Sketching

Inge Li Gørtz

These notes are heavily inspired by the lecture notes by Moses Charikar and Chandra Chekuri on the same subject.

1 Sketches

Informally, a data sketch is a smaller description of a stream of data that enables the calculation or estimate of a property of the data. In other words a compact summary of the data.

An important attribute of sketches is that they are composable. Suppose we have data streams S_{1} and S_{2} with corresponding sketches $\operatorname{sk}\left(S_{1}\right)$ and $\operatorname{sk}\left(S_{2}\right)$. We wish there to be an efficiently computable function f where

$$
\operatorname{sk}\left(S_{1} \cup S_{2}\right)=f\left(\operatorname{sk}\left(S_{1}\right), \operatorname{sk}\left(S_{2}\right)\right)
$$

2 Hashing

A hash function $h: U \rightarrow[m]$ is pairwise independent if for all $x \neq y \in U$ and $q, r \in[m]$:

$$
P[h(x)=q \wedge h(y)=r]=\frac{1}{m^{2}} .
$$

Equivalently, the following two conditions hold:

- for any $x \in U, h(x)$ is uniform in [m],
- for any $x \neq y \in U, h(x)$ and $h(y)$ are independent.

3 CountMin sketch

The CountMin sketch is a solution to the heavy hitters problem developed by Cormode and Muthukrishnan ' 05 . The idea of the CountMin sketch is to use a collection of pairwise independent hash functions to hash each element in the stream, keeping track of the number of times each bucket is hashed to.

Initialization Initialize d pairwise independent hash functions $h_{j}:[n] \rightarrow[w]$ with w buckets each for $j \in[d]$. For each bucket b of each hash function j, store a counter $C_{j}(b)$ initially set to 0 .

Building the data structure: For each element i of the stream, hash i using each hash function and increment $C_{j}\left(h_{j}(i)\right)$ for all $j \in[d]$.

Querying the data structure Given element i, return $\hat{f}_{i}=\min _{j \in[d]} C_{j}\left(h_{j}(i)\right)$.

```
Algorithm 1: CountMin
    Initialize \(d\) independent pairwise independent hash functions \(h_{j}:[n] \rightarrow[w]\).
    Set counter \(C_{j}(b)=0\) for all \(j \in[d]\) and \(b \in[w]\).
    while Stream \(S\) not empty do
        if Insert(x) then
            for \(j=1 \ldots d\) do
                \(C_{j}\left(h_{j}(x)\right)=+1\)
            end
        else if Frequency \((i)\) then
            return \(\hat{f}_{i}=\min _{j \in[d]} C_{j}\left(h_{j}(i)\right)\).
        end
    end
```


3.1 Analysis

Lemma 1 The estimator \hat{f}_{i} has the following property: $\hat{f}_{i} \geq f_{i}$ and with probability at least $1-\left(\frac{1}{2}\right)^{d}, \hat{f}_{i} \leq f_{i}+\frac{2}{w} \cdot m$, where m is the length of the stream.

Proof: Clearly for any $i \in[n]$ and $1 \leq j \leq d$, it holds that $h_{j}(i) \geq f_{i}$ and hence $\hat{f}_{i} \geq f_{i}$.
Fix an element $i \in[n]$ and let $Z_{j}=C_{j}\left(h_{j}(i)\right)$ be the value of the counter in row j to which i is hashed. Let $b=h_{j}(i)$ be the bucket that i hashes to in row j. We can compute the expectation of the value Z_{j} as follows:

$$
\mathbb{E}\left[Z_{j}\right]=\mathbb{E}\left[\sum_{s: h_{j}(s)=b} f_{s}\right]=f_{i}+\frac{1}{w} \sum_{s \neq j} f_{s} \leq f_{i}+\frac{m}{w}
$$

since the sum of all frequencies is m (the number of elements in the stream), and each element has probability $1 / w$ of mapping to a particular bucket (pairwise independence of h_{j} gives us that $\left.\operatorname{Pr}\left[h_{j}(s)=b\right] \leq 1 / w\right)$.

