Streaming

Inge Li Gørtz

Counting (Distinct) Elements in a Stream

- Applications
- IP traffic logs
- How many distinct IP addresses used a given link to send their traffic from the beginning of the day, or how many distinct IP addresses are currently using a given link on ongoing flow?
- How many flows comprised one packet only (i.e., rare flows)?
- What are the top k heaviest flows during the day, or currently in progress?
- Search engine query logs.
- How many distinct queries in a list of queries?

Probabilistic Counting

Probabilistic Counting

- Counting. Count number of elements in the stream.
- Exact. Need $\lceil\lg m\rceil$ bits.

Probabilistic Counting

- Exercise. Alice is thinking of a number between 0 and m. She wants to tell Bob which number she is thinking of, but can only use a limited number of bits.
- Exact. Need $\lceil\lg m\rceil$ bits.
- Approximate. What is the best estimate Bob can get if Alice can only use:
- $\lceil\lg m\rceil-1$ bits?

Probabilistic Counting

- Exercise. Alice is thinking of a number between 0 and m. She wants to tell Bob which number she is thinking of, but can only use a limited number of bits.
- Exact. Need $\lceil\lg m\rceil$ bits.
- Approximate. What is the best estimate Bob can get if Alice can only use:
- $\lceil\lg m\rceil-1$ bits?

Probabilistic Counting

- Exercise. Alice is thinking of a number between 0 and m. She wants to tell Bob which number she is thinking of, but can only use a limited number of bits.
- Exact. Need $\lceil\lg m\rceil$ bits.
- Approximate. What is the best estimate Bob can get if Alice can only use:
- $\lceil\lg m\rceil-1$ bits?
- $\lceil\lg \lg m\rceil$ bits?

Probabilistic Counting

- Algorithm.

```
X\leftarrow0
while (stream is not empty) do
    toss a biased coin that is heads with probability 1/2 }\mp@subsup{}{}{X
    if heads then
        X\leftarrowX+1
Output 2X - 1
```

- $X_{i}=$ value of X after i elements seen. Let $Y_{i}=2^{X_{i}}$.
- Claim. $E\left[Y_{m}\right]=m+1$.
- Expected number of bits needed: $E\left[\log X_{m}\right]=E\left[\log \log Y_{m}\right]=O(\log \log m)$.

Probabilistic Counting

- Claim. $E\left[Y_{m}\right]=m+1$.
- Proof. By induction on m.

$$
\begin{aligned}
E\left[Y_{m}\right]=E\left[2^{X_{m}}\right] & =\sum_{j=0}^{\infty} 2^{j} \cdot P\left[X_{m}=j\right] \quad \text { Output } 2^{X}-1 \\
& =\sum_{j=0}^{\infty} 2^{j} \cdot\left(P\left[X_{m-1}=j\right] \cdot\left(1-\frac{1}{2^{j}}\right)+P\left[X_{m-1}=j-1\right] \cdot \frac{1}{2^{j-1}}\right) \\
& =\sum_{j=0}^{\infty} 2^{j} \cdot P\left[X_{m-1}=j\right]+\sum_{j=0}^{\infty} 2^{j} \cdot\left(\left(2 \cdot P\left[X_{m-1}=j-1\right]-P\left[X_{m-1}=j\right]\right) \cdot \frac{1}{2^{j}}\right) \\
& =\sum_{j=0}^{\infty} 2^{j} \cdot P\left[X_{m-1}=j\right]+\sum_{j=0}^{\infty}\left(2 \cdot P\left[X_{m-1}=j-1\right]-P\left[X_{m-1}=j\right]\right) \\
& =E\left[Y_{m-1}\right]+1 \\
& =(m-1+1)+1=m+1
\end{aligned}
$$

$X \leftarrow 0$

while (stream is not empty) do
toss a biased coin that is heads with probability $1 / 2^{X}$
if heads then
$X \leftarrow X+1$

Counting Distinct Elements

Counting Distinct Elements

- Goal. Output an (ε, δ)-estimate of the number d of distinct elements in the stream.
- (ε, δ)-estimate.

$$
P\left[\left|\frac{A(s)}{d}-1\right|>\varepsilon\right]<\delta
$$

where $A(s)$ is the output of algorithm A on stream s.

- AMS Algorithm.
- Simple
- Median trick
- Tail bounds

Pairwise Independent Hash Functions

- Pairwise Independent Hash Functions. A family of functions $\mathscr{H}=\{h \mid h: U \rightarrow[m]\}$ is pairwise independent if the following two conditions hold:

1. $\forall x \in U$, the random variable $h(x)$ is uniformly distributed in [m],
2. $\forall x \neq y \in U$, the random variables $h(x)$ and $h(y)$ are independent.

- Pairwise Independent Hash Functions. A hash function $h: U \rightarrow[m]$ is pairwise independent if for all $x \neq y \in U$ and $q, r \in[m]$:

$$
P[h(x)=q \wedge h(y)=r]=\frac{1}{m^{2}}
$$

AMS algorithm

- zeros (p). Number of zeros that the binary representation of p ends with.
- Intuition. Assume we have a large stream s of uniformly distributed numbers from [m].
- 1/2 of the numbers ends with 0 .
- $1 / 4$ of the numbers ends with 00.
- $1 / 8$ of the numbers ends with 000.
-

Therefore: let $z=\max _{x \in s} \operatorname{zeros}(x)$

- If $z=1$, then it is likely that the number of distinct integers is $2^{1}=2$.
- If $z=2$, then it is likely that the number of distinct integers is $2^{2}=4$.
- If $z=3$, then it is likely that the number of distinct integers is $2^{3}=8$.
-

