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Independent random variables

e Random variables X1,...,X,, : A — B are independent if

P[Xl :lel,XQ :xg,...,Xn :CE‘n]
:P[Xl 2331] °P[X2 :CEQ]P[Xn :a:n]

forall z¢,...,2, € B
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e Random variables X1,...,X,, : A — B are independent if

P[Xl :ZCl,Xz :xg,...,Xn :CE‘n]

— P[Xl — .731] : P[X2 — CEQ] ° 5506 0 P[Xn — a:n]
forall z¢,...,2, € B
e This property also holds for every subset of variables

e Example:

o n coin tosses, X; = 1 if the ¢th toss is heads and X; = 0O
otherwise

o These random variables are independent so the probability that
the first, third, and fourth toss are all heads is

P[X;=1,X3=1,X = 1]
— P[X; = 1] - P[X3 = 1] - P[Xy = 1]
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Hash functions for Bloom filters

e A hash function is a mapping i : U — M from a universe U of size
utoaset M = {1,...,m};typically, m < u
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Hash functions for Bloom filters

e A hash function is a mapping h : U — M from a universe U of size
utoaset M = {1,...,m};typically, m < u

e For the analysis of Bloom filters, we need certain properties of £ hash
functions A1, ..., hg:

o (Uniform hashing) Each h; maps each element x € U to M
uniformly at random:

1
Plhi(r) =9|= —forg=1,...,
[ z(x) ]] m J m
o (Independence) The ku random variables h;(x) fori =1,... k

and x € U are independent
o Forinstance, forany z,y € U.:

Plhi(z) = 2, ha(y) = 4] = Plhi(z) = 2] - Plha(y) = 4]
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Problem definition

e We are given a universe U of size u and a subset
X =A{x1,...,z,} of U of size n
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Problem definition

e We are given a universe U of size u and a subset
X =A{x1,...,z,} of U of size n
e We need to support two types of operations:

o Inserting an element of U \ X into X
o Answer a query of the form “Is x € X ?” for any query element
xeU
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Bloom filter

e A Bloom filter for representing a set X C U consists of:

o A bit array M of length m with indices 1,...,m
o k hash functions, hy, ..., h; : U — {1,...,m}

e We assume the hash functions have the properties stated earlier
(uniformity, independence)

6/22 "



Bloom filter

e To represent X, the bits of M are set as follows:

o Initialize all bits to 0: M [j] <~ 0forj =1,...,m
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e Torepresent X, the bits of M are set as follows:

o Initialize all bits to 0: M [j] <~ 0forj =1,...,m
o Foreachx € X andeachi =1,...,k,set M|h;(x)] <1
o Example with X = {x1, 22} and k = 2 hash functions:

1 X2

hi(z1) h2($N)/1($2M12)
M{110[0]0]l0]O0|1[{0]0O[0]0O0]0{1
Index: 1 m =15
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e To represent X, the bits of M are set as follows:

o Initialize all bits to 0: M [j] <~ 0forj =1,...,m
o Foreachx € X andeachi=1,...,k, set M|h;(x)] < 1
o Example with X = {x1, 22} and k = 2 hash functions:

e This makes the insertion of a new element x straightforward:
o Mlhi(z)] < 1fori=1,...,k

e We therefore focus on analyzing queries
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Answering a query

e Recall that the Bloom filter should answer queries of the form “Is
x € X?foranyx € U

g/22 "



Answering a query

e Recall that the Bloom filter should answer queries of the form “Is
x € X?foranyx € U
e This is done as follows:

o If Mhi(x)] = 1foreveryi=1,...,k, answer “Yes”

g/22 "



Answering a query

e Recall that the Bloom filter should answer queries of the form “Is
x € X?foranyx € U
e This is done as follows:

o If Mhi(x)] = 1foreveryi=1,...,k, answer “Yes”
o Otherwise, answer “No”
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Are queries answered correctly?

e If the Bloom filter answers “No” to a query for x, we must have
r ¢ X:
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Are queries answered correctly?

e If the Bloom filter answers “No” to a query for x, we must have
r ¢ X:

M{1]0]10{0]0]0|0{0|0]O|O][O]0O[0]O

e This follows since:

o M]Jh;(x)] = 0 for at least one i (since the answer is “No”)
o No element of X has this property (by construction of the Bloom
filter)

e Conclusion: the Bloom filter is always correct when it answers “No”
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Are queries answered correctly?

e If the Bloom filter answers “Yes”, we cannot be sure that x € X:
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Are queries answered correctly?

