
1 / 22

Bloom Filters

Christian Wulff-Nilsen

Algorithmic Techniques for Modern Data Models

DTU

September 5, 2025

Overview for today

2 / 22

• Independent random variables

Overview for today

2 / 22

• Independent random variables

• Hash functions for Bloom filters

Overview for today

2 / 22

• Independent random variables

• Hash functions for Bloom filters

• Problem definition

Overview for today

2 / 22

• Independent random variables

• Hash functions for Bloom filters

• Problem definition

• Description of Bloom filter

Overview for today

2 / 22

• Independent random variables

• Hash functions for Bloom filters

• Problem definition

• Description of Bloom filter

• Performance

Overview for today

2 / 22

• Independent random variables

• Hash functions for Bloom filters

• Problem definition

• Description of Bloom filter

• Performance

• Comparison to lower bound

Independent random variables

3 / 22

• Random variables X1, . . . , Xn : A→ B are independent if

P[X1 = x1, X2 = x2, . . . , Xn = xn]

= P[X1 = x1] · P[X2 = x2] · . . . · P[Xn = xn]

for all x1, . . . , xn ∈ B

Independent random variables

3 / 22

• Random variables X1, . . . , Xn : A→ B are independent if

P[X1 = x1, X2 = x2, . . . , Xn = xn]

= P[X1 = x1] · P[X2 = x2] · . . . · P[Xn = xn]

for all x1, . . . , xn ∈ B
• This property also holds for every subset of variables

Independent random variables

3 / 22

• Random variables X1, . . . , Xn : A→ B are independent if

P[X1 = x1, X2 = x2, . . . , Xn = xn]

= P[X1 = x1] · P[X2 = x2] · . . . · P[Xn = xn]

for all x1, . . . , xn ∈ B
• This property also holds for every subset of variables

• Example:

◦ n coin tosses, Xi = 1 if the ith toss is heads and Xi = 0
otherwise

Independent random variables

3 / 22

• Random variables X1, . . . , Xn : A→ B are independent if

P[X1 = x1, X2 = x2, . . . , Xn = xn]

= P[X1 = x1] · P[X2 = x2] · . . . · P[Xn = xn]

for all x1, . . . , xn ∈ B
• This property also holds for every subset of variables

• Example:

◦ n coin tosses, Xi = 1 if the ith toss is heads and Xi = 0
otherwise

◦ These random variables are independent so the probability that

the first, third, and fourth toss are all heads is

Independent random variables

3 / 22

• Random variables X1, . . . , Xn : A→ B are independent if

P[X1 = x1, X2 = x2, . . . , Xn = xn]

= P[X1 = x1] · P[X2 = x2] · . . . · P[Xn = xn]

for all x1, . . . , xn ∈ B
• This property also holds for every subset of variables

• Example:

◦ n coin tosses, Xi = 1 if the ith toss is heads and Xi = 0
otherwise

◦ These random variables are independent so the probability that

the first, third, and fourth toss are all heads is

P[X1 = 1, X3 = 1, X4 = 1]

= P[X1 = 1] · P[X3 = 1] · P[X4 = 1]

Hash functions for Bloom filters

4 / 22

• A hash function is a mapping h : U →M from a universe U of size

u to a set M = {1, . . . ,m}; typically, m≪ u

Hash functions for Bloom filters

4 / 22

• A hash function is a mapping h : U →M from a universe U of size

u to a set M = {1, . . . ,m}; typically, m≪ u
• For the analysis of Bloom filters, we need certain properties of k hash

functions h1, . . . , hk:

Hash functions for Bloom filters

4 / 22

• A hash function is a mapping h : U →M from a universe U of size

u to a set M = {1, . . . ,m}; typically, m≪ u
• For the analysis of Bloom filters, we need certain properties of k hash

functions h1, . . . , hk:

◦ (Uniform hashing) Each hi maps each element x ∈ U to M
uniformly at random:

P[hi(x) = j] =
1

m
for j = 1, . . . ,m

Hash functions for Bloom filters

4 / 22

• A hash function is a mapping h : U →M from a universe U of size

u to a set M = {1, . . . ,m}; typically, m≪ u
• For the analysis of Bloom filters, we need certain properties of k hash

functions h1, . . . , hk:

◦ (Uniform hashing) Each hi maps each element x ∈ U to M
uniformly at random:

P[hi(x) = j] =
1

m
for j = 1, . . . ,m

◦ (Independence) The ku random variables hi(x) for i = 1, . . . , k
and x ∈ U are independent

Hash functions for Bloom filters

4 / 22

• A hash function is a mapping h : U →M from a universe U of size

u to a set M = {1, . . . ,m}; typically, m≪ u
• For the analysis of Bloom filters, we need certain properties of k hash

functions h1, . . . , hk:

◦ (Uniform hashing) Each hi maps each element x ∈ U to M
uniformly at random:

P[hi(x) = j] =
1

m
for j = 1, . . . ,m

◦ (Independence) The ku random variables hi(x) for i = 1, . . . , k
and x ∈ U are independent