AMS Algorithm

- AMS Algorithm

```
Choose a random function h: [n] -> [n] from a family of pairwise independent hash functions
z\leftarrow0
while (an item x arrives) do
    if zeros(h(x)) > z then
        z}\leftarrow\operatorname{zeros(h(x))
Output 2 }\mp@subsup{2}{}{z+1/2
```

- Let z^{\prime} be the value of z when algorithm ends and $d^{\prime}=2^{z+1 / 2}$ be the estimate returned by the algorithm.
- Want to bound probability that d^{\prime} is far from d :

$$
P\left[d^{\prime} \geq 3 d\right] \text { and } P\left[d^{\prime} \leq d / 3\right]
$$

AMS Algorithm

- Let z^{\prime} be the value of z when algorithm ends and $d^{\prime}=2^{z+1 / 2}$ be the estimate returned by the algorithm.
- Want to bound probability that d^{\prime} is far from d^{\prime}.

```
Choose a random function h: [n] }|[\textrm{n}]\mathrm{ from a family of
pairwise independent hash functions
z\leftarrow0
while (an item x arrives) do
    if zeros(h(x)) > z then
        z\leftarrowzeros(h(x))
Output 2 2+1/2
```

- Bound

$$
P\left[d^{\prime} \geq 3 d\right] \text { and } P\left[d^{\prime} \leq d / 3\right]
$$

AMS Algorithm

- Let z^{\prime} be the value of z when algorithm ends and $d^{\prime}=2^{z+1 / 2}$ be the estimate returned by the algorithm.
- Want to bound probability that d^{\prime} is far from d^{\prime}.
- Bound

$$
P\left[d^{\prime} \geq 3 d\right] \text { and } P\left[d^{\prime} \leq d / 3\right]
$$

- Let a be the smallest integer such that $2^{a+1 / 2} \geq 3 d$.
- Let b be the smallest integer such that $2^{b+1 / 2} \leq d / 3$.
- Let $Y_{r}=$ \#distinct items in the stream such that zeros $(h(j)) \geq r$.
- Then

$$
P\left[d^{\prime} \geq 3 d\right]=P\left[z^{\prime} \geq a\right]=P\left[Y_{a}>0\right]=? ?
$$

and

$$
P\left[d^{\prime} \leq d / 3\right]=P\left[z^{\prime} \leq b\right]=P\left[Y_{b+1}=0\right]=? ?
$$

AMS Algorithm Analysis

- Goal. Bound $P\left[Y_{a}>0\right]$ and $P\left[Y_{b+1}=0\right]$.
- Define

$$
X_{r, j}=\left\{\begin{array}{ll}
1 & \text { if } \operatorname{zeros}(h(j)) \geq r \\
0 & \text { otherwise }
\end{array} \quad \Longrightarrow \quad Y_{r}=\sum_{j: f_{j}>0} X_{r, j}\right.
$$

- Expected value of $X_{j, r}$

$$
E\left[X_{r, j}\right]=P[\operatorname{zeros}(h(j)) \geq r]=\frac{1}{2^{r}}
$$

- Expected value of Y_{r}

$$
E\left[Y_{r}\right]=E\left[\sum_{j: f_{j}>0} X_{r, j}\right]=\sum_{j: f_{j}>0} \frac{1}{2^{r}}=\frac{d}{2^{r}}
$$

- Variance of Y_{r}

$$
\operatorname{Var}\left[Y_{r}\right]=\sum_{j: f_{j}>0} \operatorname{Var}\left[X_{r, j}\right] \leq \sum_{j: f_{j}>0} E\left[X_{r, j}^{2}\right]=\sum_{j: f_{j}>0} E\left[X_{r, j}\right]=\frac{d}{2^{r}}
$$

AMS Algorithm Analysis

- Goal. Bound $P\left[Y_{a}>0\right]$ and $P\left[Y_{b+1}=0\right]$.
. Have $E\left[Y_{r}\right]=\operatorname{Var}\left[Y_{r}\right]=\frac{d}{2^{r}}$
Markov's inequality
- By Markov's inequality

$$
P\left[Y_{a}>0\right]=P\left[Y_{a} \geq 1\right] \leq \frac{E\left[Y_{a}\right]}{1}=\frac{d}{2^{a}} \leq \frac{\sqrt{2}}{3}
$$

$$
P[X \geq t] \leq \frac{E[X]}{t}
$$

Chebychev's inequality

- By Chebychev's inequality

$$
\begin{aligned}
P\left[Y_{b+1}=0\right] & =P\left[\left|Y_{b+1}-E\left[Y_{b+1}\right]\right| \geq d / 2^{b+1}\right] \\
& =P\left[\left|Y_{b+1}-E\left[Y_{b+1}\right]\right| \geq \frac{d / 2^{b+1}}{\sqrt{\operatorname{Var}\left[Y_{b+1}\right]}} \cdot \sqrt{\operatorname{Var}\left[Y_{b+1}\right]}\right] \\
& \leq \frac{\operatorname{Var}\left[Y_{b+1}\right]}{\left(d / 2^{b+1}\right)^{2}}=\frac{2^{b+1}}{d} \leq \frac{\sqrt{2}}{3}
\end{aligned}
$$

Median trick

- Run $O(\log (1 / \delta))$ parallel and independent copies of the algorithm and output the median.
- The probability of success is at least $1-\delta$.
- Gives a $(1 / 3, \delta)$ - estimate.
- Time and space. $O(\log (1 / \delta) \log n)$.

