Streaming: Sketching
Ingei Gortz

Today

- Sketching
- CountMin sketch

Sketching

- Sketching. create compact sketch/summary of data.
- Example. Durand and Flajolet 2003.
- Condensed the whole Shakespeares' work
ghfffghfghgghggggghghheehfhfhhgghghghhfgffffhhhiigfhhffgfiihfhhh igigighfgihfffghigihghigfhhgeegeghgghhhgghhfhidiigihighihehhhfgg hfgighigffghdieghhhggghhfghhfiiheffghghihifgggffihgihfggighgiiif fjgfgjhhjiifhjgehgghfhhfhjhiggghghihigghhihihgiighgfhlgjfgjjjmfl
- Estimated number of distinct words: 30897 (correct answer is 28239, ie. relative error of 9.4\%).
- Composable.
- Data streams S_{1} and S_{2} with sketches $\operatorname{sk}\left(S_{1}\right)$ and $\operatorname{sk}\left(S_{2}\right)$
- There exists an efficiently computable function f such that

$$
s k\left(S_{1} \cup S_{2}\right)=f\left(s k\left(S_{1}\right), \operatorname{sk}\left(S_{2}\right)\right)
$$

CountMin Sketch

Frequency Estimation

- Frequency estimation. Construct a sketch such that can estimate the frequency f_{i} of any element $i \in[n]$.

CountMin Sketch

- Fixed array of counters of width w and depth d. Counters all initialized to be zero
- Pariwise independent hash function for each row $h_{i}:[n] \rightarrow[w]$
- When item x arrives increment counter $h_{i}(x)$ of in all rows

CountMin Sketch

- Fixed array of counters of width w and depth d. Counters all initialized to be zero.
- Pariwise independent hash function for each row $h_{i}:[n] \rightarrow[w]$.
- When item x arrives increment counter $h_{i}(x)$ of in all rows.
- Estimate frequency of y : return minimum of all entries y hash to.

CountMin Sketch

```
Algorithm 1: CountMin
    Initialize d independent hash functions }\mp@subsup{h}{j}{}:[n]->[w
    Set counter }\mp@subsup{C}{j}{}(b)=0\mathrm{ for all }j\in[d]\mathrm{ and }b\in[w]
    while Stream S not empty do
        if Insert(x) then
            for }j=1\ldotsn\mathrm{ do
            Cj
            end
            else if Frequency(i) then
            return }\mp@subsup{\hat{f}}{i}{}=\mp@subsup{\operatorname{min}}{j\in[d]}{C}\mp@subsup{C}{j}{}(\mp@subsup{h}{j}{}(i))
        end
    end
```

- The estimator \hat{f}_{i} has the following property:

$$
\begin{aligned}
& \text { - } \hat{f}_{i} \geq f_{i} \\
& \text { - } \hat{f}_{i} \leq f_{i}+2 m / w \text { with probability at } \\
& \text { least } 1-(1 / 2)^{d}
\end{aligned}
$$

CountMin Sketch

- Fixed array of counters of width w and depth d. Counters all initialized to be zero.
- Pariwise independent hash function for each row $h_{i}:[n] \rightarrow[w]$.
- When item x arrives increment counter $h_{i}(x)$ of in all rows
- Estimate frequency of y : return minimum of all entries y hash to.

CountMin Sketch: Analysis

- Claim. $\hat{f}_{i} \leq f_{i}+2 m / w$ with probability at least $1-(1 / 2)^{d}$
- Consider a fixed element i. $Z_{j}=C\left(h_{j}(i)\right)$
- Let $b=h_{j}(i)$. Then

$$
Z_{j}=\sum_{s: h_{i}(s)=b} f_{s}
$$

- Expected value of Z_{j}

$$
E\left[Z_{j}\right]=E\left[\sum_{s: h_{j}(s)=b} f_{s}\right] \quad=f_{i}+\frac{1}{w} \sum_{s: s \neq i} f_{s} \quad \leq f_{i}+\frac{m}{w}
$$

- Want to bound

$$
\begin{aligned}
P\left[Z_{j} \geq f_{i}+2 m / w\right] & =P\left[Z_{j}-f_{i} \geq 2 m / w\right] \\
& =\leq \frac{E\left[Z_{j}-f_{i}\right]}{2 m / w}=\frac{E\left[Z_{j}\right]-f_{i}}{2 m / w} \leq \frac{\left(f_{i}+m / w\right)-f_{i}}{2 m / w}=\frac{1}{2}
\end{aligned}
$$

