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• Random variables X1, . . . , Xn : A→ B are independent if

P[X1 = x1, X2 = x2, . . . , Xn = xn]

= P[X1 = x1] · P[X2 = x2] · . . . · P[Xn = xn]

for all x1, . . . , xn ∈ B
• This property also holds for every subset of variables

• Example:

◦ n coin tosses, Xi = 1 if the ith toss is heads and Xi = 0
otherwise

◦ These random variables are independent so the probability that

the first, third, and fourth toss are all heads is

P[X1 = 1, X3 = 1, X4 = 1]

= P[X1 = 1] · P[X3 = 1] · P[X4 = 1]
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• A hash function is a mapping h : U →M from a universe U of size

u to a set M = {1, . . . ,m}; typically, m≪ u
• For the analysis of Bloom filters, we need certain properties of k hash

functions h1, . . . , hk:

◦ (Uniform hashing) Each hi maps each element x ∈ U to M
uniformly at random:

P[hi(x) = j] =
1

m
for j = 1, . . . ,m

◦ (Independence) The ku random variables hi(x) for i = 1, . . . , k
and x ∈ U are independent

◦ For instance, for any x, y ∈ U :

P[h1(x) = 2, h2(y) = 4] = P[h1(x) = 2] · P[h2(y) = 4]
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• We are given a universe U of size u and a subset

X = {x1, . . . , xn} of U of size n
• We need to support two types of operations:

◦ Inserting an element of U \X into X
◦ Answer a query of the form “Is x ∈ X?” for any query element

x ∈ U
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• A Bloom filter for representing a set X ⊆ U consists of:

◦ A bit array M of length m with indices 1, . . . ,m
◦ k hash functions, h1, . . . , hk : U → {1, . . . ,m}

• We assume the hash functions have the properties stated earlier

(uniformity, independence)
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• To represent X , the bits of M are set as follows:

◦ Initialize all bits to 0: M [j]← 0 for j = 1, . . . ,m
◦ For each x ∈ X and each i = 1, . . . , k, set M [hi(x)]← 1
◦ Example with X = {x1, x2} and k = 2 hash functions:

M

x1

1 00 0000 0

m = 15

h2(x2)h1(x2)

010 0 1 0 0

h1(x1)

1Index:

h2(x1)

x2
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• To represent X , the bits of M are set as follows:

◦ Initialize all bits to 0: M [j]← 0 for j = 1, . . . ,m
◦ For each x ∈ X and each i = 1, . . . , k, set M [hi(x)]← 1
◦ Example with X = {x1, x2} and k = 2 hash functions:

• This makes the insertion of a new element x straightforward:

◦ M [hi(x)]← 1 for i = 1, . . . , k

• We therefore focus on analyzing queries



Answering a query

8 / 22

• Recall that the Bloom filter should answer queries of the form “Is

x ∈ X?” for any x ∈ U



Answering a query

8 / 22

• Recall that the Bloom filter should answer queries of the form “Is

x ∈ X?” for any x ∈ U
• This is done as follows:

◦ If M [hi(x)] = 1 for every i = 1, . . . , k, answer “Yes”



Answering a query

8 / 22

• Recall that the Bloom filter should answer queries of the form “Is

x ∈ X?” for any x ∈ U
• This is done as follows:

◦ If M [hi(x)] = 1 for every i = 1, . . . , k, answer “Yes”

◦ Otherwise, answer “No”
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• If the Bloom filter answers “No” to a query for x, we must have

x /∈ X :

M

x ∈ U

1 00 0000 0 000 0 0 0 0

• This follows since:

◦ M [hi(x)] = 0 for at least one i (since the answer is “No”)

◦ No element of X has this property (by construction of the Bloom

filter)

• Conclusion: the Bloom filter is always correct when it answers “No”
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• If the Bloom filter answers “Yes”, we cannot be sure that x ∈ X :

◦ We could have x /∈ X and all bits hi(x) of M were set to 1 by

elements of X :

M

x /∈ X

1 00 0000 1 010 0 0 1 0

x′ ∈ X x′′ ∈ X

• Thus, the Bloom filter might be wrong when it answers “Yes”

