Weekplan: Approximate Near Neighbor

Philip Bille Inge Li Gørtz Eva Rotenberg

References and Reading

- [1] Notes by Aleksandar Nikolov
- [2] Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions, Andoni and Indyk, Communications of the ACM, January 2008.

We recommend reading [1] in detail and [2] section 1-3.

Probability theory cheat-sheet

Markov's inequality: For Y being a positive-valued random variable,

$$P[Y \ge t] \le \frac{\mathbb{E}[Y]}{t} \, .$$

Exercises

1 Hamming Distance Let *P* be a set of *n* bit vectors each of length *d*. Give a data structure (for Hamming Distance) for which INSERT can be implemented in O(1) time and NEARESTNEIGHBOR in O(nd) time.

2 LSH Hamming Distance Let T_1, T_2 be hash tables of size 5 with hash functions $h_1(x) = (3x+4) \mod 5$ and $h_2(x) = (7x+2) \mod 5$. Let $g_1(x) = x_1x_4x_8$ and $g_2(x) = x_1x_7x_7$.

Insert the bit strings x = 10110011, y = 10001101, z = 00110010, u = 01001010, v = 01001000 and draw the hash tables. Compute the result of ApxNearNeighbor(10111010).

3 *c*-**Approximate Closest Pair under Hamming Distance** Assume you have a data structure bit vectors for which INSERT and APXNEARESTNEIGHBOR run in time T(n). The distance metric is the Hamming distance, *n* is the number of bit strings in the data structure, and APXNEARESTNEIGHBOR(*x*) returns a point no more than $c \cdot \min_{z \in P} d(x, z)$ away from *x*.

Give an algorithm that given a set *P* of *n* bit vectors each of length *d* finds a pair *x*, *y* of distinct strings in *P* in time O(T(n)n) such that $d(x, y) \le c \cdot \min_{u,v \in P, u \ne v} d(u, v)$.

4 Hamming Distance Analysis From the proof of Claim 1 on the slides: Prove that $Lp_1^k = 2$. *Hint:* Recall that $k = \lg n / \lg (1/p_2)$.

5 Hamming Distance Analysis 2 In this exercise we prove that the expected running time of a query is O(dL).

5.1 Let *y* be a string in *F*. Prove that $P[y \text{ collides with } x \text{ in } T_i] \leq 1/n$. *Hint:* Recall that $k = \log n / \log(1/p_2)$.

5.2 Let $X_{y,j} = 1$ if y collides with x in T_j and 0 otherwise, and let $X = \sum_{y \in F} \sum_{j=1}^{L} X_{y,j}$. Prove that $E[X] \leq L$.

5.3 Argue that the expected running time of a query is O(dL).

6 Jaccard distance and Sim Hash The *Jaccard similarity* of two sets is defined as $JSIM(A, B) = \frac{|A \cap B|}{|A \cup B|}$. In *Min-Hash* you pick a random permutation π of the elements in the universe and let $h(A) = \min_{a \in A} \pi(a)$.

- **6.1** Let $S_1 = \{a, e\}, S_2 = \{b\}, S_3 = \{a, c, e\}, S_4 = \{b, d, e\}$. Compute the Jaccard similarity of each pair of sets.
- **6.2** Let S_1, S_2, S_3, S_4 be as above and let the random permutation be (b, d, e, a, c), i.e., $\pi(a) = 4$, $\pi(b) = 1$, etc. Compute the min-hash value of each of the sets.
- **6.3** Prove that the probability that the min-hash of two sets is the same is equal to the Jaccard similarity of the two sets, i.e., that $P[h(A) = h(B)] = \frac{|A \cap B|}{|A \cup B|}$.
- **6.4** The Jaccard distance is defined as $d_J(a, b) = 1 JSIM(A, B)$. Show that the Jaccard distance is a metric. That is, show that:
 - 1. $d_J(A, B) \ge 0$ for all sets A and B,
 - 2. $d_I(A, B) = 0$ if and only if A = B,
 - 3. $d_J(A,B) = d_J(B,A),$
 - 4. $d_J(A,B) \le d_J(A,C) + d_J(C,B)$ for all sets *A*, *B* and *C*.

Hint: For 4. use $P[h(A) = h(B)] = \frac{|A \cap B|}{|A \cup B|}$.

6.5 Show that minhash is a locality sensitive has function for the Jaccard distance.