
Streaming: Sketching 
Inge Li Gørtz

• Sketching


• CountMin sketch

Today

Sketching

• Sketching. create compact sketch/summary of data.


• Example. Durand and Flajolet 2003.


• Condensed the whole Shakespeares’ work 




• Estimated number of distinct words: 30897 (correct answer is 28239, ie. relative 
error of 9.4%).


• Composable. 


• Data streams  and  with sketches  and 


• There exists an efficiently computable function  such that


S1 S2 sk(S1) sk(S2)

f

sk(S1 ∪ S2) = f(sk(S1), sk(S2))

Sketching



CountMin Sketch

• Frequency estimation. Construct a sketch such that can estimate the frequency  of 
any element 

fi
i ∈ [n] .

Frequency Estimation

• Fixed array of counters of width w and depth d. Counters all initialized to be zero. 


• Pariwise independent hash function for each row .


• When item  arrives increment counter  of in all rows.

hi : [n] → [w]

x hi(x)

CountMin Sketch

d

w

h1

h4

h2

h3

CountMin Sketch

d

w

h1

h4

h2

h3

h1(x) h2(x)

h3(x)

h4(x)

• Fixed array of counters of width w and depth d. Counters all initialized to be zero. 


• Pariwise independent hash function for each row .


• When item  arrives increment counter  of in all rows.

hi : [n] → [w]

x hi(x)



CountMin Sketch

d

w

h1

h4

h2

h3

h2(y)

h4(y)

h3(y)

h1(y)

• Fixed array of counters of width w and depth d. Counters all initialized to be zero. 


• Pariwise independent hash function for each row .


• When item  arrives increment counter  of in all rows.


• Estimate frequency of y: return minimum of all entries y hash to.

hi : [n] → [w]

x hi(x)

CountMin Sketch

d

w

h1

h4

h2

h3

h2(y)

h4(y)

h3(y)

h1(y)

• Fixed array of counters of width w and depth d. Counters all initialized to be zero. 


• Pariwise independent hash function for each row .


• When item  arrives increment counter  of in all rows.


• Estimate frequency of y: return minimum of all entries y hash to.

hi : [n] → [w]

x hi(x)

• The estimator    has the following 
property: 


• 


•  with probability at 
least 

̂fi

̂fi ≥ fi
̂fi ≤ fi + 2m /w

1 − (1/2)d

CountMin Sketch

d

w

h1

h4

h2

h3

h2(y)

h4(y)

h3(y)

h1(y)

Algorithm 1: CountMin

Initialize d independent hash functions hj : [n] ! [w].
Set counter Cj(b) = 0 for all j 2 [d] and b 2 [w].
while Stream S not empty do

if Insert(x) then
for j = 1 . . . n do

Cj(hj(x)) = +1
end

else if Frequency(i) then
return f̂i = minj2[d] Cj(hj(i)).

end
end

1

• Claim.  with probability at least  

• Consider a fixed element . 


• Let . Then     





• Expected value of 





• Want to bound 





                   

̂fi ≤ fi + 2m /w 1 − (1/2)d

i Zj = C(hj(i))

b = hj(i)

Zj = ∑
s:hj(s)=b

fs

Zj

E[Zj] = E ∑
s:hj(s)=b

fs

P[Zj ≥ fi + 2m /w] = P[Zj − fi ≥ 2m /w]

= ≤
E[Zj − fi]

2m /w

CountMin Sketch: Analysis

≤ fi +
m
w

= fi +
1
w ∑

s:s≠i

fs

=
E[Zj] − fi

2m /w
≤

( fi + m /w) − fi
2m /w

=
1
2



• Claim.  with probability at least  

• Consider a fixed element .  We have  .


• What is the probability that  ?


• 








          


• Thus 


̂fi ≤ fi + 2m /w 1 − (1/2)d

i P[Zj − fi ≥ 2m /w] ≤ 1/2

̂fi ≥ fi + 2m /w

P[ ̂fi ≥ fi + 2m /w] = P[Z1 ≥ fi + 2m /w ∩ Z2 ≥ fi + 2m /w ∩ ⋯ ∩ Zd ≥ fi + 2m /w]

= P[Z1 ≥ fi + 2m /w] ⋅ P[Z2 ≥ fi + 2m /w] ⋅ ⋯ ⋅ P[Zd ≥ fi + 2m /w]

≤
1
2

⋅
1
2

⋅ ⋯ ⋅
1
2

= ( 1
2 )

d

P[ ̂fi ≤ fi + 2m /w] ≥ 1 − ( 1
2 )

d

CountMin Sketch: Analysis
• Use    and  .


• The estimator  has the following property: 


•  


•  with probability at least 


• Space.  words.


• Query and processing time. 

w = 2/ε d = lg(1/δ)
̂fi

̂fi ≥ fi
̂fi ≤ fi + εm 1 − δ

O(dw) = O(2 lg(1/δ)/ε) = O(lg(1/δ)/ε)

O(d) = O(lg(1/δ))

CountMin Sketch: Analysis

d

w

h1

h4

h2

h3

h2(y)

h4(y)

h3(y)

h1(y)

• We can use the CountMin Sketch to solve e.g.:


• Heavy hitters: List all heavy hitters (elements with frequency at least m/k).


• Range(a,b): Return (an estimate of) the number of elements in the stream with 
value between a and b.


• Exercise.


• How can we solve heavy hitters with a single CountMin sketch? 


• What is the space and query time? 

