Bloom Filters

Christian Wulff-Nilsen
Algorithmic Techniques for Modern Data Models
DTU

September 5,2025

• Independent random variables

- Independent random variables
- Hash functions for Bloom filters

- Independent random variables
- Hash functions for Bloom filters
- Problem definition

- Independent random variables
- Hash functions for Bloom filters
- Problem definition
- Description of Bloom filter

- Independent random variables
- Hash functions for Bloom filters
- Problem definition
- Description of Bloom filter
- Performance

- Independent random variables
- Hash functions for Bloom filters
- Problem definition
- Description of Bloom filter
- Performance
- Comparison to lower bound

• Random variables $X_1, \ldots, X_n : A \to B$ are *independent* if

$$P[X_1 = x_1, X_2 = x_2, \dots, X_n = x_n]$$

= $P[X_1 = x_1] \cdot P[X_2 = x_2] \cdot \dots \cdot P[X_n = x_n]$

• Random variables $X_1, \ldots, X_n : A \to B$ are *independent* if

$$P[X_1 = x_1, X_2 = x_2, \dots, X_n = x_n]$$

$$= P[X_1 = x_1] \cdot P[X_2 = x_2] \cdot \dots \cdot P[X_n = x_n]$$

for all $x_1, \ldots, x_n \in B$

• This property also holds for every subset of variables

• Random variables $X_1, \ldots, X_n : A \to B$ are independent if

$$P[X_1 = x_1, X_2 = x_2, \dots, X_n = x_n]$$

= $P[X_1 = x_1] \cdot P[X_2 = x_2] \cdot \dots \cdot P[X_n = x_n]$

- This property also holds for every subset of variables
- Example:
 - \circ n coin tosses, $X_i=1$ if the ith toss is heads and $X_i=0$ otherwise

• Random variables $X_1, \ldots, X_n : A \to B$ are *independent* if

$$P[X_1 = x_1, X_2 = x_2, \dots, X_n = x_n]$$

= $P[X_1 = x_1] \cdot P[X_2 = x_2] \cdot \dots \cdot P[X_n = x_n]$

- This property also holds for every subset of variables
- Example:
 - \circ n coin tosses, $X_i=1$ if the ith toss is heads and $X_i=0$ otherwise
 - These random variables are independent so the probability that the first, third, and fourth toss are all heads is

ullet Random variables $X_1,\ldots,X_n:A o B$ are *independent* if

$$P[X_1 = x_1, X_2 = x_2, \dots, X_n = x_n]$$

= $P[X_1 = x_1] \cdot P[X_2 = x_2] \cdot \dots \cdot P[X_n = x_n]$

- This property also holds for every subset of variables
- Example:
 - \circ n coin tosses, $X_i=1$ if the ith toss is heads and $X_i=0$ otherwise
 - These random variables are independent so the probability that the first, third, and fourth toss are all heads is

$$P[X_1 = 1, X_3 = 1, X_4 = 1]$$

= $P[X_1 = 1] \cdot P[X_3 = 1] \cdot P[X_4 = 1]$

• A hash function is a mapping $h:U\to M$ from a universe U of size u to a set $M=\{1,\ldots,m\}$; typically, $m\ll u$

- A hash function is a mapping $h:U\to M$ from a universe U of size u to a set $M=\{1,\ldots,m\}$; typically, $m\ll u$
- For the analysis of Bloom filters, we need certain properties of k hash functions h_1, \ldots, h_k :

- A hash function is a mapping $h:U\to M$ from a universe U of size u to a set $M=\{1,\ldots,m\}$; typically, $m\ll u$
- For the analysis of Bloom filters, we need certain properties of k hash functions h_1, \ldots, h_k :
 - (Uniform hashing) Each h_i maps each element $x \in U$ to M uniformly at random:

$$P[h_i(x) = j] = \frac{1}{m} \text{ for } j = 1, \dots, m$$

- A hash function is a mapping $h:U\to M$ from a universe U of size u to a set $M=\{1,\ldots,m\}$; typically, $m\ll u$
- For the analysis of Bloom filters, we need certain properties of k hash functions h_1, \ldots, h_k :
 - (Uniform hashing) Each h_i maps each element $x \in U$ to M uniformly at random:

$$P[h_i(x) = j] = \frac{1}{m} \text{ for } j = 1, \dots, m$$

o (Independence) The ku random variables $h_i(x)$ for $i=1,\ldots,k$ and $x\in U$ are independent

- A hash function is a mapping $h:U\to M$ from a universe U of size u to a set $M=\{1,\ldots,m\}$; typically, $m\ll u$
- For the analysis of Bloom filters, we need certain properties of k hash functions h_1, \ldots, h_k :
 - (**Uniform hashing**) Each h_i maps each element $x \in U$ to M uniformly at random:

$$P[h_i(x) = j] = \frac{1}{m} \text{ for } j = 1, \dots, m$$

- o (Independence) The ku random variables $h_i(x)$ for $i=1,\ldots,k$ and $x\in U$ are independent
- \circ For instance, for any $x, y \in U$:

$$P[h_1(x) = 2, h_2(y) = 4] = P[h_1(x) = 2] \cdot P[h_2(y) = 4]$$

• We are given a universe U of size u and a subset $X = \{x_1, \dots, x_n\}$ of U of size n

- We are given a universe U of size u and a subset $X = \{x_1, \dots, x_n\}$ of U of size n
- We need to support two types of operations:

- We are given a universe U of size u and a subset $X = \{x_1, \dots, x_n\}$ of U of size n
- We need to support two types of operations:
 - \circ Inserting an element of $U\setminus X$ into X

- We are given a universe U of size u and a subset $X = \{x_1, \dots, x_n\}$ of U of size n
- We need to support two types of operations:
 - \circ Inserting an element of $U \setminus X$ into X
 - \circ Answer a query of the form "Is $x \in X$?" for any query element $x \in U$

