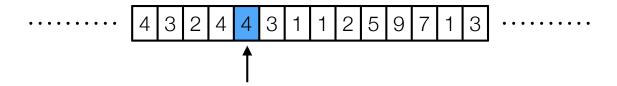
Streaming

Inge Li Gørtz

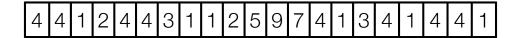
Streaming model (one-pass)

- Stream.
 - Elements $a_1, a_2, ..., a_m$ from the universe $[n] = \{1, 2, ..., n\}$.
 - Elements arrive one by one.
 - Must process element a_i before we see a_{i+1} .



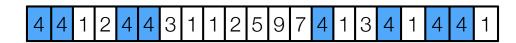
- Space. Measured in bits.
- Goal. Small space (sublinear/polylogarithmic).
- Example. What can we do in $O(\log n + \log m)$ space?

- Heavy Hitters Problem. Find all elements i that occurs more than m/k times for some fixed k.
- Example. Return all elements that occur more than 21/3 times = 7.



- Heavy Hitters Problem. Find all elements i that occurs more than m/k times for some fixed k.
- Example. Return all elements that occur more than 21/3 times = 7.

- Heavy Hitters Problem. Find all elements i that occurs more than m/k times for some fixed k.
- Example. Return all elements that occur more than 21/3 times = 7.



- Bad news. Need $\Omega(n)$ space for one-pass algorithm.
- Good news.
 - Can estimate the frequency.
 - Can do better if we allow one-sided error:
 - Output all elements that occur more than m/k times.
 - Might also output other elements.

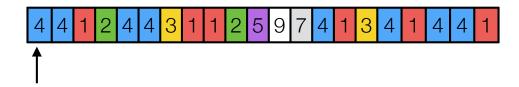
- Heavy Hitters Problem. Find all elements i that occurs more than m/k times for some fixed k.
- Example. Return all elements that occur more than 21/3 times = 7.

Misra-Gries.

```
Keep k-1 counters in an associative array A. while (stream is not empty) do If j \in \text{keys}(A) then A[j] \leftarrow A[j] + 1 else if |\text{keys}(A)| < k - 1 then A[j] \leftarrow 1 else Decrement all counters by 1. Remove all elements with counter 0. Output all elements in \text{keys}(A)
```

• Space. $O(k \cdot (\log n + \log m))$.

• **Example**. k = 3.



counter 1: 4, 2

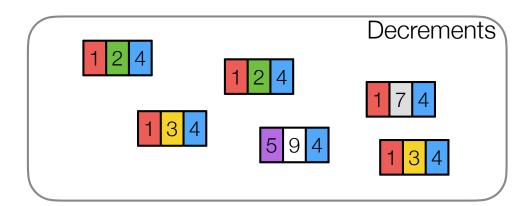
counter 2: 1, 1

```
Keep k-1 counters in an associative array A. while (stream is not empty) do  \begin{aligned} &\text{If } j \in \text{keys}(A) \text{ then} \\ &A[j] \leftarrow A[j] + 1 \\ &\text{else if } |\text{keys}(A)| < k-1 \text{ then} \\ &A[j] \leftarrow 1 \end{aligned}  else  \begin{aligned} &\text{Decrement all counters by 1.} \\ &\text{Remove all elements with counter 0.} \end{aligned}
```

Misra-Gries Analysis

- Lemma. Any item with frequency more than m/k is in A by the end of the algorithm.
- Lemma. Let \hat{f}_i be the estimate of the frequency of element i. Then

$$f_i - \frac{m}{k} \le \hat{f}_i \le f_i \ .$$



· Algorithm.

put the first k elements into a "reservoir" $R=\{r_1,r_2,...,r_k\}$. for i>k until the stream is empty do with probability k/i replace a random entry of R with a_i Return R.

- Claim. For all $t \ge i$, $P[a_i \in R_t] = k/t$, where R_t denotes the reservoir after time t.
- Proof. By induction on t.
 - Base case: t = k (assume stream has length at least k).

$$P[x_i \in R_t] = 1 = k/t.$$

· Algorithm.

put the first k elements into a "reservoir" $R=\{r_1,r_2,...,r_k\}$. for i>k until the stream is empty do with probability k/i replace a random entry of R with a_i Return R.

- Claim. For all $t \ge i$, $P[a_i \in R_t] = k/t$, where R_t denotes the reservoir after time t.
- Proof. By induction on t. Assume t > k.
 - Case 1. i = t.

$$P[a_i \in R_t] = P[a_t \in R_t] = k/t.$$

• Algorithm.

put the first k elements into a "reservoir" $R=\{r_1,r_2,...,r_k\}$. for i>k until the stream is empty do with probability k/i replace a random entry of R with a_i Return R.

- Claim. For all $t \ge i$, $P[a_i \in R_t] = k/t$, where R_t denotes the reservoir after time t.
- Proof. By induction on t. Assume t > k. Case 2. i < t.

$$P[x_i \in R_t] = P[x_i \in R_{t-1}] \cdot P[x_i \text{ not replaced at time } t \mid x_i \in R_{t-1}]$$

$$= \frac{k}{t-1} \cdot P[x_i \text{ not replaced at time } t \mid x_i \in R_{t-1}]$$

$$= \frac{k}{t-1} \left(1 - \frac{k}{t} \cdot \frac{1}{k}\right) = \frac{k}{t}$$