shown } E[C^2_{i+1}] = 3(i+1) + E[C^2_i] \text{ for } i \geq 0$
- $\bullet \quad \text{This is equivalent to } E[C_i^2] = 3i + E[C_{i-1}^2] \text{ for } i \geq 1$

- $\bullet \quad \text{Have shown } E[C_{i+1}^2] = 3(i+1) + E[C_i^2] \text{ for } i \geq 0$
- $\bullet \quad \text{This is equivalent to } E[C_i^2] = 3i + E[C_{i-1}^2] \text{ for } i \geq 1$
- We sum up all these contributions to obtain $E[C_n^2]$:

- $\bullet \quad \text{Have shown } E[C^2_{i+1}] = 3(i+1) + E[C^2_i] \text{ for } i \geq 0$
- $\bullet \quad \text{This is equivalent to } E[C_i^2] = 3i + E[C_{i-1}^2] \text{ for } i \geq 1$
- We sum up all these contributions to obtain $E[C_n^2]$:

$$E[C_0^2] = 1^2 = 1$$

- $\bullet \quad \text{Have shown } E[C^2_{i+1}] = 3(i+1) + E[C^2_i] \text{ for } i \geq 0$
- This is equivalent to $E[C_i^2] = 3i + E[C_{i-1}^2]$ for $i \ge 1$
- We sum up all these contributions to obtain $E[C_n^2]$:

$$E[C_0^2] = 1^2 = 1$$

 $E[C_1^2] = 3(0+1) + E[C_0^2] = 3 \cdot 1 + 1$

- $\bullet \quad \text{Have shown } E[C^2_{i+1}] = 3(i+1) + E[C^2_i] \text{ for } i \geq 0$
- This is equivalent to $E[C_i^2] = 3i + E[C_{i-1}^2]$ for $i \ge 1$
- We sum up all these contributions to obtain $E[C_n^2]$:

$$E[C_0^2] = 1^2 = 1$$

$$E[C_1^2] = 3(0+1) + E[C_0^2] = 3 \cdot 1 + 1$$

$$E[C_2^2] = 3(1+1) + E[C_1^2] = 3 \cdot 2 + 3 \cdot 1 + 1$$

- $\bullet \quad \text{Have shown } E[C^2_{i+1}] = 3(i+1) + E[C^2_i] \text{ for } i \geq 0$
- $\bullet \quad \text{This is equivalent to } E[C_i^2] = 3i + E[C_{i-1}^2] \text{ for } i \geq 1$
- We sum up all these contributions to obtain $E[C_n^2]$:

$$E[C_0^2] = 1^2 = 1$$

$$E[C_1^2] = 3(0+1) + E[C_0^2] = 3 \cdot 1 + 1$$

$$E[C_2^2] = 3(1+1) + E[C_1^2] = 3 \cdot 2 + 3 \cdot 1 + 1$$

$$E[C_3^2] = 3(2+1) + E[C_2^2] = 3 \cdot 3 + 3 \cdot 2 + 3 \cdot 1 + 1$$

- $\bullet \quad \text{Have shown } E[C^2_{i+1}] = 3(i+1) + E[C^2_i] \text{ for } i \geq 0$
- $\bullet \quad \text{This is equivalent to } E[C_i^2] = 3i + E[C_{i-1}^2] \text{ for } i \geq 1$
- We sum up all these contributions to obtain $E[C_n^2]$:

$$E[C_0^2] = 1^2 = 1$$

$$E[C_1^2] = 3(0+1) + E[C_0^2] = 3 \cdot 1 + 1$$

$$E[C_2^2] = 3(1+1) + E[C_1^2] = 3 \cdot 2 + 3 \cdot 1 + 1$$

$$E[C_3^2] = 3(2+1) + E[C_2^2] = 3 \cdot 3 + 3 \cdot 2 + 3 \cdot 1 + 1$$
...

$$E[C_n^2] = 1 + 3\sum_{i=1}^n i$$

- $\bullet \quad \text{Have shown } E[C^2_{i+1}] = 3(i+1) + E[C^2_i] \text{ for } i \geq 0$
- This is equivalent to $E[C_i^2] = 3i + E[C_{i-1}^2]$ for $i \ge 1$
- We sum up all these contributions to obtain $E[C_n^2]$:

$$E[C_0^2] = 1^2 = 1$$

$$E[C_1^2] = 3(0+1) + E[C_0^2] = 3 \cdot 1 + 1$$

$$E[C_2^2] = 3(1+1) + E[C_1^2] = 3 \cdot 2 + 3 \cdot 1 + 1$$

$$E[C_3^2] = 3(2+1) + E[C_2^2] = 3 \cdot 3 + 3 \cdot 2 + 3 \cdot 1 + 1$$
...