We now want to bound the probability that $Z_{j} \geq f_{i}+\frac{2}{w} \cdot m$. We have

$$
\operatorname{Pr}\left(Z_{j} \geq f_{i}+\frac{2 m}{w}\right)=\operatorname{Pr}\left(Z_{j}-f_{i} \geq \frac{2 m}{w}\right)
$$

Since the count-min sketch only overestimates frequencies implying $Z_{j}-f_{i} \geq 0$, we can use Markov's inequality to get

$$
\operatorname{Pr}\left(Z_{j}-f_{i} \geq \frac{2 m}{w}\right) \leq \frac{\mathbb{E}\left[Z_{j}-f_{i}\right]}{2 \frac{m}{w}}=\frac{\mathbb{E}\left[Z_{j}\right]-f_{i}}{2 \frac{m}{w}} \leq \frac{\left(f_{i}+\frac{m}{w}\right)-f_{i}}{2 \frac{m}{w}} \leq \frac{1}{2} .
$$

Figure 1: Tree of dyadic intervals

Since we select each hash function independently, we have that

$$
\operatorname{Pr}\left(\hat{f}_{i} \geq f_{i}+\frac{2 m}{w}\right)=\prod_{j \in[d]} \operatorname{Pr}\left(Z_{j} \geq f_{i}+\frac{2 m}{w}\right) \leq\left(\frac{1}{2}\right)^{d}
$$

Setting $w=\frac{2}{\epsilon}$ and $d=\lg \frac{1}{\delta}$ we get $\operatorname{Pr}\left(\hat{f}_{i} \geq f_{i}+\epsilon m\right) \leq \delta$.
Theorem 2 The estimator \hat{f}_{i} has the following property: $\hat{f}_{i} \geq f_{i}$ and with probability at least $1-\delta, \hat{f}_{i} \leq f_{i}+\epsilon m$, where m is the length of the stream.

The space usage of the CountMin sketch is $O(d w)=O\left(\frac{2}{\epsilon} \lg \frac{1}{\delta}\right)$ words, i.e., $O\left(\frac{2}{\epsilon} \lg \frac{1}{\delta}(\lg m+\right.$ $\lg n)$ bits. The query and processing time is $O(d)=O\left(\lg \frac{1}{\delta}\right)$.

3.2 Extensions to CountMin

We will now see how to use the CountMin sketch to efficiently support the following queries:

- Range queries: "How many elements in the stream have value between a and b ?
- Heavy hitters: listing all heavy hitters (elements with frequency at least m / k).

Dyadic intervals The dyadic intervals of $[1, \ldots, m]$ are the set of intervals of the form $\left[j \frac{m}{2^{i}}+1, \ldots,(j+1) \frac{n}{2^{i}}\right]$ for all $0 \leq i \lg m$ and all $0 \leq j \leq 2^{i}-1$. See Figure 1 .

For each level of the tree in Figure 1 we store a separate CountMin sketch data structure. For level j the j th CountMin sketch treats two elements that fall into the same interval in level j as the same element. For all intervals i in the tree, let $C(i)$ denote the value that the appropriate CountMin sketch returns for i.

3.2.1 Heavy hitters

Let the frequency of interval i denote the sum of the frequencies over all elements in interval i.

To find the heavy hitters we traverse the tree from the root only traversing the children whose intervals have frequency at least m / k and return the leaves whose frequency is at least m / k. Since the frequency of an interval is at least that of its children and the CountMin sketch overestimates the frequencies, we will reach all leaves with frequency at least m / k.

Analysis There are $\lg n$ CountMin sketches (one for each level in the tree). Thus the total space usage is $O\left(\frac{1}{\epsilon} \lg \left(\frac{1}{\delta}\right) \lg n\right)$ words.

For any given row, the sum over all frequencies in that row is m. Thus, in any row, there are at most k intervals with frequency m / k. Therefore, we only explore the children of at most k intervals in any given row, so the total number of intervals queried is $O(k \log n)$. The total query time is $O\left(k \log n \cdot \lg \frac{1}{\delta}\right)$.

4 CountSketch

```
Algorithm 2: CountSketch
    Initialize \(d\) independent hash functions \(h_{j}:[n] \rightarrow[w]\).
    Initialize \(d\) independent hash functions \(s_{j}:[n] \rightarrow\{ \pm 1\}\).
    Set counter \(C[j, b]=0\) for all \(j \in[d]\) and \(b \in[w]\).
    while Stream \(S\) not empty do
        if Insert(x) then
            for \(j=1 \ldots d\) do
                        \(C\left[j, h_{j}(x)\right]=+s_{j}(i)\)
            end
        else if Frequency \((i)\) then
            \(\hat{f}_{i j}=C\left(h_{j}(i)\right) \cdot s_{j}(i)\)
            return \(\widetilde{f}_{i j}=\) median \(_{j \in[d]} \hat{f}_{i j}\)
        end
    end
```