 $\bullet \quad \text{A Bloom filter for representing a set } X \subseteq U \text{ consists of:} \\$

- A Bloom filter for representing a set $X \subseteq U$ consists of:
 - \circ A bit array M of length m with indices $1,\ldots,m$

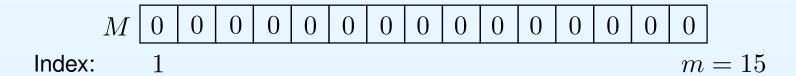
- A Bloom filter for representing a set $X \subseteq U$ consists of:
 - $\circ\quad \mbox{A bit array }M\mbox{ of length }m\mbox{ with indices }1,\ldots,m$
 - \circ k hash functions, $h_1,\ldots,h_k:U o\{1,\ldots,m\}$

- A Bloom filter for representing a set $X \subseteq U$ consists of:
 - $\circ\quad \mbox{A bit array }M\mbox{ of length }m\mbox{ with indices }1,\ldots,m$
 - \circ k hash functions, $h_1,\ldots,h_k:U o\{1,\ldots,m\}$
- We assume the hash functions have the properties stated earlier (uniformity, independence)

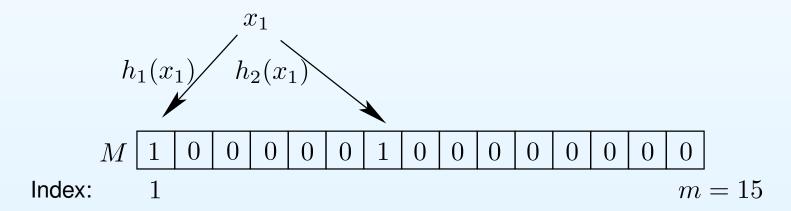
- ullet To represent X, the bits of M are set as follows:
 - $\circ \quad \text{Initialize all bits to } 0 \text{: } M[j] \leftarrow 0 \text{ for } j = 1, \ldots, m$

- ullet To represent X, the bits of M are set as follows:
 - $\quad \text{o} \quad \text{Initialize all bits to } 0 \text{: } M[j] \leftarrow 0 \text{ for } j = 1, \ldots, m \\$
 - For each $x \in X$ and each $i = 1, \ldots, k$, set $M[h_i(x)] \leftarrow 1$

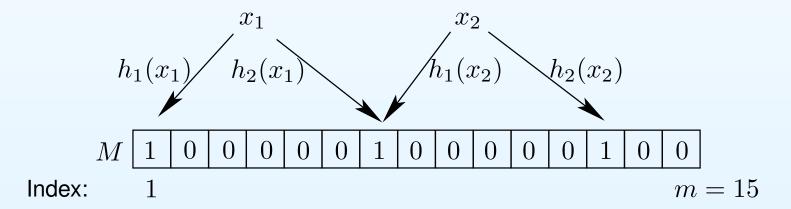
- To represent X, the bits of M are set as follows:
 - o Initialize all bits to 0: $M[j] \leftarrow 0$ for $j = 1, \dots, m$
 - For each $x \in X$ and each $i = 1, \ldots, k$, set $M[h_i(x)] \leftarrow 1$
 - \circ Example with $X = \{x_1, x_2\}$ and k = 2 hash functions:



- To represent X, the bits of M are set as follows:
 - o Initialize all bits to $0: M[j] \leftarrow 0$ for $j = 1, \dots, m$
 - For each $x \in X$ and each $i = 1, \ldots, k$, set $M[h_i(x)] \leftarrow 1$
 - \circ Example with $X=\{x_1,x_2\}$ and k=2 hash functions:



- To represent X, the bits of M are set as follows:
 - o Initialize all bits to $0: M[j] \leftarrow 0$ for $j = 1, \ldots, m$
 - For each $x \in X$ and each $i = 1, \ldots, k$, set $M[h_i(x)] \leftarrow 1$
 - \circ Example with $X=\{x_1,x_2\}$ and k=2 hash functions:



- To represent X, the bits of M are set as follows:
 - o Initialize all bits to 0: $M[j] \leftarrow 0$ for $j = 1, \dots, m$
 - For each $x \in X$ and each $i = 1, \ldots, k$, set $M[h_i(x)] \leftarrow 1$
 - Example with $X = \{x_1, x_2\}$ and k = 2 hash functions:
- ullet This makes the insertion of a new element x straightforward:
 - $\circ M[h_i(x)] \leftarrow 1 \text{ for } i = 1, \dots, k$

- To represent X, the bits of M are set as follows:
 - o Initialize all bits to 0: $M[j] \leftarrow 0$ for $j = 1, \dots, m$
 - For each $x \in X$ and each $i = 1, \ldots, k$, set $M[h_i(x)] \leftarrow 1$
 - Example with $X = \{x_1, x_2\}$ and k = 2 hash functions:
- This makes the insertion of a new element *x* straightforward:
 - $\circ M[h_i(x)] \leftarrow 1 \text{ for } i = 1, \dots, k$
- We therefore focus on analyzing queries

Answering a query

 \bullet Recall that the Bloom filter should answer queries of the form "Is $x \in X$?" for any $x \in U$

Answering a query

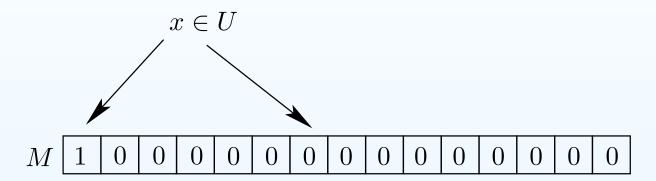
- Recall that the Bloom filter should answer queries of the form "Is $x \in X$?" for any $x \in U$
- This is done as follows:
 - \circ If $M[h_i(x)] = 1$ for every $i = 1, \ldots, k$, answer "Yes"