$$E[C_n^2] = 1 + 3\sum_{i=1}^n i = 1 + \frac{3n(n+1)}{2}$$

• For two random variables X and Y, $E[X] = E[E[X \mid Y]]$

- For two random variables X and Y, $E[X] = E[E[X \mid Y]]$
- Proof, where $g(Y) = E[X \mid Y]$:

- For two random variables X and Y, $E[X] = E[E[X \mid Y]]$
- Proof, where $g(Y) = E[X \mid Y]$:

$$E[E[X \mid Y]] = E[g(Y)]$$

- For two random variables X and Y, $E[X] = E[E[X \mid Y]]$
- Proof, where $g(Y) = E[X \mid Y]$:

$$E[E[X \mid Y]] = E[g(Y)] = \sum_{y} g(y) \cdot P[Y = y]$$

- For two random variables X and Y, $E[X] = E[E[X \mid Y]]$
- Proof, where $g(Y) = E[X \mid Y]$:

$$E[E[X \mid Y]] = E[g(Y)] = \sum_{y} g(y) \cdot P[Y = y]$$
$$= \sum_{y} E[X \mid Y = y] \cdot P[Y = y]$$

- For two random variables X and Y, $E[X] = E[E[X \mid Y]]$
- Proof, where $g(Y) = E[X \mid Y]$:

$$E[E[X \mid Y]] = E[g(Y)] = \sum_{y} g(y) \cdot P[Y = y]$$

$$= \sum_{y} E[X \mid Y = y] \cdot P[Y = y]$$

$$= \sum_{y} \sum_{x} x \cdot P[X = x \mid Y = y] \cdot P[Y = y]$$

- For two random variables X and Y, $E[X] = E[E[X \mid Y]]$
- Proof, where $g(Y) = E[X \mid Y]$:

$$E[E[X \mid Y]] = E[g(Y)] = \sum_{y} g(y) \cdot P[Y = y]$$

$$= \sum_{y} E[X \mid Y = y] \cdot P[Y = y]$$

$$= \sum_{y} \sum_{x} x \cdot P[X = x \mid Y = y] \cdot P[Y = y]$$

$$= \sum_{y} \sum_{x} x \cdot P[Y = y \mid X = x] \cdot P[X = x]$$

- For two random variables X and Y, $E[X] = E[E[X \mid Y]]$
- Proof, where $g(Y) = E[X \mid Y]$:

$$E[E[X \mid Y]] = E[g(Y)] = \sum_{y} g(y) \cdot P[Y = y]$$

$$= \sum_{y} E[X \mid Y = y] \cdot P[Y = y]$$

$$= \sum_{y} \sum_{x} x \cdot P[X = x \mid Y = y] \cdot P[Y = y]$$

$$= \sum_{y} \sum_{x} x \cdot P[Y = y \mid X = x] \cdot P[X = x]$$

$$= \sum_{x} x \cdot P[X = x] \cdot \sum_{y} P[Y = y \mid X = x]$$

- For two random variables X and Y, $E[X] = E[E[X \mid Y]]$
- Proof, where $g(Y) = E[X \mid Y]$:

$$E[E[X \mid Y]] = E[g(Y)] = \sum_{y} g(y) \cdot P[Y = y]$$

$$= \sum_{y} E[X \mid Y = y] \cdot P[Y = y]$$

$$= \sum_{y} \sum_{x} x \cdot P[X = x \mid Y = y] \cdot P[Y = y]$$

$$= \sum_{y} \sum_{x} x \cdot P[Y = y \mid X = x] \cdot P[X = x]$$

$$= \sum_{x} x \cdot P[X = x] \cdot \sum_{y} P[Y = y \mid X = x]$$

$$= \sum_{x} x \cdot P[X = x] \cdot 1$$

- For two random variables X and Y, $E[X] = E[E[X \mid Y]]$
- Proof, where $g(Y) = E[X \mid Y]$:

$$E[E[X \mid Y]] = E[g(Y)] = \sum_{y} g(y) \cdot P[Y = y]$$

$$= \sum_{y} E[X \mid Y = y] \cdot P[Y = y]$$

$$= \sum_{y} \sum_{x} x \cdot P[X = x \mid Y = y] \cdot P[Y = y]$$

$$= \sum_{y} \sum_{x} x \cdot P[Y = y \mid X = x] \cdot P[X = x]$$

$$= \sum_{x} x \cdot P[X = x] \cdot \sum_{y} P[Y = y \mid X = x]$$

$$= \sum_{x} x \cdot P[X = x] \cdot 1$$

$$= E[X]$$