CountMin Sketch: Analysis

- Claim. $\hat{f}_{i} \leq f_{i}+2 m / w$ with probability at least $1-(1 / 2)^{d}$
- Consider a fixed element i. We have $P\left[Z_{j}-f_{i} \geq 2 m / w\right] \leq 1 / 2$.
- What is the probability that $\hat{f}_{i} \geq f_{i}+2 m / w$?
- $P\left[\hat{f}_{i} \geq f_{i}+2 m / w\right]=P\left[Z_{1} \geq f_{i}+2 m / w\right.$

$$
\begin{aligned}
& =P\left[Z_{1} \geq f_{i}+2 m / w\right] \cdot P\left[Z_{2} \geq f_{i}+2 m / w\right] \cdot \cdots \cdot P\left[Z_{d} \geq f_{i}+2 m / w\right] \\
& \leq \frac{1}{2} \cdot \frac{1}{2} \cdot \cdots \cdot \frac{1}{2} \\
& =\left(\frac{1}{2}\right)^{d}
\end{aligned}
$$

- Thus

$$
P\left[\hat{f}_{i} \leq f_{i}+2 m / w\right] \geq 1-\left(\frac{1}{2}\right)^{d}
$$

Applications of CountMin Sketch

- We can use the CountMin Sketch to solve e.g.:
- Heavy hitters: List all heavy hitters (elements with frequency at least m / k).
- Range(a,b): Return (an estimate of) the number of elements in the stream with value between a and b.
- Exercise.
- How can we solve heavy hitters with a single CountMin sketch?
- What is the space and query time?

CountMin Sketch: Analysis

- Use $w=2 / \varepsilon$ and $d=\lg (1 / \delta)$.
- The estimator \hat{f}_{i} has the following property:
- $\hat{f}_{i} \geq f_{i}$
- $\hat{f}_{i} \leq f_{i}+\varepsilon m$ with probability at least $1-\delta$
- Space. $O(d w)=O(2 \lg (1 / \delta) / \varepsilon)=O(\lg (1 / \delta) / \varepsilon)$ words.
- Query and processing time. $O(d)=O(\lg (1 / \delta))$

Dyadic Intervals

- Dyadic intervals. Set of intervals:

$$
\left\{\left.\left[j \frac{n}{2^{i}}+1, \ldots,(j+1) \frac{n}{2^{i}}\right] \right\rvert\, 0 \leq i \leq \lg n, 0 \leq j \leq 2^{i-1}\right\}
$$

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
- On a level: Treat all elements in same interval as the same element.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals - On a level: Treat all elements in same interval as the same element.
- To find heavy hitters:
- traverse tree from root.
- only visit children with frequency $\geq \mathrm{m} / \mathrm{k}$.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
- On a level: Treat all elements in same interval as the same element.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals - On a level: Treat all elements in same interval as the same element.
- To find heavy hitters:
- traverse tree from root
- only visit children with frequency $\geq \mathrm{m} / \mathrm{k}$.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
- On a level: Treat all elements in same interval as the same element.
- To find heavy hitters
- traverse tree from root.
- only visit children with frequency $\geq \mathrm{m} / \mathrm{k}$.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals - On a level: Treat all elements in same interval as the same element.
- To find heavy hitters:
- traverse tree from root.
- only visit children with frequency $\geq \mathrm{m} / \mathrm{k}$.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
- On a level: Treat all elements in same interval as the same element.
- To find heavy hitters:
- traverse tree from root.
- only visit children with frequency $\geq \mathrm{m} / \mathrm{k}$.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals - On a level: Treat all elements in same interval as the same element.
- To find heavy hitters:
- traverse tree from root
- only visit children with frequency $\geq \mathrm{m} / \mathrm{k}$.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
- On a level: Treat all elements in same interval as the same element.
- To find heavy hitters
- traverse tree from root.
- only visit children with frequency $\geq \mathrm{m} / \mathrm{k}$.
- Analysis.
- Time.
- Number of intervals queried: $O(k \lg n)$.
- Query time: $O(k \lg n \cdot \lg (1 / \delta))$
- Space.

$$
O\left(\lg n \cdot \frac{1}{\epsilon} \lg \left(\frac{1}{\delta}\right)\right) \text { words. }
$$

Count Sketch

Algorithm 2: CountSketch

Initialize d independent hash functions $h_{j}:[n] \rightarrow[w]$ Initialize d independent hash functions $s_{j}:[n] \rightarrow\{ \pm 1\}$
Set counter $C[j, b]=0$ for all $j \in[d]$ and $b \in[w]$.
Set counter $C[j, b]=0$ for all j
while S tream S not empty do
if Insert (x) then
for $j=1 \ldots d$ do

- $C\left[j, h_{j}(x)\right]=+s_{j}(i)$
end
else if Frequency(i) then
$\hat{f}_{i j}=C\left(h_{j}(i)\right) \cdot s_{j}(i)$
return $\tilde{f}_{i j}=\operatorname{median}_{j \in[d]} \hat{f}_{i j}$
end

	Space	Error
Count-Min	$O\left(\frac{1}{\epsilon} \log n\right)$	ϵF_{1} (one-sided)
Count-Sketch	$O\left(\frac{1}{\epsilon^{2}} \log n\right)$	$\epsilon \sqrt{F_{2}}$ (two-sided)

