Streaming

Inge Li Gørtz

Frequent elements

Streaming model (one-pass)

• Stream.

- Elements a_1, a_2, \dots, a_m from the universe $[n] = \{1, 2, \dots, n\}$.
- · Elements arrive one by one.
- Must process element a_i before we see a_{i+1} .

- Space. Measured in bits.
- Goal. Small space (sublinear/polylogarithmic).
- Example. What can we do in $O(\log n + \log m)$ space?

Frequent elements

- Heavy Hitters Problem. Find all elements *i* that occurs more than *m/k* times for some fixed *k*.
- Example. Return all elements that occur more than 21/3 times = 7.

4 4 1 2 4 4 3 1 1 2 5 9 7 4 1 3 4 1 4 4 1

Frequent elements

- Heavy Hitters Problem. Find all elements *i* that occurs more than *m/k* times for some fixed *k*.
- Example. Return all elements that occur more than 21/3 times = 7.

4 4 1 2 4 4 3 1 1 2 5 9 7 4 1 3 4 1 4 4 1

Frequent elements

- Heavy Hitters Problem. Find all elements *i* that occurs more than *m/k* times for some fixed *k*.
- Example. Return all elements that occur more than 21/3 times = 7.

4 4 1 2 4 4 3 1 1 2 5 9 7 4 1 3 4 1 4 4 1

· Misra-Gries.

Keep k-1 counters in an associative array A
while (stream is not empty) do
If $j \in \text{keys}(A)$ then
$A[j] \leftarrow A[j] + 1$
else if $ keys(A) < k - 1$ then
$A[j] \leftarrow 1$
else
Decrement all counters by 1.
Remove all elements with counter 0.
Output all elements in $keys(A)$

• Space. $O(k \cdot (\log n + \log m))$.

Frequent elements

- Heavy Hitters Problem. Find all elements *i* that occurs more than *m/k* times for some fixed *k*.
- Example. Return all elements that occur more than 21/3 times = 7.

4 4 1 2 4 4 3 1 1 2 5 9 7 4 1 3 4 1 4 4 1

- Bad news. Need $\Omega(n)$ space for one-pass algorithm.
- Good news.
 - · Can estimate the frequency.
 - · Can do better if we allow one-sided error:
 - · Output all elements that occur more than m/k times.
 - Might also output other elements.

Misra-Gries Analysis

- Lemma. Any item with frequency more than m/k is in A by the end of the algorithm.
- Lemma. Let \hat{f}_i be the estimate of the frequency of element i. Then

$$f_i - \frac{m}{k} \le \hat{f}_i \le f_i$$

4 4 1 2 4 4 <mark>3 1 1</mark> 2 5 9 7 4 1 <mark>3</mark> 4 1 4 4 1

Reservoir Sampling

• Algorithm.

put the first *k* elements into a "reservoir" $R = \{r_1, r_2, ..., r_k\}$ for i > k until the stream is empty do with probability k/i replace a random entry of *R* with a_i Return *R*.

- Claim. For all $t \ge i$, $P[a_i \in R_t] = k/t$, where R_t denotes the reservoir after time t.
- Proof. By induction on t.
 - Base case: t = k (assume stream has length at least k).

$$P[x_i \in R_t] = 1 = k/t.$$

Reservoir Sampling

Reservoir Sampling

Algorithm.

put the first *k* elements into a "reservoir" $R = \{r_1, r_2, ..., r_k\}$. for i > k until the stream is empty do with probability k/i replace a random entry of *R* with a_i Return *R*.

- Claim. For all $t \ge i$, $P[a_i \in R_t] = k/t$, where R_t denotes the reservoir after time t.
- **Proof.** By induction on t. Assume t > k.
 - Case 1. *i* = *t*.

$$P[a_i \in R_t] = P[a_t \in R_t] = k/t.$$

Reservoir Sampling

Algorithm.

put the first *k* elements into a "reservoir" $R = \{r_1, r_2, ..., r_k\}$. for i > k until the stream is empty do with probability k/i replace a random entry of R with a_i Return R.

- Claim. For all $t \ge i$, $P[a_i \in R_t] = k/t$, where R_t denotes the reservoir after time t.
- **Proof.** By induction on t. Assume t > k. Case 2. i < t.

$$P[x_i \in R_t] = P[x_i \in R_{t-1}] \cdot P[x_i \text{ not replaced at time } t \mid x_i \in R_{t-1}]$$
$$= \frac{k}{t-1} \cdot P[x_i \text{ not replaced at time } t \mid x_i \in R_{t-1}]$$
$$= \frac{k}{t-1} \left(1 - \frac{k}{t} \cdot \frac{1}{k}\right) = \frac{k}{t}$$