Streaming

Inge Li Gørtz

Streaming model (one-pass)

- Stream.
- Elements $a_{1}, a_{2}, \ldots, a_{m}$ from the universe $[n]=\{1,2, \ldots, n\}$.
- Elements arrive one by one.
- Must process element a_{i} before we see a_{i+1}.

- Space. Measured in bits.
- Goal. Small space (sublinear/polylogarithmic).
- Example. What can we do in $O(\log n+\log m)$ space?

Frequent elements

Frequent elements

- Heavy Hitters Problem. Find all elements i that occurs more than m / k times for some fixed k.
- Example. Return all elements that occur more than $21 / 3$ times $=7$.

| 4 | 4 | 1 | 2 | 4 | 4 | 3 | 1 | 1 | 2 | 5 | 9 | 7 | 4 | 1 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$| 4 | 4 |
| :--- | :--- |

Frequent elements

- Heavy Hitters Problem. Find all elements i that occurs more than m / k times for some fixed k.
- Example. Return all elements that occur more than $21 / 3$ times $=7$.

Frequent elements

- Heavy Hitters Problem. Find all elements i that occurs more than m / k times for some fixed k.
- Example. Return all elements that occur more than $21 / 3$ times $=7$.
\square
- Bad news. Need $\Omega(n)$ space for one-pass algorithm.
- Good news.
- Can estimate the frequency.
- Can do better if we allow one-sided error:
- Output all elements that occur more than m / k times.
- Might also output other elements.

Frequent elements

- Heavy Hitters Problem. Find all elements i that occurs more than m / k times for some fixed k.
- Example. Return all elements that occur more than $21 / 3$ times $=7$.

- Misra-Gries.

```
Keep k-1 counters in an associative array A.
while (stream is not empty) do
    If }j\in\operatorname{keys}(A)\mathrm{ then
    A[j]\leftarrowA[j]+1
    else if }|\operatorname{keys}(A)|<k-1 the
    A[j]}\leftarrow
    else
    Decrement all counters by 1.
    Remove all elements with counter 0.
Output all elements in keys(A)
```

- Space. $O(k \cdot(\log n+\log m))$.

Frequent elements

- Example. $\mathrm{k}=3$.

counter 1: 4, 2

```
Keep k-1 counters in an associative array A.
while (stream is not empty) do
    If }j\in\operatorname{keys}(A)\mathrm{ then
        A[j]}\leftarrowA[j]+
    else if |keys(A)|<k-1 then
        A[j]}\leftarrow
    else
        Decrement all counters by 1.
        Remove all elements with counter 0.
Output all elements in keys(A)
```


Misra-Gries Analysis

- Lemma. Any item with frequency more than m / k is in A by the end of the algorithm.
- Lemma. Let \hat{f}_{i} be the estimate of the frequency of element i. Then

$$
f_{i}-\frac{m}{k} \leq \hat{f}_{i} \leq f_{i}
$$

Reservoir Sampling

Reservoir Sampling

- Algorithm.

```
put the first }k\mathrm{ elements into a "reservoir" }R={\mp@subsup{r}{1}{},\mp@subsup{r}{2}{},\ldots,\mp@subsup{r}{k}{}
for i>k until the stream is empty do
    with probability k/i replace a random entry of R}\mathrm{ with }\mp@subsup{a}{i}{
Return R.
```

- Claim. For all $t \geq i, P\left[a_{i} \in R_{t}\right]=k / t$, where R_{t} denotes the reservoir after time t .
- Proof. By induction on t.
- Base case: $t=k$ (assume stream has length at least k).

$$
P\left[x_{i} \in R_{t}\right]=1=k / t .
$$

Reservoir Sampling

- Algorithm.

```
put the first }k\mathrm{ elements into a "reservoir" }R={\mp@subsup{r}{1}{},\mp@subsup{r}{2}{},\ldots,\mp@subsup{r}{k}{}
for i>k until the stream is empty do
    with probability }k/i\mathrm{ replace a random entry of }R\mathrm{ with }\mp@subsup{a}{i}{
Return R.
```

- Claim. For all $t \geq i, P\left[a_{i} \in R_{t}\right]=k / t$, where R_{t} denotes the reservoir after time t .
- Proof. By induction on t . Assume $t>k$.
- Case 1. $i=t$.

$$
P\left[a_{i} \in R_{t}\right]=P\left[a_{t} \in R_{t}\right]=k / t .
$$

Reservoir Sampling

- Algorithm.

```
put the first }k\mathrm{ elements into a "reservoir" }R={\mp@subsup{r}{1}{},\mp@subsup{r}{2}{},\ldots,\mp@subsup{r}{k}{}
for i>k until the stream is empty do
    with probability }k/i\mathrm{ replace a random entry of }R\mathrm{ with }\mp@subsup{a}{i}{
Return R.
```

- Claim. For all $t \geq i, P\left[a_{i} \in R_{t}\right]=k / t$, where R_{t} denotes the reservoir after time t .
- Proof. By induction on t . Assume $t>k$. Case 2. $i<t$.

$$
\begin{aligned}
P\left[x_{i} \in R_{t}\right]= & P\left[x_{i} \in R_{t-1}\right] \cdot P\left[x_{i} \text { not replaced at time } t \mid x_{i} \in R_{t-1}\right] \\
& =\frac{k}{t-1} \cdot P\left[x_{i} \text { not replaced at time } t \mid x_{i} \in R_{t-1}\right] \\
& =\frac{k}{t-1}\left(1-\frac{k}{t} \cdot \frac{1}{k}\right)=\frac{k}{t}
\end{aligned}
$$