• In summary, it can have false positives but not false negatives

• We want to bound the probability of false positives



Bounding the chance of false positives

11 / 22

• Suppose a ρ-fraction of the bits of M are 0; call this event E



Bounding the chance of false positives

11 / 22

• Suppose a ρ-fraction of the bits of M are 0; call this event E
• Given x /∈ X , we want to bound the probability that the Bloom filter

answers “Yes” to x



Bounding the chance of false positives

11 / 22

• Suppose a ρ-fraction of the bits of M are 0; call this event E
• Given x /∈ X , we want to bound the probability that the Bloom filter

answers “Yes” to x
• Random variables h1(x), . . . , hk(x) are

◦ uniformly distributed in {1, . . . ,m},



Bounding the chance of false positives

11 / 22

• Suppose a ρ-fraction of the bits of M are 0; call this event E
• Given x /∈ X , we want to bound the probability that the Bloom filter

answers “Yes” to x
• Random variables h1(x), . . . , hk(x) are

◦ uniformly distributed in {1, . . . ,m},
◦ independent of E



Bounding the chance of false positives

11 / 22

• Suppose a ρ-fraction of the bits of M are 0; call this event E
• Given x /∈ X , we want to bound the probability that the Bloom filter

answers “Yes” to x
• Random variables h1(x), . . . , hk(x) are

◦ uniformly distributed in {1, . . . ,m},
◦ independent of E (x is not considered in the construction of M )



Bounding the chance of false positives

11 / 22

• Suppose a ρ-fraction of the bits of M are 0; call this event E
• Given x /∈ X , we want to bound the probability that the Bloom filter

answers “Yes” to x
• Random variables h1(x), . . . , hk(x) are

◦ uniformly distributed in {1, . . . ,m},
◦ independent of E (x is not considered in the construction of M )

• This implies that for any i,

P[M [hi(x)] = 1] = 1− P[M [hi(x)] = 0] = 1− ρ



Bounding the chance of false positives

11 / 22

• Suppose a ρ-fraction of the bits of M are 0; call this event E
• Given x /∈ X , we want to bound the probability that the Bloom filter

answers “Yes” to x
• Random variables h1(x), . . . , hk(x) are

◦ uniformly distributed in {1, . . . ,m},
◦ independent of E (x is not considered in the construction of M )

• This implies that for any i,

P[M [hi(x)] = 1] = 1− P[M [hi(x)] = 0] = 1− ρ

M 1 00 1000 0 011 0 0 1 0

ρ = 10

15
= 2

3

P[M [hi(x)] = 1] = 1− ρ = 1

3
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• Suppose a ρ-fraction of the bits of M are 0; call this event E
• Given x /∈ X , we want to bound the probability that the Bloom filter

answers “Yes” to x
• Random variables h1(x), . . . , hk(x) are

◦ uniformly distributed in {1, . . . ,m},
◦ independent of E (x is not considered in the construction of M )

• This implies that for any i,

P[M [hi(x)] = 1] = 1− P[M [hi(x)] = 0] = 1− ρ

• Using independence of h1(x), . . . , hk(x), the probability that the

Bloom filter incorrectly answers “Yes” for x is thus

P[M [h1(x)] = 1, . . . ,M [hk(x)] = 1] = (1− ρ)k
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• Our goal: given m and n, pick the number k of hash functions to

minimize the chance of false positives

• Let p′ be the probability that a specific bit j of M is 0, i.e., that none

of the k hash functions hi map any of the n elements of X to that bit:

p′ =

(

1−
1

m

)kn

M

x ∈ X

0

j

P[hi(x) 6= j] = 1− 1

m

hi(x) 6= j
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• Our goal: given m and n, pick the number k of hash functions to

minimize the chance of false positives

• Let p′ be the probability that a specific bit j of M is 0, i.e., that none

of the k hash functions hi map any of the n elements of X to that bit:

p′ =

(

1−
1

m

)kn

• We have E[ρ] = p′ (exercise)

• Example: if each bit has a p′ = 50% chance of being 0, we expect

the fraction ρ of 0-bits in M to be 1
2

• It can be shown that ρ is concentrated around its expectation,

meaning that with high probability, ρ ≈ E[ρ] = p′

• Thus, the probability of a false positive is

(1− ρ)k ≈ (1− p′)k =

(

1−

(

1−
1

m

)kn
)k
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• We showed that the probability of a false positive is approximately

