
Sketching

Inge Li Gørtz

These notes are heavily inspired by the lecture notes by Moses Charikar and Chandra
Chekuri on the same subject.

1 Sketches

Informally, a data sketch is a smaller description of a stream of data that enables the
calculation or estimate of a property of the data. In other words a compact summary of
the data.

An important attribute of sketches is that they are composable. Suppose we have
data streams S1 and S2 with corresponding sketches sk(S1) and sk(S2). We wish there
to be an efficiently computable function f where

sk(S1 ∪ S2) = f(sk(S1), sk(S2)) .

2 Hashing

A hash function h : U → [m] is pairwise independent if for all x 6= y ∈ U and q, r ∈ [m]:

P [h(x) = q ∧ h(y) = r] =
1

m2
.

Equivalently, the following two conditions hold:

• for any x ∈ U , h(x) is uniform in [m],

• for any x 6= y ∈ U , h(x) and h(y) are independent.

3 CountMin sketch

The CountMin sketch is a solution to the heavy hitters problem developed by Cormode
and Muthukrishnan ’05. The idea of the CountMin sketch is to use a collection of pairwise
independent hash functions to hash each element in the stream, keeping track of the
number of times each bucket is hashed to.

Initialization Initialize d pairwise independent hash functions hj : [n] → [w] with w
buckets each for j ∈ [d]. For each bucket b of each hash function j, store a counter Cj(b)
initially set to 0.

1



Building the data structure: For each element i of the stream, hash i using each
hash function and increment Cj(hj(i)) for all j ∈ [d].

Querying the data structure Given element i, return f̂i = minj∈[d]Cj(hj(i)).

Algorithm 1: CountMin

Initialize d independent pairwise independent hash functions hj : [n]→ [w].
Set counter Cj(b) = 0 for all j ∈ [d] and b ∈ [w].
while Stream S not empty do

if Insert(x) then
for j = 1 . . . d do

Cj(hj(x)) =+1
end

else if Frequency(i) then

return f̂i = minj∈[d]Cj(hj(i)).
end

end

3.1 Analysis

Lemma 1 The estimator f̂i has the following property: f̂i ≥ fi and with probability at

least 1−
(
1
2

)d
, f̂i ≤ fi + 2

w
·m, where m is the length of the stream.

Proof: Clearly for any i ∈ [n] and 1 ≤ j ≤ d, it holds that hj(i) ≥ fi and hence f̂i ≥ fi.
Fix an element i ∈ [n] and let Zj = Cj(hj(i)) be the value of the counter in row j to

which i is hashed. Let b = hj(i) be the bucket that i hashes to in row j. We can compute
the expectation of the value Zj as follows:

E[Zj] = E

 ∑
s:hj(s)=b

fs

 = fi +
1

w

∑
s 6=j

fs ≤ fi +
m

w

since the sum of all frequencies is m (the number of elements in the stream), and each
element has probability 1/w of mapping to a particular bucket (pairwise independence
of hj gives us that Pr[hj(s) = b] ≤ 1/w).

We now want to bound the probability that Zj ≥ fi + 2
w
·m. We have

Pr

(
Zj ≥ fi +

2m

w

)
= Pr

(
Zj − fi ≥

2m

w

)
Since the count-min sketch only overestimates frequencies implying Zj − fi ≥ 0, we can
use Markov’s inequality to get

Pr

(
Zj − fi ≥

2m

w

)
≤ E[Zj − fi]

2m
w

=
E[Zj]− fi

2m
w

≤
(fi + m

w
)− fi

2m
w

≤ 1

2
.

2



1 2 3 4 5 6 7 8 n

[1,2] [3,4] [5,6] [7,8] n-1,n

[1,4] [5,8] n-3,n

[1,8] [n-7,n]

[1,n]

[1,n/2] [n/2+1,n]

[1,n/4] [n/4+1,n/2] [n/2+1,3n/4] [3n/4+1,n]

[n-1,n]

Figure 1: Tree of dyadic intervals

Since we select each hash function independently, we have that

Pr

(
f̂i ≥ fi +

2m

w

)
=
∏
j∈[d]

Pr

(
Zj ≥ fi +

2m

w

)
≤
(

1

2

)d
.

�
Setting w = 2

ε
and d = lg 1

δ
we get Pr

(
f̂i ≥ fi + εm

)
≤ δ.

Theorem 2 The estimator f̂i has the following property: f̂i ≥ fi and with probability at
least 1− δ, f̂i ≤ fi + εm, where m is the length of the stream.

The space usage of the CountMin sketch is O(dw) = O(2
ε

lg 1
δ
) words, i.e., O(2

ε
lg 1

δ
(lgm+

lg n) bits. The query and processing time is O(d) = O(lg 1
δ
).

3.2 Extensions to CountMin

We will now see how to use the CountMin sketch to efficiently support the following
queries:

• Range queries: ”How many elements in the stream have value between a and b?

• Heavy hitters: listing all heavy hitters (elements with frequency at least m/k).

Dyadic intervals The dyadic intervals of [1, . . . ,m] are the set of intervals of the form
[jm

2i
+ 1, . . . , (j + 1) n

2i
] for all 0 ≤ i lgm and all 0 ≤ j ≤ 2i − 1. See Figure 1.

For each level of the tree in Figure 1 we store a separate CountMin sketch data
structure. For level j the jth CountMin sketch treats two elements that fall into the
same interval in level j as the same element. For all intervals i in the tree, let C(i)
denote the value that the appropriate CountMin sketch returns for i.

3



3.2.1 Heavy hitters

Let the frequency of interval i denote the sum of the frequencies over all elements in
interval i.

To find the heavy hitters we traverse the tree from the root only traversing the children
whose intervals have frequency at least m/k and return the leaves whose frequency is at
least m/k. Since the frequency of an interval is at least that of its children and the
CountMin sketch overestimates the frequencies, we will reach all leaves with frequency
at least m/k.

Analysis There are lg n CountMin sketches (one for each level in the tree). Thus the
total space usage is O(1

ε
lg
(
1
δ

)
lg n) words.

For any given row, the sum over all frequencies in that row is m. Thus, in any
row, there are at most k intervals with frequency m/k. Therefore, we only explore the
children of at most k intervals in any given row, so the total number of intervals queried
is O(k log n). The total query time is O(k log n · lg 1

δ
).

4 CountSketch

Algorithm 2: CountSketch

Initialize d independent hash functions hj : [n]→ [w].
Initialize d independent hash functions sj : [n]→ {±1}.
Set counter C[j, b] = 0 for all j ∈ [d] and b ∈ [w].
while Stream S not empty do

if Insert(x) then
for j = 1 . . . d do

C[j, hj(x)] =+ sj(i)
end

else if Frequency(i) then

f̂ij = C(hj(i)) · sj(i)
return f̃ij = medianj∈[d]f̂ij

end

end

4