e If the Bloom filter answers “Yes”, we cannot be sure that x € X:

o We could have = ¢ X and all bits h;(x) of M were set to 1 by

elements of X :

m[i]o

e X e X

o[1]o

e Thus, the Bloom filter might be wrong when it answers “Yes”
e In summary, it can have false positives but not false negatives
e We want to bound the probability of false positives
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Bounding the chance of false positives

e Suppose a p-fraction of the bits of M are 0; call this event £
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Bounding the chance of false positives

e Suppose a p-fraction of the bits of M are 0; call this event £

e Givenx ¢ X, we want to bound the probability that the Bloom filter
answers “Yes” to x

e Random variables hi(x), ..., hi(z) are

o uniformly distributed in {1, ..., m},
o independent of £ (x is not considered in the construction of M)

e This implies that for any 1,

e Using independence of h1(x),. .., hi(x), the probability that the
Bloom filter incorrectly answers “Yes” for x is thus

PM[hi(z)] = 1,..., M[hy(2)] = 1] = (1 — p)*
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e Our goal: given m and n, pick the number k& of hash functions to
minimize the chance of false positives
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Expressing the failure probability in terms of m, n and £

e Our goal: given m and n, pick the number & of hash functions to
minimize the chance of false positives

e Let p’ be the probability that a specific bit 7 of M is 0, i.e., that none
of the k£ hash functions h; map any of the n elements of X to that bit:

, < 1)]{371
p=(1-—
m

e We have F[p| = p’ (exercise)

e Example: if each bit has a p’ = 50% chance of being 0, we expect
the fraction p of O-bits in M to be %

e |t can be shown that p is concentrated around its expectation,
meaning that with high probability, p ~ E[p] = p’

e Thus, the probability of a false positive is

(1—p)f~1-p)= (1— (1— ;)lmy




Simplifying the expression for the false positive probability

e We showed that the probability of a false positive is approximately

(--5))
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e We showed that the probability of a false positive is approximately

(--5))

e We simplify this with the approximation 1 + x ~ e for x close to 0

T
1+x
exp(x) ——
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Simplifying the expression for the false positive probability

e We showed that the probability of a false positive is approximately

(--5))

e We simplify this with the approximation 1 + x ~ e for x close to 0
e Setting x = —1/m, the approximate probability then becomes:

(1 _ (eﬂi)k")k - (1 _ e—%")k — exp(kIn(l — e~ m))

e We want to pick £ to minimize this expression
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Minimizing the chance of false positives

kn

e Goal: pick k£ to minimize the function f (k) = exp(kIn(l —e™ m))
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Minimizing the chance of false positives

kn

e Goal: pick k£ to minimize the function f (k) = exp(kIn(l —e™ m))

e Standard calculus shows that this occurs for kpin = 7 In 2

e Example with m = 2n and minimum at ki, = 21n2 ~ 1.386:
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e The minimum probability of a false positive is thus approximately
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Minimizing the chance of false positives

e Goal: pick k£ to minimize the function f(k) = exp(kIn(1 — e_%n))

e Standard calculus shows that this occurs for kpin = 7 In 2

e The minimum probability of a false positive is thus approximately

f (kmin) = exp ((@ In 2) In(1 — e_(%hﬂ)%))

— exp ((% In 2) In(1 — 1/2))

= exp (—% (In 2)2)
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Minimizing the chance of false positives

kn

e Goal: pick k£ to minimize the function f (k) = exp(kIn(l —e™ m))

m

e Standard calculus shows that this occurs for kpin = 7 In 2

e The minimum probability of a false positive is thus approximately

f (kmin) = exp ((% In 2) In(1 — e_(%hﬂ)%))
exp ((% In 2) In(1 — 1/2))
— exp (—%(ln 2)2)

— 9= N2 _ 9—kmin _ (1/2)kmin
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Minimizing the chance of false positives

kn

e Goal: pick k£ to minimize the function f (k) = exp(kIn(l —e™ m))

m

e Standard calculus shows that this occurs for kpin = 7 In 2

e The minimum probability of a false positive is thus approximately

f (kmin) = exp ((@ In 2) In(1 — e_(%hﬂ)%))

n

— exp ((% In 2) In(1 — 1/2))

e Equivalently, this is

2—%1n2 _ (2— 1n2)
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Space requirement for £ = ki,

e Fixk = kmin = - In 2 to minimize the chance of false positives
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Space requirement for £ = £,

e Fixk = kmin = - In 2 to minimize the chance of false positives

e As we showed, the false positive rate € is:

€ = (1/2)’“min — (1/2)(m/n) In2 . 1/e = o(m/n)In2

e [0 analyze space, take the logarithm and isolate m:

nlogy(1/€)