(

1−

(

1−
1

m

)kn
)k

• We simplify this with the approximation 1 + x ≈ ex for x close to 0
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• We showed that the probability of a false positive is approximately

(

1−

(

1−
1

m

)kn
)k

• We simplify this with the approximation 1 + x ≈ ex for x close to 0
• Setting x = −1/m, the approximate probability then becomes:

(

1−
(

e−
1

m

)kn
)k

=
(

1− e−
kn

m

)k
= exp(k ln(1− e−

kn

m ))

• We want to pick k to minimize this expression
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• Goal: pick k to minimize the function f(k) = exp(k ln(1− e−
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• Standard calculus shows that this occurs for kmin = m

n ln 2
• Example with m = 2n and minimum at kmin = 2 ln 2 ≈ 1.386:
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n ln 2
• The minimum probability of a false positive is thus approximately

f(kmin) = exp
((m

n
ln 2
)

ln(1− e−(
m

n
ln 2) n

m )
)

= exp
((m

n
ln 2
)

ln(1− 1/2)
)

= exp
(

−
m

n
(ln 2)2

)

= 2−
m

n
ln 2 = 2−kmin = (1/2)kmin

• Equivalently, this is

2−
m

n
ln 2 = (2− ln 2)

m

n ≈ 0.6185
m

n
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• Fix k = kmin = m
n ln 2 to minimize the chance of false positives

• As we showed, the false positive rate ǫ is:

ǫ = (1/2)kmin = (1/2)(m/n) ln 2 ⇔ 1/ǫ = 2(m/n) ln 2

• To analyze space, take the logarithm and isolate m:

log2(1/ǫ) = (m/n) ln 2⇔ m =
n log2(1/ǫ)

ln 2
= n log2 e log2(1/ǫ)

where we used log2 e = ln e/ ln 2 = 1/ ln 2
• Thus, the number m of bits stored is n log2 e log2(1/ǫ)
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• Is there a data structure requiring significantly less space than a

Bloom filter if we allow no false negatives and allow false positives for

at most an ǫ fraction of elements of U \X?

• We will show that this is not the case: only minor improvements in

space are possible



Lower bound

17 / 22

• Consider any such data structure and let m be the number of bits it

requires



Lower bound

17 / 22

• Consider any such data structure and let m be the number of bits it

requires

• Each instance X gives rise to such an m-bit string and we say that

X is represented by this string
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• Consider an m-bit string M (one instance of the data structure)

• Let Y (M) be the set of elements of U that M answers “Yes” to

• For any X represented by M , we must have X ⊆ Y (M) (no false

negatives)

• We allow at most a false positive rate of ǫ for U \X
• Thus, Y (M) contains at most ǫ(u− n) elements in addition to X

X

U

Size ≤ ǫ(u− n)

Y (M)

M answers ”No”

• It follows that |Y (M)| ≤ n+ ǫ(u− n)
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• Y (M): elements that M answers “Yes” to

• Have shown: |Y (M)| ≤ n+ ǫ(u− n)
• M can thus not represent more than

(

n+ǫ(u−n)
n

)

subsets X since

they all need to be contained in Y (M)
• There are 2m choices of m-length bit string M and each represents

at most
(

n+ǫ(u−n)
n

)

sets X
• Hence, the data structure cannot represent more sets than

2m
(

n+ ǫ(u− n)

n

)

• However, it needs to represent all of the
(

u
n

)

sets X so

2m
(

n+ ǫ(u− n)

n

)

≥

(

u

n

)
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• Similarly
(

u
n

)

≈ un

n! since n≪ ǫu ≤ u
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• Have shown lower bound on m of n log2(1/ǫ) bits

• Recall that the Bloom filter requires n log2 e log2(1/ǫ) bits of space

• We see that the space requirement of the Bloom filter is within a

factor log2 e ≈ 1.44 of the lower bound

• More complicated data structures with better space bounds exist, for

instance compressed Bloom filters
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• Our analysis relied on hash functions with strong independence

guarantees

• It is not known how to ensure such guarantees without using a lot of

space (around n log n bits)

• Fortunately, Bloom filters work well using much more practical hash

functions with weaker guarantees
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