Streaming

Inge Li Gortz

Streaming model (one-pass)

» Stream.
« Elements a;, a,, ..., a,, from the universe [n] = {1,2,...,n}.
+ Elements arrive one by one.

« Must process element a; before we see a; ;.

+ Space. Measured in bits.
+ Goal. Small space (sublinear/polylogarithmic).

+ Example. What can we do in O(log n + log m) space?

Frequent elements

Frequent elements

+ Heavy Hitters Problem. Find all elements i that occurs more than m/k times for some
fixed k.

+ Example. Return all elements that occur more than 21/3 times = 7.

[4]e[1[2][e]s]]1[2[s]o]7[4[1]5]4[1]4]4]1]

Frequent elements

» Heavy Hitters Problem. Find all elements i that occurs more than m/k times for some

fixed k.

« Example. Return all elements that occur more than 21/3 times = 7.

[l |2 fafaf o] |1 [2[s]o] [af o el + [l < |

Frequent elements

+ Heavy Hitters Problem. Find all elements i that occurs more than m/k times for some

fixed k.

« Example. Return all elements that occur more than 21/3 times = 7.

(el |2 afal o] |1 o[s|o] 7 af]] + [l « |

+ Bad news. Need €(n) space for one-pass algorithm.
+ Good news.
+ Can estimate the frequency.

+ Can do better if we allow one-sided error:

+ Output all elements that occur more than m/k times.

» Might also output other elements.

Frequent elements

» Heavy Hitters Problem. Find all elements i that occurs more than m/k times for some

fixed k.

« Example. Return all elements that occur more than 21/3 times = 7.

(el |2l o] |1 [2[s]o] [el + [l < |

+ Misra-Gries.

Keep k-1 counters in an associative array A.
while (stream is not empty) do
If j € keys(A) then
Aljl < Alj1+1
else if |keys(A)| < k — 1 then
A[j] < 1
else
Decrement all counters by 1.
Remove all elements with counter O.
Output all elements in keys(A)

+ Space. Ok - (log n + log m)).

Frequent elements

+ Example. k = 3.

[s]afa[2]f4[s[Tl lo[[
!

counter 1:) 2

counter 2: . 1

Keep k-1 counters in an associative array A.
while (stream is not empty) do
If j € keys(A) then
ALj] < AT+ 1
else if |keys(A)| < k— 1 then
A[j] < 1
else
Decrement all counters by 1.
Remove all elements with counter 0.

Output all elements in keys(A)

Misra-Gries Analysis

« Lemma. Any item with frequency more than m/k is in A by the end of the algorithm.

+ Lemma. Letfl- be the estimate of the frequency of element i. Then

" <<
f;_f—fi—ﬁ'

[[[fel[+[s [ofel< T«

Decrements

Reservoir Sampling

Reservoir Sampling

+ Algorithm.

put the first k elements into a “reservoir” R = {7}, 75, ..., 1 }.
for i > k until the stream is empty do

with probability k/i replace a random entry of R with a;
Return R.

« Claim. Forall t > i, Pla; € R]] = k/t, where R, denotes the reservoir after time t.
» Proof. By induction on t.
« Base case: = k (assume stream has length at least k).

Plx;€R]=1=k/t.

Reservoir Sampling

+ Algorithm.

put the first k elements into a “reservoir” R = {ry, 75, ..., 13}
for i > k until the stream is empty do

with probability k/i replace a random entry of R with a;
Return R.

« Claim. Forallt > i, Pla; € R]] = k/t, where R, denotes the reservoir after time t.
+ Proof. By induction ont. Assume ¢ > k.

+Casel. i=t.

Pla, € R = Pla, € R] = klt.

Reservoir Sampling

 Algorithm.

put the first k elements into a “reservoir” R = {r}, 15, ..., I }.
for i > k until the stream is empty do

with probability k/i replace a random entry of R with a;
Return R.

- Claim. Forall t > i, Pla; € R,] = k/t, where R, denotes the reservoir after time t.
+ Proof. By induction ont. Assumet > k.Case?2.i < t.

Plx; € R] = Plx; € R,_;] - P[x; not replaced at time | x; € R,_]

k
= —— P[x; not replaced at time | x; € R,_;]
[fa—

__k (k1) _k
=1 t k) ot