◦ For instance, for any x, y ∈ U :

P[h1(x) = 2, h2(y) = 4] = P[h1(x) = 2] · P[h2(y) = 4]

Problem definition

5 / 22

• We are given a universe U of size u and a subset

X = {x1, . . . , xn} of U of size n

Problem definition

5 / 22

• We are given a universe U of size u and a subset

X = {x1, . . . , xn} of U of size n
• We need to support two types of operations:

Problem definition

5 / 22

• We are given a universe U of size u and a subset

X = {x1, . . . , xn} of U of size n
• We need to support two types of operations:

◦ Inserting an element of U \X into X

Problem definition

5 / 22

• We are given a universe U of size u and a subset

X = {x1, . . . , xn} of U of size n
• We need to support two types of operations:

◦ Inserting an element of U \X into X
◦ Answer a query of the form “Is x ∈ X?” for any query element

x ∈ U

Bloom filter

6 / 22

• A Bloom filter for representing a set X ⊆ U consists of:

Bloom filter

6 / 22

• A Bloom filter for representing a set X ⊆ U consists of:

◦ A bit array M of length m with indices 1, . . . ,m

Bloom filter

6 / 22

• A Bloom filter for representing a set X ⊆ U consists of:

◦ A bit array M of length m with indices 1, . . . ,m
◦ k hash functions, h1, . . . , hk : U → {1, . . . ,m}

Bloom filter

6 / 22

• A Bloom filter for representing a set X ⊆ U consists of:

◦ A bit array M of length m with indices 1, . . . ,m
◦ k hash functions, h1, . . . , hk : U → {1, . . . ,m}

• We assume the hash functions have the properties stated earlier

(uniformity, independence)

Bloom filter

7 / 22

• To represent X , the bits of M are set as follows:

◦ Initialize all bits to 0: M [j]← 0 for j = 1, . . . ,m

Bloom filter

7 / 22

• To represent X , the bits of M are set as follows:

◦ Initialize all bits to 0: M [j]← 0 for j = 1, . . . ,m
◦ For each x ∈ X and each i = 1, . . . , k, set M [hi(x)]← 1

Bloom filter

7 / 22

• To represent X , the bits of M are set as follows:

◦ Initialize all bits to 0: M [j]← 0 for j = 1, . . . ,m
◦ For each x ∈ X and each i = 1, . . . , k, set M [hi(x)]← 1
◦ Example with X = {x1, x2} and k = 2 hash functions:

M 0 00 0000 0

m = 15

000 0 0 0

1Index:

0

Bloom filter

7 / 22

• To represent X , the bits of M are set as follows:

◦ Initialize all bits to 0: M [j]← 0 for j = 1, . . . ,m
◦ For each x ∈ X and each i = 1, . . . , k, set M [hi(x)]← 1
◦ Example with X = {x1, x2} and k = 2 hash functions:

M

x1

1 00 0000 0

m = 15

010 0 0 0

h1(x1)

1Index:

h2(x1)

0

Bloom filter

7 / 22

• To represent X , the bits of M are set as follows:

◦ Initialize all bits to 0: M [j]← 0 for j = 1, . . . ,m
◦ For each x ∈ X and each i = 1, . . . , k, set M [hi(x)]← 1
◦ Example with X = {x1, x2} and k = 2 hash functions:

M

x1

1 00 0000 0

m = 15

h2(x2)h1(x2)

010 0 1 0 0

h1(x1)

1Index:

h2(x1)

x2

Bloom filter

7 / 22

• To represent X , the bits of M are set as follows:

◦ Initialize all bits to 0: M [j]← 0 for j = 1, . . . ,m
◦ For each x ∈ X and each i = 1, . . . , k, set M [hi(x)]← 1
◦ Example with X = {x1, x2} and k = 2 hash functions:

• This makes the insertion of a new element x straightforward:

◦ M [hi(x)]← 1 for i = 1, . . . , k

Bloom filter

7 / 22

• To represent X , the bits of M are set as follows:

◦ Initialize all bits to 0: M [j]← 0 for j = 1, . . . ,m
◦ For each x ∈ X and each i = 1, . . . , k, set M [hi(x)]← 1
◦ Example with X = {x1, x2} and k = 2 hash functions:

• This makes the insertion of a new element x straightforward:

◦ M [hi(x)]← 1 for i = 1, . . . , k

• We therefore focus on analyzing queries

Answering a query

8 / 22

• Recall that the Bloom filter should answer queries of the form “Is

x ∈ X?” for any x ∈ U

Answering a query

8 / 22

• Recall that the Bloom filter should answer queries of the form “Is

x ∈ X?” for any x ∈ U
• This is done as follows:

◦ If M [hi(x)] = 1 for every i = 1, . . . , k, answer “Yes”

Answering a query

8 / 22

• Recall that the Bloom filter should answer queries of the form “Is

x ∈ X?” for any x ∈ U
• This is done as follows:

◦ If M [hi(x)] = 1 for every i = 1, . . . , k, answer “Yes”

◦ Otherwise, answer “No”

Are queries answered correctly?