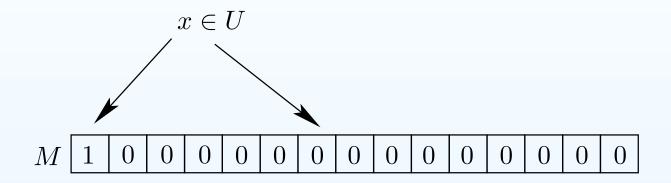
Answering a query

- Recall that the Bloom filter should answer queries of the form "Is $x \in X$?" for any $x \in U$
- This is done as follows:
 - \circ If $M[h_i(x)] = 1$ for every $i = 1, \ldots, k$, answer "Yes"
 - o Otherwise, answer "No"

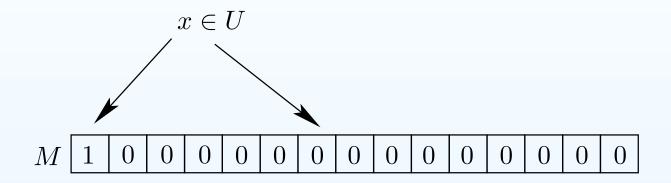
Are queries answered correctly?

• If the Bloom filter answers "No" to a query for x, we must have $x \notin X$:

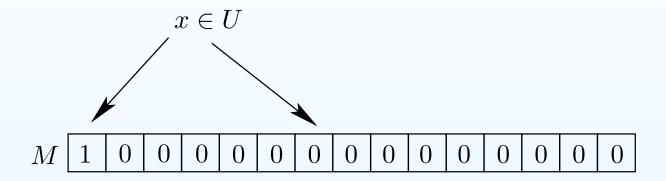




- This follows since:
 - $\circ M[h_i(x)] = 0$ for at least one i (since the answer is "No")



- This follows since:
 - $\circ M[h_i(x)] = 0$ for at least one i (since the answer is "No")
 - \circ No element of X has this property (by construction of the Bloom filter)

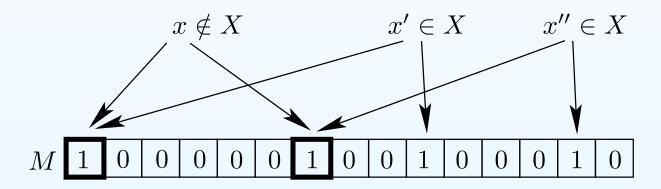


- This follows since:
 - $\circ M[h_i(x)] = 0$ for at least one i (since the answer is "No")
 - \circ No element of X has this property (by construction of the Bloom filter)
- Conclusion: the Bloom filter is always correct when it answers "No"

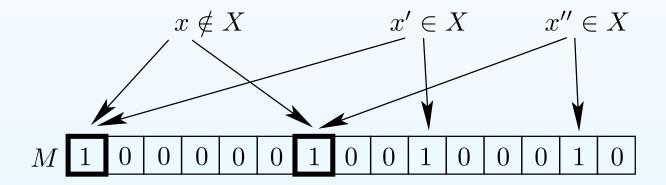
• If the Bloom filter answers "Yes", we cannot be sure that $x \in X$:

- If the Bloom filter answers "Yes", we cannot be sure that $x \in X$:
 - We could have $x \notin X$ and all bits $h_i(x)$ of M were set to 1 by elements of X:

- If the Bloom filter answers "Yes", we cannot be sure that $x \in X$:
 - We could have $x \notin X$ and all bits $h_i(x)$ of M were set to 1 by elements of X:

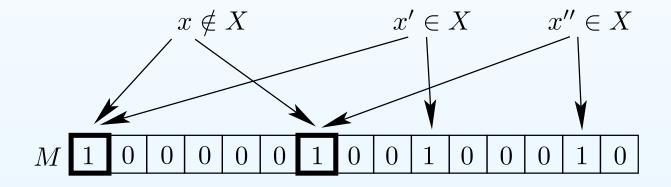


- If the Bloom filter answers "Yes", we cannot be sure that $x \in X$:
 - We could have $x \notin X$ and all bits $h_i(x)$ of M were set to 1 by elements of X:



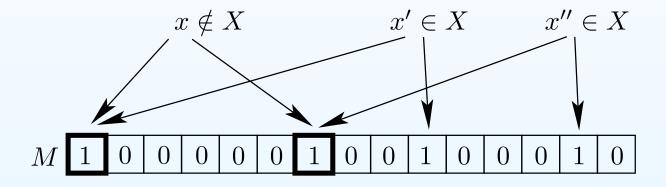
• Thus, the Bloom filter might be wrong when it answers "Yes"

- If the Bloom filter answers "Yes", we cannot be sure that $x \in X$:
 - We could have $x \notin X$ and all bits $h_i(x)$ of M were set to 1 by elements of X:



- Thus, the Bloom filter might be wrong when it answers "Yes"
- In summary, it can have false positives but not false negatives

- If the Bloom filter answers "Yes", we cannot be sure that $x \in X$:
 - We could have $x \notin X$ and all bits $h_i(x)$ of M were set to 1 by elements of X:



- Thus, the Bloom filter might be wrong when it answers "Yes"
- In summary, it can have false positives but not false negatives
- We want to bound the probability of false positives

• Suppose a ρ -fraction of the bits of M are 0; call this event ${\mathcal E}$

- Suppose a ρ -fraction of the bits of M are 0; call this event $\mathcal E$
- Given $x \notin X$, we want to bound the probability that the Bloom filter answers "Yes" to x

- Suppose a ho-fraction of the bits of M are 0; call this event ${\cal E}$
- Given $x \notin X$, we want to bound the probability that the Bloom filter answers "Yes" to x
- Random variables $h_1(x), \ldots, h_k(x)$ are
 - \circ uniformly distributed in $\{1,\ldots,m\}$,

- Suppose a ho-fraction of the bits of M are 0; call this event ${\cal E}$
- Given $x \notin X$, we want to bound the probability that the Bloom filter answers "Yes" to x
- Random variables $h_1(x), \ldots, h_k(x)$ are
 - \circ uniformly distributed in $\{1,\ldots,m\}$,
 - \circ independent of ${\mathcal E}$