— = nlog, elogy(1/€)

logs(1/€) = (m/n)In2 & m =

where we used logs e =Ine/In2=1/1n2
e Thus, the number m of bits stored is n log, e log,(1/¢€)
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Better data structure than the Bloom filter?

e |Is there a data structure requiring significantly less space than a
Bloom filter if we allow no false negatives and allow false positives for
at most an e fraction of elements of U \ X ?
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Better data structure than the Bloom filter?

e |Is there a data structure requiring significantly less space than a
Bloom filter if we allow no false negatives and allow false positives for

at most an e fraction of elements of U \ X ?
e We will show that this is not the case: only minor improvements in

space are possible
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Lower bound

e Consider any such data structure and let m be the number of bits it
requires

17/22 "



Lower bound

e Consider any such data structure and let m be the number of bits it
requires

e Each instance X gives rise to such an m-bit string and we say that
X is represented by this string
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Lower bound

e Consider an m-bit string M (one instance of the data structure)

e Let Y (M) be the set of elements of U that M answers “Yes” to

e Forany X represented by M, we must have X C Y (M) (no false
negatives)

e We allow at most a false positive rate of e for U \ X

e Thus, Y (M) contains at most ¢(u — n) elements in addition to X

=3y

M answers "No”

e ltfollowsthat |Y (M)| < n+ e(u —n)
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Lower bound

e Y (M): elements that M answers “Yes” to
e Have shown: |Y(M)| < n + e(u —n)
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Lower bound

e Y (M): elements that M answers “Yes” to

e Have shown: |Y(M)| < n + e(u —n)

e M can thus not represent more than (”Jre(?f;"_"))
they all need to be contained in Y (M)

e There are 2" choices of m-length bit string M and each represents
at most (”Jre(;;‘_”)) sets X
e Hence, the data structure cannot represent more sets than

- (n +e(u — n))

e However, it needs to represent all of the (!) sets X so

()= )

subsets X since
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Lower bound

e We have shown 2™ (””Le(u_n)) > (4)

n mn
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Lower bound

e We have shown 2™ (””Le(s_n)) > (1)

— \Nn
e Taking the logarithm and assuming n < eu, we isolate m:

e ((W?%)
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Lower bound

e We have shown 2™ (nH%_n)) > (1)

— \Nn
e Taking the logarithm and assuming n < eu, we isolate m:

m > log, ((n+6(éb)n))> = o ((%)

zlogz( (Car) )1og2<<1/e>”>mog2<1/e>
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20/22 "



Lower bound

e We have shown 2™ (nH%_n)) > (1)

— \Nn
e Taking the logarithm and assuming n < eu, we isolate m:

m > log, ((n+6(éb)n))> = o ((%)

G ) Z 1og, ((1/0)") = nlogy(1/6)

()

e For the second approximation, we used that n << eu implies

(ES) - n!(e(fzuz!n)!

~ log2
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Lower bound

e We have shown 2™ (nH%_n)) > (1)

— \Nn
e Taking the logarithm and assuming n < eu, we isolate m:

m > log, <(n+€(§)n))> ~ log, (é%)))
(E>) y ) = losa (/) =niostt/9

e For the second approximation, we used that n << eu implies
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Lower bound

e We have shown 2™ (nH%_n)) > (1)

— \Nn
e Taking the logarithm and assuming n < eu, we isolate m:

m > log, ((n+6(éb)n))> = o ((%)

) ) g, ((1/07) = nlogy(1/9

()

e For the second approximation, we used that n << eu implies

(eu) () (ew)(ew—1)(eu—nt1) (ew)

~ log,

n

n!(eu —n)! n! n!

o Similarly (1) ~ % since n < eu < u
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Bloom filter compared to lower bound

e Have shown lower bound on m of nlogy(1/€) bits
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Bloom filter compared to lower bound

e Have shown lower bound on m of nlogy(1/€) bits

e Recall that the Bloom filter requires n log, elog,(1/€) bits of space

e We see that the space requirement of the Bloom filter is within a
factor log, e /= 1.44 of the lower bound

e More complicated data structures with better space bounds exist, for
instance compressed Bloom filters
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Drawback of our analysis

e Our analysis relied on hash functions with strong independence
guaraniees
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Drawback of our analysis

e Our analysis relied on hash functions with strong independence
guaraniees

e |t is not known how to ensure such guarantees without using a lot of
space (around n log n bits)

e Fortunately, Bloom filters work well using much more practical hash
functions with weaker guarantees
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