9 / 22

• If the Bloom filter answers “No” to a query for x, we must have

x /∈ X :

Are queries answered correctly?

9 / 22

• If the Bloom filter answers “No” to a query for x, we must have

x /∈ X :

M

x ∈ U

1 00 0000 0 000 0 0 0 0

Are queries answered correctly?

9 / 22

• If the Bloom filter answers “No” to a query for x, we must have

x /∈ X :

M

x ∈ U

1 00 0000 0 000 0 0 0 0

• This follows since:

◦ M [hi(x)] = 0 for at least one i (since the answer is “No”)

Are queries answered correctly?

9 / 22

• If the Bloom filter answers “No” to a query for x, we must have

x /∈ X :

M

x ∈ U

1 00 0000 0 000 0 0 0 0

• This follows since:

◦ M [hi(x)] = 0 for at least one i (since the answer is “No”)

◦ No element of X has this property (by construction of the Bloom

filter)

Are queries answered correctly?

9 / 22

• If the Bloom filter answers “No” to a query for x, we must have

x /∈ X :

M

x ∈ U

1 00 0000 0 000 0 0 0 0

• This follows since:

◦ M [hi(x)] = 0 for at least one i (since the answer is “No”)

◦ No element of X has this property (by construction of the Bloom

filter)

• Conclusion: the Bloom filter is always correct when it answers “No”

Are queries answered correctly?

10 / 22

• If the Bloom filter answers “Yes”, we cannot be sure that x ∈ X :

Are queries answered correctly?

10 / 22

• If the Bloom filter answers “Yes”, we cannot be sure that x ∈ X :

◦ We could have x /∈ X and all bits hi(x) of M were set to 1 by

elements of X :

Are queries answered correctly?

10 / 22

• If the Bloom filter answers “Yes”, we cannot be sure that x ∈ X :

◦ We could have x /∈ X and all bits hi(x) of M were set to 1 by

elements of X :

M

x /∈ X

1 00 0000 1 010 0 0 1 0

x′ ∈ X x′′ ∈ X

Are queries answered correctly?

10 / 22

• If the Bloom filter answers “Yes”, we cannot be sure that x ∈ X :

◦ We could have x /∈ X and all bits hi(x) of M were set to 1 by

elements of X :

M

x /∈ X

1 00 0000 1 010 0 0 1 0

x′ ∈ X x′′ ∈ X

• Thus, the Bloom filter might be wrong when it answers “Yes”

Are queries answered correctly?

10 / 22

• If the Bloom filter answers “Yes”, we cannot be sure that x ∈ X :

◦ We could have x /∈ X and all bits hi(x) of M were set to 1 by

elements of X :

M

x /∈ X

1 00 0000 1 010 0 0 1 0

x′ ∈ X x′′ ∈ X

• Thus, the Bloom filter might be wrong when it answers “Yes”

• In summary, it can have false positives but not false negatives

Are queries answered correctly?

10 / 22

• If the Bloom filter answers “Yes”, we cannot be sure that x ∈ X :

◦ We could have x /∈ X and all bits hi(x) of M were set to 1 by

elements of X :

M

x /∈ X

1 00 0000 1 010 0 0 1 0

x′ ∈ X x′′ ∈ X

• Thus, the Bloom filter might be wrong when it answers “Yes”

• In summary, it can have false positives but not false negatives

• We want to bound the probability of false positives

Bounding the chance of false positives

11 / 22

• Suppose a ρ-fraction of the bits of M are 0; call this event E

Bounding the chance of false positives

11 / 22

• Suppose a ρ-fraction of the bits of M are 0; call this event E
• Given x /∈ X , we want to bound the probability that the Bloom filter

answers “Yes” to x

Bounding the chance of false positives

11 / 22

• Suppose a ρ-fraction of the bits of M are 0; call this event E
• Given x /∈ X , we want to bound the probability that the Bloom filter

answers “Yes” to x
• Random variables h1(x), . . . , hk(x) are

◦ uniformly distributed in {1, . . . ,m},

Bounding the chance of false positives

11 / 22

• Suppose a ρ-fraction of the bits of M are 0; call this event E
• Given x /∈ X , we want to bound the probability that the Bloom filter

answers “Yes” to x
• Random variables h1(x), . . . , hk(x) are

◦ uniformly distributed in {1, . . . ,m},
◦ independent of E

Bounding the chance of false positives

11 / 22

• Suppose a ρ-fraction of the bits of M are 0; call this event E
• Given x /∈ X , we want to bound the probability that the Bloom filter

answers “Yes” to x
• Random variables h1(x), . . . , hk(x) are

◦ uniformly distributed in {1, . . . ,m},
◦ independent of E (x is not considered in the construction of M)

Bounding the chance of false positives

11 / 22

• Suppose a ρ-fraction of the bits of M are 0; call this event E
• Given x /∈ X , we want to bound the probability that the Bloom filter

answers “Yes” to x
• Random variables h1(x), . . . , hk(x) are

◦ uniformly distributed in {1, . . . ,m},
◦ independent of E (x is not considered in the construction of M)