- Suppose a ho-fraction of the bits of M are 0; call this event ${\cal E}$
- Given $x \notin X$, we want to bound the probability that the Bloom filter answers "Yes" to x
- Random variables $h_1(x), \ldots, h_k(x)$ are
 - \circ uniformly distributed in $\{1,\ldots,m\}$,
 - \circ independent of \mathcal{E} (x is not considered in the construction of M)

- Suppose a ρ -fraction of the bits of M are 0; call this event $\mathcal E$
- Given $x \notin X$, we want to bound the probability that the Bloom filter answers "Yes" to x
- Random variables $h_1(x), \ldots, h_k(x)$ are
 - \circ uniformly distributed in $\{1,\ldots,m\}$,
 - \circ independent of \mathcal{E} (x is not considered in the construction of M)
- This implies that for any i,

$$P[M[h_i(x)] = 1] = 1 - P[M[h_i(x)] = 0] = 1 - \rho$$

- Suppose a ρ -fraction of the bits of M are 0; call this event $\mathcal E$
- Given $x \notin X$, we want to bound the probability that the Bloom filter answers "Yes" to x
- Random variables $h_1(x), \ldots, h_k(x)$ are
 - \circ uniformly distributed in $\{1,\ldots,m\}$,
 - \circ independent of ${\mathcal E}$ (x is not considered in the construction of M)
- This implies that for any i,

$$P[M[h_i(x)] = 1] = 1 - P[M[h_i(x)] = 0] = 1 - \rho$$

- Suppose a ho-fraction of the bits of M are 0; call this event ${\mathcal E}$
- Given $x \notin X$, we want to bound the probability that the Bloom filter answers "Yes" to x
- Random variables $h_1(x), \ldots, h_k(x)$ are
 - \circ uniformly distributed in $\{1,\ldots,m\}$,
 - \circ independent of \mathcal{E} (x is not considered in the construction of M)
- This implies that for any i,

$$P[M[h_i(x)] = 1] = 1 - P[M[h_i(x)] = 0] = 1 - \rho$$

• Using independence of $h_1(x), \ldots, h_k(x)$, the probability that the Bloom filter incorrectly answers "Yes" for x is thus

$$P[M[h_1(x)] = 1, \dots, M[h_k(x)] = 1] = (1 - \rho)^k$$

• Our goal: given m and n, pick the number k of hash functions to minimize the chance of false positives

- Our goal: given m and n, pick the number k of hash functions to minimize the chance of false positives
- Let p' be the probability that a specific bit j of M is 0,

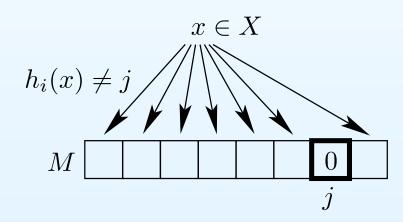
- Our goal: given m and n, pick the number k of hash functions to minimize the chance of false positives
- Let p' be the probability that a specific bit j of M is 0, i.e., that none of the k hash functions h_i map any of the n elements of X to that bit:

- Our goal: given m and n, pick the number k of hash functions to minimize the chance of false positives
- Let p' be the probability that a specific bit j of M is 0, i.e., that none of the k hash functions h_i map any of the n elements of X to that bit:

$$p' = \left(1 - \frac{1}{m}\right)^{kn}$$

- Our goal: given m and n, pick the number k of hash functions to minimize the chance of false positives
- Let p' be the probability that a specific bit j of M is 0, i.e., that none of the k hash functions h_i map any of the n elements of X to that bit:

$$p' = \left(1 - \frac{1}{m}\right)^{kn}$$



$$P[h_i(x) \neq j] = 1 - \frac{1}{m}$$

- Our goal: given m and n, pick the number k of hash functions to minimize the chance of false positives
- Let p' be the probability that a specific bit j of M is 0, i.e., that none of the k hash functions h_i map any of the n elements of X to that bit:

$$p' = \left(1 - \frac{1}{m}\right)^{kn}$$

• We have $E[\rho] = p'$ (exercise)

- Our goal: given m and n, pick the number k of hash functions to minimize the chance of false positives
- Let p' be the probability that a specific bit j of M is 0, i.e., that none of the k hash functions h_i map any of the n elements of X to that bit:

$$p' = \left(1 - \frac{1}{m}\right)^{kn}$$

- We have $E[\rho] = p'$ (exercise)
- Example: if each bit has a p'=50% chance of being 0, we expect the fraction ρ of 0-bits in M to be $\frac{1}{2}$

- Our goal: given m and n, pick the number k of hash functions to minimize the chance of false positives
- Let p' be the probability that a specific bit j of M is 0, i.e., that none of the k hash functions h_i map any of the n elements of X to that bit:

$$p' = \left(1 - \frac{1}{m}\right)^{kn}$$

- We have $E[\rho] = p'$ (exercise)
- Example: if each bit has a p'=50% chance of being 0, we expect the fraction ρ of 0-bits in M to be $\frac{1}{2}$
- It can be shown that ρ is concentrated around its expectation, meaning that with high probability, $\rho \approx E[\rho] = p'$

- Our goal: given m and n, pick the number k of hash functions to minimize the chance of false positives
- Let p' be the probability that a specific bit j of M is 0, i.e., that none of the k hash functions h_i map any of the n elements of X to that bit:

$$p' = \left(1 - \frac{1}{m}\right)^{kn}$$

- We have $E[\rho] = p'$ (exercise)
- Example: if each bit has a p'=50% chance of being 0, we expect the fraction ρ of 0-bits in M to be $\frac{1}{2}$
- It can be shown that ρ is concentrated around its expectation, meaning that with high probability, $\rho \approx E[\rho] = p'$
- Thus, the probability of a false positive is

$$(1-\rho)^k \approx (1-p')^k = \left(1-\left(1-\frac{1}{m}\right)^{kn}\right)^k$$