Applications of CountMin Sketch
• Dyadic intervals. Set of intervals:


   {[ j
n
2i

+ 1,…, ( j + 1)
n
2i

] | 0 ≤ i ≤ lg n, 0 ≤ j ≤ 2i−1}

Dyadic Intervals

[1,2] [3,4] [5,6] [7,8]

1 2 3 4 5 6 7 8

[1,4] [5,8]

[1,8]

9 10 11 12 13 14 15 16

[9,10] [11,12] [13,14] [15,16]

[9,12] [13,16]

[9,16]

[1,16]



• Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals


• On a level: Treat all elements in same interval as the same element.

Heavy Hitters

[1,2] [3,4] [5,6] [7,8]

1 2 3 4 5 6 7 8

[1,4] [5,8]

[1,8]

9 10 11 12 13 14 15 16

[9,10] [11,12] [13,14] [15,16]

[9,12] [13,16]

[9,16]

[1,16]

• Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals


• On a level: Treat all elements in same interval as the same element.

Heavy Hitters

[1,2] [3,4] [5,6] [7,8]

1 2 3 4 5 6 7 8

[1,4] [5,8]

[1,8]

9 10 11 12 13 14 15 16

[9,10] [11,12] [13,14] [15,16]

[9,12] [13,16]

[9,16]

[1,16]

• Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals


• On a level: Treat all elements in same interval as the same element.


• To find heavy hitters: 


• traverse tree from root.


• only visit children with frequency ≥ m/k.

Heavy Hitters

[1,2] [3,4] [5,6] [7,8]

1 2 3 4 5 6 7 8

[1,4] [5,8]

[1,8]

9 10 11 12 13 14 15 16

[9,10] [11,12] [13,14] [15,16]

[9,12] [13,16]

[9,16]

[1,16]

• Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals


• On a level: Treat all elements in same interval as the same element.


• To find heavy hitters: 


• traverse tree from root.


• only visit children with frequency ≥ m/k.

Heavy Hitters

[1,2] [3,4] [5,6] [7,8]

1 2 3 4 5 6 7 8

[1,4] [5,8]

[1,8]

9 10 11 12 13 14 15 16

[9,10] [11,12] [13,14] [15,16]

[9,12] [13,16]

[9,16]

[1,16]



• Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals


• On a level: Treat all elements in same interval as the same element.


• To find heavy hitters: 


• traverse tree from root.


• only visit children with frequency ≥ m/k.

Heavy Hitters

[1,2] [3,4] [5,6] [7,8]

1 2 3 4 5 6 7 8

[1,4] [5,8]

[1,8]

9 10 11 12 13 14 15 16

[9,10] [11,12] [13,14] [15,16]

[9,12] [13,16]

[9,16]

[1,16]

• Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals


• On a level: Treat all elements in same interval as the same element.


• To find heavy hitters: 


• traverse tree from root.


• only visit children with frequency ≥ m/k.

Heavy Hitters

[1,2] [3,4] [5,6] [7,8]

1 2 3 4 5 6 7 8

[1,4] [5,8]

[1,8]

9 10 11 12 13 14 15 16

[9,10] [11,12] [13,14] [15,16]

[9,12] [13,16]

[9,16]

[1,16]

• Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals


• On a level: Treat all elements in same interval as the same element.


• To find heavy hitters: 


• traverse tree from root.


• only visit children with frequency ≥ m/k.

Heavy Hitters

[1,2] [3,4] [5,6] [7,8]

1 2 3 4 5 6 7 8

[1,4] [5,8]

[1,8]

9 10 11 12 13 14 15 16

[9,10] [11,12] [13,14] [15,16]

[9,12] [13,16]

[9,16]

[1,16]

• Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals


• On a level: Treat all elements in same interval as the same element.


• To find heavy hitters: 


• traverse tree from root.


• only visit children with frequency ≥ m/k.

Heavy Hitters

[ [ [ [[ [[

1111111[ [ [ [[ [[[



• Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals


• On a level: Treat all elements in same interval as the same element.


• To find heavy hitters: 


• traverse tree from root.


• only visit children with frequency ≥ m/k.


• Analysis.  

• Time.  

• Number of intervals queried: .


• Query time: 


• Space.  

  words.

O(k lg n)

O(k lg n ⋅ lg(1/δ))

O (lg n ⋅
1
ϵ

lg ( 1
δ ))

Heavy Hitters

[ [ [ [[ [[

1111111[ [ [ [[ [[[

Count Sketch

3.2.1 Heavy hitters

Let the frequency of interval i denote the sum of the frequencies over all elements in

interval i.

To find the heavy hitters we traverse the tree from the root only traversing the children

whose intervals have frequency at least m/k and return the leaves whose frequency is at

least m/k. Since the frequency of an interval is at least that of its children and the

CountMin sketch overestimates the frequencies, we will reach all leaves with frequency

at least m/k.

Analysis There are lg n CountMin sketches (one for each level in the tree). Thus the

total space usage is O(
1
✏ lg

�
1
�

�
lg n).

For any given row, the sum over all frequencies in that row is m. Thus, in any

row, there are at most k intervals with frequency m/k. Therefore, we only explore the

children of at most k intervals in any given row, so the total number of intervals queried

is O(k log n). The total query time is O(k log n · lg 1
� ).

4 CountSketch

Algorithm 2: CountSketch

Initialize d independent hash functions hj : [n] ! [w].

Initialize d independent hash functions sj : [n] ! {±1}.
Set counter C[j, b] = 0 for all j 2 [d] and b 2 [w].

while Stream S not empty do

if Insert(x) then

for j = 1 . . . d do

C[j, hj(x)] =+ sj(i)

end

else if Frequency(i) then

f̂ij = C(hj(i)) · sj(i)
return efij = medianj2[d]f̂ij

end

end

4