• This implies that for any i,

P[M [hi(x)] = 1] = 1− P[M [hi(x)] = 0] = 1− ρ

Bounding the chance of false positives

11 / 22

• Suppose a ρ-fraction of the bits of M are 0; call this event E
• Given x /∈ X , we want to bound the probability that the Bloom filter

answers “Yes” to x
• Random variables h1(x), . . . , hk(x) are

◦ uniformly distributed in {1, . . . ,m},
◦ independent of E (x is not considered in the construction of M)

• This implies that for any i,

P[M [hi(x)] = 1] = 1− P[M [hi(x)] = 0] = 1− ρ

M 1 00 1000 0 011 0 0 1 0

ρ = 10

15
= 2

3

P[M [hi(x)] = 1] = 1− ρ = 1

3

Bounding the chance of false positives

11 / 22

• Suppose a ρ-fraction of the bits of M are 0; call this event E
• Given x /∈ X , we want to bound the probability that the Bloom filter

answers “Yes” to x
• Random variables h1(x), . . . , hk(x) are

◦ uniformly distributed in {1, . . . ,m},
◦ independent of E (x is not considered in the construction of M)

• This implies that for any i,

P[M [hi(x)] = 1] = 1− P[M [hi(x)] = 0] = 1− ρ

• Using independence of h1(x), . . . , hk(x), the probability that the

Bloom filter incorrectly answers “Yes” for x is thus

P[M [h1(x)] = 1, . . . ,M [hk(x)] = 1] = (1− ρ)k

Expressing the failure probability in terms of m, n and k

12 / 22

• Our goal: given m and n, pick the number k of hash functions to

minimize the chance of false positives

Expressing the failure probability in terms of m, n and k

12 / 22

• Our goal: given m and n, pick the number k of hash functions to

minimize the chance of false positives

• Let p′ be the probability that a specific bit j of M is 0,

Expressing the failure probability in terms of m, n and k

12 / 22

• Our goal: given m and n, pick the number k of hash functions to

minimize the chance of false positives

• Let p′ be the probability that a specific bit j of M is 0, i.e., that none

of the k hash functions hi map any of the n elements of X to that bit:

Expressing the failure probability in terms of m, n and k

12 / 22

• Our goal: given m and n, pick the number k of hash functions to

minimize the chance of false positives

• Let p′ be the probability that a specific bit j of M is 0, i.e., that none

of the k hash functions hi map any of the n elements of X to that bit:

p′ =

(

1−
1

m

)kn

Expressing the failure probability in terms of m, n and k

12 / 22

• Our goal: given m and n, pick the number k of hash functions to

minimize the chance of false positives

• Let p′ be the probability that a specific bit j of M is 0, i.e., that none

of the k hash functions hi map any of the n elements of X to that bit:

p′ =

(

1−
1

m

)kn

M

x ∈ X

0

j

P[hi(x) 6= j] = 1− 1

m

hi(x) 6= j

Expressing the failure probability in terms of m, n and k

12 / 22

• Our goal: given m and n, pick the number k of hash functions to

minimize the chance of false positives

• Let p′ be the probability that a specific bit j of M is 0, i.e., that none

of the k hash functions hi map any of the n elements of X to that bit:

p′ =

(

1−
1

m

)kn

• We have E[ρ] = p′ (exercise)

Expressing the failure probability in terms of m, n and k

12 / 22

• Our goal: given m and n, pick the number k of hash functions to

minimize the chance of false positives

• Let p′ be the probability that a specific bit j of M is 0, i.e., that none

of the k hash functions hi map any of the n elements of X to that bit:

p′ =

(

1−
1

m

)kn

• We have E[ρ] = p′ (exercise)

• Example: if each bit has a p′ = 50% chance of being 0, we expect

the fraction ρ of 0-bits in M to be 1
2

Expressing the failure probability in terms of m, n and k

12 / 22

• Our goal: given m and n, pick the number k of hash functions to

minimize the chance of false positives

• Let p′ be the probability that a specific bit j of M is 0, i.e., that none

of the k hash functions hi map any of the n elements of X to that bit:

p′ =

(

1−
1

m

)kn

• We have E[ρ] = p′ (exercise)

• Example: if each bit has a p′ = 50% chance of being 0, we expect

the fraction ρ of 0-bits in M to be 1
2

• It can be shown that ρ is concentrated around its expectation,

meaning that with high probability, ρ ≈ E[ρ] = p′

Expressing the failure probability in terms of m, n and k

12 / 22

• Our goal: given m and n, pick the number k of hash functions to

minimize the chance of false positives

• Let p′ be the probability that a specific bit j of M is 0, i.e., that none

of the k hash functions hi map any of the n elements of X to that bit:

p′ =

(

1−
1

m

)kn

• We have E[ρ] = p′ (exercise)