We showed that the probability of a false positive is approximately

$$\left(1-\left(1-\frac{1}{m}\right)^{kn}\right)^k$$

We showed that the probability of a false positive is approximately

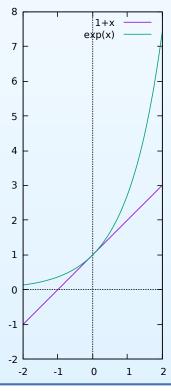
$$\left(1-\left(1-\frac{1}{m}\right)^{kn}\right)^k$$

• We simplify this with the approximation $1 + x \approx e^x$ for x close to 0

We showed that the probability of a false positive is approximately

$$\left(1-\left(1-\frac{1}{m}\right)^{kn}\right)^k$$

• We simplify this with the approximation $1 + x \approx e^x$ for x close to 0



We showed that the probability of a false positive is approximately

$$\left(1-\left(1-\frac{1}{m}\right)^{kn}\right)^k$$

- We simplify this with the approximation $1 + x \approx e^x$ for x close to 0
- Setting x = -1/m, the approximate probability then becomes:

$$\left(1 - \left(e^{-\frac{1}{m}}\right)^{kn}\right)^k = \left(1 - e^{-\frac{kn}{m}}\right)^k = \exp(k\ln(1 - e^{-\frac{kn}{m}}))$$

We showed that the probability of a false positive is approximately

$$\left(1-\left(1-\frac{1}{m}\right)^{kn}\right)^k$$

- We simplify this with the approximation $1 + x \approx e^x$ for x close to 0
- Setting x = -1/m, the approximate probability then becomes:

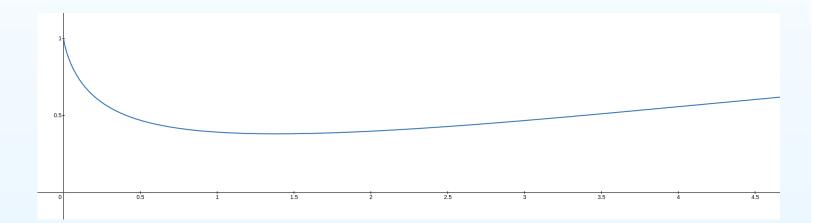
$$\left(1 - \left(e^{-\frac{1}{m}}\right)^{kn}\right)^k = \left(1 - e^{-\frac{kn}{m}}\right)^k = \exp(k\ln(1 - e^{-\frac{kn}{m}}))$$

We want to pick k to minimize this expression

• Goal: pick k to minimize the function $f(k) = \exp(k \ln(1 - e^{-\frac{kn}{m}}))$

- Goal: pick k to minimize the function $f(k) = \exp(k \ln(1 e^{-\frac{kn}{m}}))$
- Standard calculus shows that this occurs for $k_{\min} = \frac{m}{n} \ln 2$

- Goal: pick k to minimize the function $f(k) = \exp(k \ln(1 e^{-\frac{kn}{m}}))$
- Standard calculus shows that this occurs for $k_{\min} = \frac{m}{n} \ln 2$
- Example with m=2n and minimum at $k_{\min}=2\ln 2\approx 1.386$:



- Goal: pick k to minimize the function $f(k) = \exp(k \ln(1 e^{-\frac{kn}{m}}))$
- Standard calculus shows that this occurs for $k_{\min} = \frac{m}{n} \ln 2$
- The minimum probability of a false positive is thus approximately

$$f(k_{\min}) = \exp\left(\left(\frac{m}{n}\ln 2\right)\ln\left(1 - e^{-\left(\frac{m}{n}\ln 2\right)\frac{n}{m}}\right)\right)$$

- Goal: pick k to minimize the function $f(k) = \exp(k \ln(1 e^{-\frac{kn}{m}}))$
- Standard calculus shows that this occurs for $k_{\min} = \frac{m}{n} \ln 2$
- The minimum probability of a false positive is thus approximately

$$f(k_{\min}) = \exp\left(\left(\frac{m}{n}\ln 2\right)\ln(1 - e^{-\left(\frac{m}{n}\ln 2\right)\frac{n}{m}})\right)$$
$$= \exp\left(\left(\frac{m}{n}\ln 2\right)\ln(1 - 1/2)\right)$$

- Goal: pick k to minimize the function $f(k) = \exp(k \ln(1 e^{-\frac{\kappa n}{m}}))$
- Standard calculus shows that this occurs for $k_{\min} = \frac{m}{n} \ln 2$
- The minimum probability of a false positive is thus approximately

$$f(k_{\min}) = \exp\left(\left(\frac{m}{n}\ln 2\right)\ln(1 - e^{-\left(\frac{m}{n}\ln 2\right)\frac{n}{m}})\right)$$
$$= \exp\left(\left(\frac{m}{n}\ln 2\right)\ln(1 - 1/2)\right)$$
$$= \exp\left(-\frac{m}{n}(\ln 2)^2\right)$$

