
Streaming
Inge Li Gørtz

• Stream.

• Elements from the universe .

• Elements arrive one by one.

• Must process element before we see .

• Space. Measured in bits.

• Goal. Small space (sublinear/polylogarithmic).

• Example. What can we do in space?

a1, a2, …, am [n] = {1,2,…, n}

ai ai+1

O(log n + log m)

Streaming model (one-pass)

4 3 2 4 4 3 1 1 2 5 9 7 1 3

Frequent elements

• Heavy Hitters Problem. Find all elements i that occurs more than m/k times for some
fixed k.

• Example. Return all elements that occur more than 21/3 times = 7.

Frequent elements

4 4 1 2 4 4 3 1 1 2 5 9 7 4 1 3 4 1 4 4 1

• Heavy Hitters Problem. Find all elements i that occurs more than m/k times for some
fixed k.

• Example. Return all elements that occur more than 21/3 times = 7.

Frequent elements

4 4 1 2 4 4 3 1 1 2 5 9 7 4 1 3 4 1 4 4 1

• Heavy Hitters Problem. Find all elements i that occurs more than m/k times for some
fixed k.

• Example. Return all elements that occur more than 21/3 times = 7.

• Bad news. Need space for one-pass algorithm.

• Good news.

• Can estimate the frequency.

• Can do better if we allow one-sided error:

• Output all elements that occur more than m/k times.

• Might also output other elements.

Ω(n)

Frequent elements

4 4 1 2 4 4 3 1 1 2 5 9 7 4 1 3 4 1 4 4 1

• Heavy Hitters Problem. Find all elements i that occurs more than m/k times for some
fixed k.

• Example. Return all elements that occur more than 21/3 times = 7.

• Misra-Gries.

• Space. .O(k ⋅ (log n + log m))

Frequent elements

4 4 1 2 4 4 3 1 1 2 5 9 7 4 1 3 4 1 4 4 1

Keep k-1 counters in an associative array .
while (stream is not empty) do

If then

else if then

else

Decrement all counters by 1.
Remove all elements with counter 0.

Output all elements in

A

j ∈ keys(A)
A[j] ← A[j] + 1

|keys(A) | < k − 1
A[j] ← 1

keys(A)

• Example. k = 3.

Frequent elements
Keep k-1 counters in an associative array .
while (stream is not empty) do

If then

else if then

else

Decrement all counters by 1.
Remove all elements with counter 0.

Output all elements in

A

j ∈ keys(A)
A[j] ← A[j] + 1

|keys(A) | < k − 1
A[j] ← 1

keys(A)

4 4 1 2 4 4 3 1 1 2 5 9 7 4 1 3 4 1 4 4 1

counter 1:

counter 2:

4

1

, 1 , 2

, 1

, 2 , 3

3 , 1 1 , 1 5 , 1

7 , 1

4 , 1

3 , 1

4 , 1

4 , 1 , 2

1 , 1

• Lemma. Any item with frequency more than m/k is in A by the end of the algorithm.

• Lemma. Let be the estimate of the frequency of element . Then

 .

̂fi i

fi −
m
k

≤ ̂fi ≤ fi

Misra-Gries Analysis

4 4 1 2 4 4 3 1 1 2 5 9 7 4 1 3 4 1 4 4 1

1 2 4

1 3 4

1 2 4

5 9 4

1 7 4

Decrements

1 3 4

Reservoir Sampling

• Algorithm.

• Claim. For all , , where denotes the reservoir after time t.

• Proof. By induction on t.

• Base case: (assume stream has length at least k).

t ≥ i P[ai ∈ Rt] = k /t Rt

t = k

P[xi ∈ Rt] = 1 = k /t .

Reservoir Sampling

put the first elements into a “reservoir” .
for until the stream is empty do

with probability replace a random entry of with
Return .

k R = {r1, r2, …, rk}
i > k

k /i R ai
R

• Algorithm.

• Claim. For all , , where denotes the reservoir after time t.

• Proof. By induction on t. Assume .

• Case 1. .

t ≥ i P[ai ∈ Rt] = k /t Rt

t > k

i = t

P[ai ∈ Rt] = P[at ∈ Rt] = k /t .

Reservoir Sampling

put the first elements into a “reservoir” .
for until the stream is empty do

with probability replace a random entry of with
Return .

k R = {r1, r2, …, rk}
i > k

k /i R ai
R

• Algorithm.

• Claim. For all , , where denotes the reservoir after time t.

• Proof. By induction on t. Assume . Case 2.

t ≥ i P[ai ∈ Rt] = k /t Rt

t > k i < t .

P[xi ∈ Rt] = P[xi ∈ Rt−1] ⋅ P[xi not replaced at time t |xi ∈ Rt−1]

=
k

t − 1
⋅ P[xi not replaced at time t |xi ∈ Rt−1]

=
k

t − 1 (1 −
k
t

⋅
1
k)

Reservoir Sampling

put the first elements into a “reservoir” .
for until the stream is empty do

with probability replace a random entry of with
Return .

k R = {r1, r2, …, rk}
i > k

k /i R ai
R

=
k
t