• Example: if each bit has a p′ = 50% chance of being 0, we expect

the fraction ρ of 0-bits in M to be 1
2

• It can be shown that ρ is concentrated around its expectation,

meaning that with high probability, ρ ≈ E[ρ] = p′

• Thus, the probability of a false positive is

(1− ρ)k ≈ (1− p′)k =

(

1−

(

1−
1

m

)kn
)k

Simplifying the expression for the false positive probability

13 / 22

• We showed that the probability of a false positive is approximately

(

1−

(

1−
1

m

)kn
)k

Simplifying the expression for the false positive probability

13 / 22

• We showed that the probability of a false positive is approximately

(

1−

(

1−
1

m

)kn
)k

• We simplify this with the approximation 1 + x ≈ ex for x close to 0

Simplifying the expression for the false positive probability

13 / 22

• We showed that the probability of a false positive is approximately

(

1−

(

1−
1

m

)kn
)k

• We simplify this with the approximation 1 + x ≈ ex for x close to 0

-2

-1

0

1

2

3

4

5

6

7

8

-2 -1 0 1 2

1+x

exp(x)

Simplifying the expression for the false positive probability

13 / 22

• We showed that the probability of a false positive is approximately

(

1−

(

1−
1

m

)kn
)k

• We simplify this with the approximation 1 + x ≈ ex for x close to 0
• Setting x = −1/m, the approximate probability then becomes:

(

1−
(

e−
1

m

)kn
)k

=
(

1− e−
kn

m

)k
= exp(k ln(1− e−

kn

m))

Simplifying the expression for the false positive probability

13 / 22

• We showed that the probability of a false positive is approximately

(

1−

(

1−
1

m

)kn
)k

• We simplify this with the approximation 1 + x ≈ ex for x close to 0
• Setting x = −1/m, the approximate probability then becomes:

(

1−
(

e−
1

m

)kn
)k

=
(

1− e−
kn

m

)k
= exp(k ln(1− e−

kn

m))

• We want to pick k to minimize this expression

Minimizing the chance of false positives

14 / 22

• Goal: pick k to minimize the function f(k) = exp(k ln(1− e−
kn

m))

Minimizing the chance of false positives

14 / 22

• Goal: pick k to minimize the function f(k) = exp(k ln(1− e−
kn

m))
• Standard calculus shows that this occurs for kmin = m

n ln 2

Minimizing the chance of false positives

14 / 22

• Goal: pick k to minimize the function f(k) = exp(k ln(1− e−
kn

m))
• Standard calculus shows that this occurs for kmin = m

n ln 2
• Example with m = 2n and minimum at kmin = 2 ln 2 ≈ 1.386:

Minimizing the chance of false positives

14 / 22

• Goal: pick k to minimize the function f(k) = exp(k ln(1− e−
kn

m))
• Standard calculus shows that this occurs for kmin = m

n ln 2
• The minimum probability of a false positive is thus approximately

f(kmin) = exp
((m

n
ln 2
)

ln(1− e−(
m

n
ln 2) n

m)
)

Minimizing the chance of false positives

14 / 22

• Goal: pick k to minimize the function f(k) = exp(k ln(1− e−
kn

m))
• Standard calculus shows that this occurs for kmin = m

n ln 2
• The minimum probability of a false positive is thus approximately

f(kmin) = exp
((m

n
ln 2
)

ln(1− e−(
m

n
ln 2) n

m)
)

= exp
((m

n
ln 2
)

ln(1− 1/2)
)

Minimizing the chance of false positives

14 / 22

• Goal: pick k to minimize the function f(k) = exp(k ln(1− e−
kn

m))
• Standard calculus shows that this occurs for kmin = m

n ln 2
• The minimum probability of a false positive is thus approximately

f(kmin) = exp
((m

n
ln 2
)

ln(1− e−(
m

n
ln 2) n

m)
)

= exp
((m

n
ln 2
)

ln(1− 1/2)
)

= exp
(

−
m

n
(ln 2)2

)

Minimizing the chance of false positives

14 / 22

• Goal: pick k to minimize the function f(k) = exp(k ln(1− e−
kn

m))
• Standard calculus shows that this occurs for kmin = m

n ln 2
• The minimum probability of a false positive is thus approximately

f(kmin) = exp
((m

n
ln 2
)

ln(1− e−(
m

n
ln 2) n

m)
)

= exp
((m

n
ln 2
)

ln(1− 1/2)
)

= exp
(

−
m

n
(ln 2)2

)

= 2−
m

n
ln 2 = 2−kmin = (1/2)kmin

Minimizing the chance of false positives

14 / 22

• Goal: pick k to minimize the function f(k) = exp(k ln(1− e−
kn

m))
• Standard calculus shows that this occurs for kmin = m

n ln 2
• The minimum probability of a false positive is thus approximately

f(kmin) = exp
((m

n
ln 2
)

ln(1− e−(
m

n
ln 2) n

m)
)

= exp
((m

n
ln 2
)

ln(1− 1/2)
)