- Goal: pick k to minimize the function $f(k) = \exp(k \ln(1 e^{-\frac{kn}{m}}))$
- Standard calculus shows that this occurs for $k_{\min} = \frac{m}{n} \ln 2$
- The minimum probability of a false positive is thus approximately

$$f(k_{\min}) = \exp\left(\left(\frac{m}{n}\ln 2\right)\ln(1 - e^{-\left(\frac{m}{n}\ln 2\right)\frac{n}{m}})\right)$$

$$= \exp\left(\left(\frac{m}{n}\ln 2\right)\ln(1 - 1/2)\right)$$

$$= \exp\left(-\frac{m}{n}(\ln 2)^2\right)$$

$$= 2^{-\frac{m}{n}\ln 2} = 2^{-k_{\min}} = (1/2)^{k_{\min}}$$

- Goal: pick k to minimize the function $f(k) = \exp(k \ln(1 e^{-\frac{\kappa n}{m}}))$
- Standard calculus shows that this occurs for $k_{\min} = \frac{m}{n} \ln 2$
- The minimum probability of a false positive is thus approximately

$$f(k_{\min}) = \exp\left(\left(\frac{m}{n}\ln 2\right)\ln(1 - e^{-\left(\frac{m}{n}\ln 2\right)\frac{n}{m}})\right)$$

$$= \exp\left(\left(\frac{m}{n}\ln 2\right)\ln(1 - 1/2)\right)$$

$$= \exp\left(-\frac{m}{n}(\ln 2)^2\right)$$

$$= 2^{-\frac{m}{n}\ln 2} = 2^{-k_{\min}} = (1/2)^{k_{\min}}$$

Equivalently, this is

$$2^{-\frac{m}{n}\ln 2} = (2^{-\ln 2})^{\frac{m}{n}} \approx 0.6185^{\frac{m}{n}}$$

• Fix $k=k_{\min}=rac{m}{n}\ln 2$ to minimize the chance of false positives

- Fix $k=k_{\min}=\frac{m}{n}\ln 2$ to minimize the chance of false positives
- As we showed, the false positive rate ϵ is:

$$\epsilon = (1/2)^{k_{\min}} = (1/2)^{(m/n)\ln 2} \Leftrightarrow 1/\epsilon = 2^{(m/n)\ln 2}$$

- Fix $k=k_{\min}=\frac{m}{n}\ln 2$ to minimize the chance of false positives
- As we showed, the false positive rate ϵ is:

$$\epsilon = (1/2)^{k_{\min}} = (1/2)^{(m/n)\ln 2} \Leftrightarrow 1/\epsilon = 2^{(m/n)\ln 2}$$

• To analyze space, take the logarithm and isolate m:

$$\log_2(1/\epsilon) = (m/n) \ln 2$$

- Fix $k=k_{\min}=\frac{m}{n}\ln 2$ to minimize the chance of false positives
- As we showed, the false positive rate ϵ is:

$$\epsilon = (1/2)^{k_{\min}} = (1/2)^{(m/n)\ln 2} \Leftrightarrow 1/\epsilon = 2^{(m/n)\ln 2}$$

• To analyze space, take the logarithm and isolate m:

$$\log_2(1/\epsilon) = (m/n) \ln 2 \Leftrightarrow m = \frac{n \log_2(1/\epsilon)}{\ln 2}$$

- Fix $k=k_{\min}=\frac{m}{n}\ln 2$ to minimize the chance of false positives
- As we showed, the false positive rate ϵ is:

$$\epsilon = (1/2)^{k_{\min}} = (1/2)^{(m/n)\ln 2} \Leftrightarrow 1/\epsilon = 2^{(m/n)\ln 2}$$

• To analyze space, take the logarithm and isolate m:

$$\log_2(1/\epsilon) = (m/n)\ln 2 \Leftrightarrow m = \frac{n\log_2(1/\epsilon)}{\ln 2} = n\log_2 e\log_2(1/\epsilon)$$

- Fix $k=k_{\min}=rac{m}{n}\ln 2$ to minimize the chance of false positives
- As we showed, the false positive rate ϵ is:

$$\epsilon = (1/2)^{k_{\min}} = (1/2)^{(m/n)\ln 2} \Leftrightarrow 1/\epsilon = 2^{(m/n)\ln 2}$$

• To analyze space, take the logarithm and isolate m:

$$\log_2(1/\epsilon) = (m/n) \ln 2 \Leftrightarrow m = \frac{n \log_2(1/\epsilon)}{\ln 2} = n \log_2 e \log_2(1/\epsilon)$$

where we used $\log_2 e = \ln e / \ln 2 = 1 / \ln 2$

- Fix $k=k_{\min}=\frac{m}{n}\ln 2$ to minimize the chance of false positives
- As we showed, the false positive rate ϵ is:

$$\epsilon = (1/2)^{k_{\min}} = (1/2)^{(m/n)\ln 2} \Leftrightarrow 1/\epsilon = 2^{(m/n)\ln 2}$$

• To analyze space, take the logarithm and isolate m:

$$\log_2(1/\epsilon) = (m/n) \ln 2 \Leftrightarrow m = \frac{n \log_2(1/\epsilon)}{\ln 2} = n \log_2 e \log_2(1/\epsilon)$$

where we used $\log_2 e = \ln e / \ln 2 = 1 / \ln 2$

• Thus, the number m of bits stored is $n\log_2 e\log_2(1/\epsilon)$

Better data structure than the Bloom filter?

• Is there a data structure requiring significantly less space than a Bloom filter if we allow no false negatives and allow false positives for at most an ϵ fraction of elements of $U\setminus X$?

Better data structure than the Bloom filter?

- Is there a data structure requiring significantly less space than a Bloom filter if we allow no false negatives and allow false positives for at most an ϵ fraction of elements of $U\setminus X$?
- We will show that this is not the case: only minor improvements in space are possible

 \bullet Consider any such data structure and let m be the number of bits it requires

- ullet Consider any such data structure and let m be the number of bits it requires
- Each instance X gives rise to such an m-bit string and we say that X is represented by this string

ullet Consider an m-bit string M (one instance of the data structure)

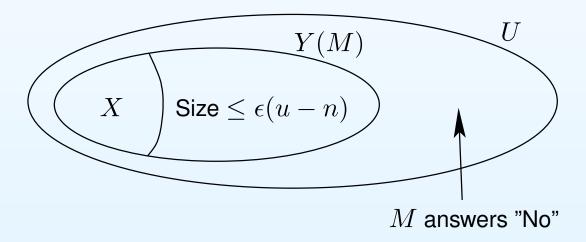
- \bullet Consider an m-bit string M (one instance of the data structure)
- \bullet Let Y(M) be the set of elements of U that M answers "Yes" to