= exp
(

−
m

n
(ln 2)2

)

= 2−
m

n
ln 2 = 2−kmin = (1/2)kmin

• Equivalently, this is

2−
m

n
ln 2 = (2− ln 2)

m

n ≈ 0.6185
m

n

Space requirement for k = kmin

15 / 22

• Fix k = kmin = m
n ln 2 to minimize the chance of false positives

Space requirement for k = kmin

15 / 22

• Fix k = kmin = m
n ln 2 to minimize the chance of false positives

• As we showed, the false positive rate ǫ is:

ǫ = (1/2)kmin = (1/2)(m/n) ln 2 ⇔ 1/ǫ = 2(m/n) ln 2

Space requirement for k = kmin

15 / 22

• Fix k = kmin = m
n ln 2 to minimize the chance of false positives

• As we showed, the false positive rate ǫ is:

ǫ = (1/2)kmin = (1/2)(m/n) ln 2 ⇔ 1/ǫ = 2(m/n) ln 2

• To analyze space, take the logarithm and isolate m:

log2(1/ǫ) = (m/n) ln 2

Space requirement for k = kmin

15 / 22

• Fix k = kmin = m
n ln 2 to minimize the chance of false positives

• As we showed, the false positive rate ǫ is:

ǫ = (1/2)kmin = (1/2)(m/n) ln 2 ⇔ 1/ǫ = 2(m/n) ln 2

• To analyze space, take the logarithm and isolate m:

log2(1/ǫ) = (m/n) ln 2⇔ m =
n log2(1/ǫ)

ln 2

Space requirement for k = kmin

15 / 22

• Fix k = kmin = m
n ln 2 to minimize the chance of false positives

• As we showed, the false positive rate ǫ is:

ǫ = (1/2)kmin = (1/2)(m/n) ln 2 ⇔ 1/ǫ = 2(m/n) ln 2

• To analyze space, take the logarithm and isolate m:

log2(1/ǫ) = (m/n) ln 2⇔ m =
n log2(1/ǫ)

ln 2
= n log2 e log2(1/ǫ)

Space requirement for k = kmin

15 / 22

• Fix k = kmin = m
n ln 2 to minimize the chance of false positives

• As we showed, the false positive rate ǫ is:

ǫ = (1/2)kmin = (1/2)(m/n) ln 2 ⇔ 1/ǫ = 2(m/n) ln 2

• To analyze space, take the logarithm and isolate m:

log2(1/ǫ) = (m/n) ln 2⇔ m =
n log2(1/ǫ)

ln 2
= n log2 e log2(1/ǫ)

where we used log2 e = ln e/ ln 2 = 1/ ln 2

Space requirement for k = kmin

15 / 22

• Fix k = kmin = m
n ln 2 to minimize the chance of false positives

• As we showed, the false positive rate ǫ is:

ǫ = (1/2)kmin = (1/2)(m/n) ln 2 ⇔ 1/ǫ = 2(m/n) ln 2

• To analyze space, take the logarithm and isolate m:

log2(1/ǫ) = (m/n) ln 2⇔ m =
n log2(1/ǫ)

ln 2
= n log2 e log2(1/ǫ)

where we used log2 e = ln e/ ln 2 = 1/ ln 2
• Thus, the number m of bits stored is n log2 e log2(1/ǫ)

Better data structure than the Bloom filter?

16 / 22

• Is there a data structure requiring significantly less space than a

Bloom filter if we allow no false negatives and allow false positives for

at most an ǫ fraction of elements of U \X?

Better data structure than the Bloom filter?

16 / 22

• Is there a data structure requiring significantly less space than a

Bloom filter if we allow no false negatives and allow false positives for

at most an ǫ fraction of elements of U \X?

• We will show that this is not the case: only minor improvements in

space are possible

Lower bound

17 / 22

• Consider any such data structure and let m be the number of bits it

requires

Lower bound

17 / 22

• Consider any such data structure and let m be the number of bits it

requires

• Each instance X gives rise to such an m-bit string and we say that

X is represented by this string

Lower bound

18 / 22

• Consider an m-bit string M (one instance of the data structure)

Lower bound

18 / 22

• Consider an m-bit string M (one instance of the data structure)

• Let Y (M) be the set of elements of U that M answers “Yes” to

Lower bound

18 / 22

• Consider an m-bit string M (one instance of the data structure)

• Let Y (M) be the set of elements of U that M answers “Yes” to

• For any X represented by M , we must have X ⊆ Y (M) (no false

negatives)

Lower bound

18 / 22

• Consider an m-bit string M (one instance of the data structure)

• Let Y (M) be the set of elements of U that M answers “Yes” to

• For any X represented by M , we must have X ⊆ Y (M) (no false

negatives)

• We allow at most a false positive rate of ǫ for U \X

Lower bound

18 / 22

• Consider an m-bit string M (one instance of the data structure)

• Let Y (M) be the set of elements of U that M answers “Yes” to

• For any X represented by M , we must have X ⊆ Y (M) (no false

negatives)