- Consider an m-bit string M (one instance of the data structure)
- ullet Let Y(M) be the set of elements of U that M answers "Yes" to
- For any X represented by M, we must have $X \subseteq Y(M)$ (no false negatives)

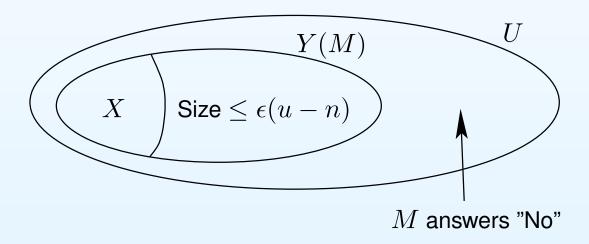
- Consider an m-bit string M (one instance of the data structure)
- ullet Let Y(M) be the set of elements of U that M answers "Yes" to
- For any X represented by M, we must have $X \subseteq Y(M)$ (no false negatives)
- ullet We allow at most a false positive rate of ϵ for $U\setminus X$

- Consider an m-bit string M (one instance of the data structure)
- ullet Let Y(M) be the set of elements of U that M answers "Yes" to
- For any X represented by M, we must have $X \subseteq Y(M)$ (no false negatives)
- $\bullet \quad \text{We allow at most a false positive rate of ϵ for $U \setminus X$}$
- Thus, Y(M) contains at most $\epsilon(u-n)$ elements in addition to X

- Consider an m-bit string M (one instance of the data structure)
- ullet Let Y(M) be the set of elements of U that M answers "Yes" to
- For any X represented by M, we must have $X \subseteq Y(M)$ (no false negatives)
- ullet We allow at most a false positive rate of ϵ for $U\setminus X$
- Thus, Y(M) contains at most $\epsilon(u-n)$ elements in addition to X



- Consider an m-bit string M (one instance of the data structure)
- ullet Let Y(M) be the set of elements of U that M answers "Yes" to
- For any X represented by M, we must have $X \subseteq Y(M)$ (no false negatives)
- ullet We allow at most a false positive rate of ϵ for $U\setminus X$
- Thus, Y(M) contains at most $\epsilon(u-n)$ elements in addition to X



• It follows that $|Y(M)| \le n + \epsilon(u - n)$

- $\bullet \quad Y(M) \text{: elements that } M \text{ answers "Yes" to} \\$
- Have shown: $|Y(M)| \le n + \epsilon(u n)$

- ullet Y(M): elements that M answers "Yes" to
- Have shown: $|Y(M)| \le n + \epsilon(u-n)$
- M can thus not represent more than $\binom{n+\epsilon(u-n)}{n}$ subsets X since they all need to be contained in Y(M)

- ullet Y(M): elements that M answers "Yes" to
- Have shown: $|Y(M)| \le n + \epsilon(u-n)$
- M can thus not represent more than $\binom{n+\epsilon(u-n)}{n}$ subsets X since they all need to be contained in Y(M)
- There are 2^m choices of m-length bit string M and each represents at most $\binom{n+\epsilon(u-n)}{n}$ sets X

- ullet Y(M): elements that M answers "Yes" to
- Have shown: $|Y(M)| \le n + \epsilon(u-n)$
- M can thus not represent more than $\binom{n+\epsilon(u-n)}{n}$ subsets X since they all need to be contained in Y(M)
- There are 2^m choices of m-length bit string M and each represents at most $\binom{n+\epsilon(u-n)}{n}$ sets X
- Hence, the data structure cannot represent more sets than

$$2^m \binom{n + \epsilon(u - n)}{n}$$

- ullet Y(M): elements that M answers "Yes" to
- Have shown: $|Y(M)| \le n + \epsilon(u-n)$
- M can thus not represent more than $\binom{n+\epsilon(u-n)}{n}$ subsets X since they all need to be contained in Y(M)
- There are 2^m choices of m-length bit string M and each represents at most $\binom{n+\epsilon(u-n)}{n}$ sets X
- Hence, the data structure cannot represent more sets than

$$2^m \binom{n + \epsilon(u - n)}{n}$$

• However, it needs to represent *all* of the $\binom{u}{n}$ sets X so

$$2^m \binom{n + \epsilon(u - n)}{n} \ge \binom{u}{n}$$

• We have shown $2^m \binom{n+\epsilon(u-n)}{n} \geq \binom{u}{n}$

- We have shown $2^m \binom{n+\epsilon(u-n)}{n} \ge \binom{u}{n}$
- Taking the logarithm and assuming $n \ll \epsilon u$, we isolate m:

$$m \ge \log_2\left(\frac{\binom{u}{n}}{\binom{n+\epsilon(u-n)}{n}}\right)$$

- We have shown $2^m \binom{n+\epsilon(u-n)}{n} \ge \binom{u}{n}$
- Taking the logarithm and assuming $n \ll \epsilon u$, we isolate m:

$$m \ge \log_2\left(\frac{\binom{u}{n}}{\binom{n+\epsilon(u-n)}{n}}\right) \approx \log_2\left(\frac{\binom{u}{n}}{\binom{\epsilon u}{n}}\right)$$

- We have shown $2^m \binom{n+\epsilon(u-n)}{n} \ge \binom{u}{n}$
- Taking the logarithm and assuming $n \ll \epsilon u$, we isolate m:

$$m \ge \log_2\left(\frac{\binom{u}{n}}{\binom{n+\epsilon(u-n)}{n}}\right) \approx \log_2\left(\frac{\binom{u}{n}}{\binom{\epsilon u}{n}}\right)$$
$$\approx \log_2\left(\frac{\binom{u^n}{n!}}{\binom{(\epsilon u)^n}{n!}}\right)$$