• We allow at most a false positive rate of ǫ for U \X
• Thus, Y (M) contains at most ǫ(u− n) elements in addition to X

Lower bound

18 / 22

• Consider an m-bit string M (one instance of the data structure)

• Let Y (M) be the set of elements of U that M answers “Yes” to

• For any X represented by M , we must have X ⊆ Y (M) (no false

negatives)

• We allow at most a false positive rate of ǫ for U \X
• Thus, Y (M) contains at most ǫ(u− n) elements in addition to X

X

U

Size ≤ ǫ(u− n)

Y (M)

M answers ”No”

Lower bound

18 / 22

• Consider an m-bit string M (one instance of the data structure)

• Let Y (M) be the set of elements of U that M answers “Yes” to

• For any X represented by M , we must have X ⊆ Y (M) (no false

negatives)

• We allow at most a false positive rate of ǫ for U \X
• Thus, Y (M) contains at most ǫ(u− n) elements in addition to X

X

U

Size ≤ ǫ(u− n)

Y (M)

M answers ”No”

• It follows that |Y (M)| ≤ n+ ǫ(u− n)

Lower bound

19 / 22

• Y (M): elements that M answers “Yes” to

• Have shown: |Y (M)| ≤ n+ ǫ(u− n)

Lower bound

19 / 22

• Y (M): elements that M answers “Yes” to

• Have shown: |Y (M)| ≤ n+ ǫ(u− n)
• M can thus not represent more than

(

n+ǫ(u−n)
n

)

subsets X since

they all need to be contained in Y (M)

Lower bound

19 / 22

• Y (M): elements that M answers “Yes” to

• Have shown: |Y (M)| ≤ n+ ǫ(u− n)
• M can thus not represent more than

(

n+ǫ(u−n)
n

)

subsets X since

they all need to be contained in Y (M)
• There are 2m choices of m-length bit string M and each represents

at most
(

n+ǫ(u−n)
n

)

sets X

Lower bound

19 / 22

• Y (M): elements that M answers “Yes” to

• Have shown: |Y (M)| ≤ n+ ǫ(u− n)
• M can thus not represent more than

(

n+ǫ(u−n)
n

)

subsets X since

they all need to be contained in Y (M)
• There are 2m choices of m-length bit string M and each represents

at most
(

n+ǫ(u−n)
n

)

sets X
• Hence, the data structure cannot represent more sets than

2m
(

n+ ǫ(u− n)

n

)

Lower bound

19 / 22

• Y (M): elements that M answers “Yes” to

• Have shown: |Y (M)| ≤ n+ ǫ(u− n)
• M can thus not represent more than

(

n+ǫ(u−n)
n

)

subsets X since

they all need to be contained in Y (M)
• There are 2m choices of m-length bit string M and each represents

at most
(

n+ǫ(u−n)
n

)

sets X
• Hence, the data structure cannot represent more sets than

2m
(

n+ ǫ(u− n)

n

)

• However, it needs to represent all of the
(

u
n

)

sets X so

2m
(

n+ ǫ(u− n)

n

)

≥

(

u

n

)

Lower bound

20 / 22

• We have shown 2m
(

n+ǫ(u−n)
n

)

≥
(

u
n

)

Lower bound

20 / 22

• We have shown 2m
(

n+ǫ(u−n)
n

)

≥
(

u
n

)

• Taking the logarithm and assuming n≪ ǫu, we isolate m:

m ≥ log2

(

(

u
n

)

(

n+ǫ(u−n)
n

)

)

Lower bound

20 / 22

• We have shown 2m
(

n+ǫ(u−n)
n

)

≥
(

u
n

)

• Taking the logarithm and assuming n≪ ǫu, we isolate m:

m ≥ log2

(

(

u
n

)

(

n+ǫ(u−n)
n

)

)

≈ log2

(

(

u
n

)

(

ǫu
n

)

)

Lower bound

20 / 22

• We have shown 2m
(

n+ǫ(u−n)
n

)

≥
(

u
n

)

• Taking the logarithm and assuming n≪ ǫu, we isolate m:

m ≥ log2

(

(

u
n

)

(

n+ǫ(u−n)
n

)

)

≈ log2

(

(

u
n

)

(

ǫu
n

)

)

≈ log2





(

un

n!

)

(

(ǫu)n

n!

)





Lower bound

20 / 22

• We have shown 2m
(

n+ǫ(u−n)
n

)

≥
(

u
n

)

• Taking the logarithm and assuming n≪ ǫu, we isolate m:

m ≥ log2

(

(

u
n

)

(

n+ǫ(u−n)
n

)

)

≈ log2

(

(

u
n

)

(

ǫu
n

)

)

≈ log2





(

un

n!

)

(

(ǫu)n

n!

)



 = log2 ((1/ǫ)
n) = n log2(1/ǫ)

Lower bound

20 / 22

• We have shown 2m
(

n+ǫ(u−n)
n

)

≥
(

u
n

)

• Taking the logarithm and assuming n≪ ǫu, we isolate m:

m ≥ log2

(

(

u
n

)

(

n+ǫ(u−n)
n

)

)

≈ log2

(

(

u
n

)

(

ǫu
n

)

)

≈ log2





(

un

n!

)

(

(ǫu)n

n!

)



 = log2 ((1/ǫ)
n) = n log2(1/ǫ)

• For the second approximation, we used that n≪ ǫu implies

(

ǫu

n

)

=
(ǫu)!

n!(ǫu− n)!

Lower bound

20 / 22

• We have shown 2m
(

n+ǫ(u−n)
n

)

≥
(

u
n

)

• Taking the logarithm and assuming n≪ ǫu, we isolate m:

m ≥ log2

(

(

u
n

)

(

n+ǫ(u−n)
n

)

)

≈ log2

(

(

u
n

)

(

ǫu
n

)

)

≈ log2





(

un

n!

)

(

(ǫu)n

n!

)



 = log2 ((1/ǫ)
n) = n log2(1/ǫ)

• For the second approximation, we used that n≪ ǫu implies

(

ǫu

n

)

=
(ǫu)!

n!(ǫu− n)!
=

(ǫu)(ǫu− 1) · · · (ǫu− n+ 1)

n!

Lower bound

20 / 22

• We have shown 2m
(

n+ǫ(u−n)
n

)

≥
(

u
n

)

• Taking the logarithm and assuming n≪ ǫu, we isolate m:

m ≥ log2

(

(

u
n

)

(

n+ǫ(u−n)
n

)

)

≈ log2

(

(

u
n

)

(

ǫu
n

)

)

≈ log2





(

un

n!

)

(

(ǫu)n

n!

)



 = log2 ((1/ǫ)
n) = n log2(1/ǫ)

• For the second approximation, we used that n≪ ǫu implies

(

ǫu

n

)

=
(ǫu)!

n!(ǫu− n)!
=

(ǫu)(ǫu− 1) · · · (ǫu− n+ 1)

n!
≈

(ǫu)n

n!

Lower bound

20 / 22

• We have shown 2m
(

n+ǫ(u−n)
n

)

≥
(

u
n

)

• Taking the logarithm and assuming n≪ ǫu, we isolate m:

m ≥ log2

(

(

u
n

)

(

n+ǫ(u−n)
n

)

)

≈ log2

(

(

u
n

)

(

ǫu
n

)

)

≈ log2





(

un

n!

)

(

(ǫu)n

n!

)



 = log2 ((1/ǫ)
n) = n log2(1/ǫ)

• For the second approximation, we used that n≪ ǫu implies

(

ǫu

n

)

=
(ǫu)!

n!(ǫu− n)!
=

(ǫu)(ǫu− 1) · · · (ǫu− n+ 1)

n!
≈

(ǫu)n

n!

• Similarly
(

u
n

)

≈ un

n! since n≪ ǫu ≤ u

Bloom filter compared to lower bound

21 / 22

• Have shown lower bound on m of n log2(1/ǫ) bits

Bloom filter compared to lower bound

21 / 22

• Have shown lower bound on m of n log2(1/ǫ) bits

• Recall that the Bloom filter requires n log2 e log2(1/ǫ) bits of space

Bloom filter compared to lower bound

21 / 22

• Have shown lower bound on m of n log2(1/ǫ) bits

• Recall that the Bloom filter requires n log2 e log2(1/ǫ) bits of space

• We see that the space requirement of the Bloom filter is within a

factor log2 e ≈ 1.44 of the lower bound

Bloom filter compared to lower bound

21 / 22

• Have shown lower bound on m of n log2(1/ǫ) bits

• Recall that the Bloom filter requires n log2 e log2(1/ǫ) bits of space

• We see that the space requirement of the Bloom filter is within a

factor log2 e ≈ 1.44 of the lower bound

• More complicated data structures with better space bounds exist, for

instance compressed Bloom filters

Drawback of our analysis

22 / 22

• Our analysis relied on hash functions with strong independence

guarantees

Drawback of our analysis

22 / 22

• Our analysis relied on hash functions with strong independence

guarantees

• It is not known how to ensure such guarantees without using a lot of

space (around n log n bits)

Drawback of our analysis

22 / 22

• Our analysis relied on hash functions with strong independence

guarantees

• It is not known how to ensure such guarantees without using a lot of

space (around n log n bits)

• Fortunately, Bloom filters work well using much more practical hash

functions with weaker guarantees

	Overview for today
	Independent random variables
	Hash functions for Bloom filters
	Problem definition
	Bloom filter
	Bloom filter
	Answering a query
	Are queries answered correctly?
	Are queries answered correctly?
	Bounding the chance of false positives
	Expressing the failure probability in terms of m, n and k
	Simplifying the expression for the false positive probability
	Minimizing the chance of false positives
	Space requirement for k = k
	Better data structure than the Bloom filter?
	Lower bound
	Lower bound
	Lower bound
	Lower bound
	Bloom filter compared to lower bound
	Drawback of our analysis