- We have shown $2^m \binom{n+\epsilon(u-n)}{n} \ge \binom{u}{n}$
- Taking the logarithm and assuming $n \ll \epsilon u$, we isolate m:

$$m \ge \log_2\left(\frac{\binom{u}{n}}{\binom{n+\epsilon(u-n)}{n}}\right) \approx \log_2\left(\frac{\binom{u}{n}}{\binom{\epsilon u}{n}}\right)$$
$$\approx \log_2\left(\frac{\left(\frac{u^n}{n!}\right)}{\left(\frac{(\epsilon u)^n}{n!}\right)}\right) = \log_2\left((1/\epsilon)^n\right) = n\log_2(1/\epsilon)$$

- We have shown $2^m \binom{n+\epsilon(u-n)}{n} \ge \binom{u}{n}$
- Taking the logarithm and assuming $n \ll \epsilon u$, we isolate m:

$$m \ge \log_2\left(\frac{\binom{u}{n}}{\binom{n+\epsilon(u-n)}{n}}\right) \approx \log_2\left(\frac{\binom{u}{n}}{\binom{\epsilon u}{n}}\right)$$
$$\approx \log_2\left(\frac{\binom{u^n}{n!}}{\binom{(\epsilon u)^n}{n!}}\right) = \log_2\left((1/\epsilon)^n\right) = n\log_2(1/\epsilon)$$

• For the second approximation, we used that $n \ll \epsilon u$ implies

$$\binom{\epsilon u}{n} = \frac{(\epsilon u)!}{n!(\epsilon u - n)!}$$

- We have shown $2^m \binom{n+\epsilon(u-n)}{n} \ge \binom{u}{n}$
- Taking the logarithm and assuming $n \ll \epsilon u$, we isolate m:

$$m \ge \log_2\left(\frac{\binom{u}{n}}{\binom{n+\epsilon(u-n)}{n}}\right) \approx \log_2\left(\frac{\binom{u}{n}}{\binom{\epsilon u}{n}}\right)$$
$$\approx \log_2\left(\frac{\binom{u^n}{n!}}{\binom{(\epsilon u)^n}{n!}}\right) = \log_2\left((1/\epsilon)^n\right) = n\log_2(1/\epsilon)$$

• For the second approximation, we used that $n \ll \epsilon u$ implies

$$\binom{\epsilon u}{n} = \frac{(\epsilon u)!}{n!(\epsilon u - n)!} = \frac{(\epsilon u)(\epsilon u - 1)\cdots(\epsilon u - n + 1)}{n!}$$

- We have shown $2^m \binom{n+\epsilon(u-n)}{n} \ge \binom{u}{n}$
- Taking the logarithm and assuming $n \ll \epsilon u$, we isolate m:

$$m \ge \log_2\left(\frac{\binom{u}{n}}{\binom{n+\epsilon(u-n)}{n}}\right) \approx \log_2\left(\frac{\binom{u}{n}}{\binom{\epsilon u}{n}}\right)$$
$$\approx \log_2\left(\frac{\binom{u^n}{n!}}{\binom{(\epsilon u)^n}{n!}}\right) = \log_2\left((1/\epsilon)^n\right) = n\log_2(1/\epsilon)$$

• For the second approximation, we used that $n \ll \epsilon u$ implies

$$\binom{\epsilon u}{n} = \frac{(\epsilon u)!}{n!(\epsilon u - n)!} = \frac{(\epsilon u)(\epsilon u - 1)\cdots(\epsilon u - n + 1)}{n!} \approx \frac{(\epsilon u)^n}{n!}$$

- We have shown $2^m \binom{n+\epsilon(u-n)}{n} \ge \binom{u}{n}$
- Taking the logarithm and assuming $n \ll \epsilon u$, we isolate m:

$$m \ge \log_2\left(\frac{\binom{u}{n}}{\binom{n+\epsilon(u-n)}{n}}\right) \approx \log_2\left(\frac{\binom{u}{n}}{\binom{\epsilon u}{n}}\right)$$
$$\approx \log_2\left(\frac{\left(\frac{u^n}{n!}\right)}{\left(\frac{(\epsilon u)^n}{n!}\right)}\right) = \log_2\left((1/\epsilon)^n\right) = n\log_2(1/\epsilon)$$

• For the second approximation, we used that $n \ll \epsilon u$ implies

$$\binom{\epsilon u}{n} = \frac{(\epsilon u)!}{n!(\epsilon u - n)!} = \frac{(\epsilon u)(\epsilon u - 1)\cdots(\epsilon u - n + 1)}{n!} \approx \frac{(\epsilon u)^n}{n!}$$

• Similarly $\binom{u}{n} \approx \frac{u^n}{n!}$ since $n \ll \epsilon u \leq u$

 \bullet Have shown lower bound on m of $n\log_2(1/\epsilon)$ bits

- Have shown lower bound on m of $n\log_2(1/\epsilon)$ bits
- Recall that the Bloom filter requires $n\log_2 e\log_2(1/\epsilon)$ bits of space

- Have shown lower bound on m of $n\log_2(1/\epsilon)$ bits
- Recall that the Bloom filter requires $n\log_2 e\log_2(1/\epsilon)$ bits of space
- We see that the space requirement of the Bloom filter is within a factor $\log_2 e \approx 1.44$ of the lower bound

- Have shown lower bound on m of $n\log_2(1/\epsilon)$ bits
- Recall that the Bloom filter requires $n \log_2 e \log_2(1/\epsilon)$ bits of space
- We see that the space requirement of the Bloom filter is within a factor $\log_2 e \approx 1.44$ of the lower bound
- More complicated data structures with better space bounds exist, for instance compressed Bloom filters

Drawback of our analysis

• Our analysis relied on hash functions with strong independence guarantees

Drawback of our analysis

- Our analysis relied on hash functions with strong independence guarantees
- It is not known how to ensure such guarantees without using a lot of space (around $n \log n$ bits)

Drawback of our analysis

- Our analysis relied on hash functions with strong independence guarantees
- It is not known how to ensure such guarantees without using a lot of space (around $n \log n$ bits)
- Fortunately, Bloom filters work well using much more practical hash functions with weaker guarantees