Streaming: Sketching

Inge Li Gørtz

Sketching

Today

- Sketching
- CountMin sketch

Sketching

- Sketching. create compact sketch/summary of data.
- Example. Durand and Flajolet 2003.
 - Condensed the whole Shakespeares' work

• Estimated number of distinct words: 30897 (correct answer is 28239, ie. relative error of 9.4%).

· Composable.

- Data streams S_1 and S_2 with sketches $sk(S_1)$ and $sk(S_2)$
- There exists an efficiently computable function f such that

 $sk(S_1 \cup S_2) = f(sk(S_1), sk(S_2))$

CountMin Sketch

CountMin Sketch

- Fixed array of counters of width w and depth d. Counters all initialized to be zero.
- Pariwise independent hash function for each row $h_i : [n] \rightarrow [w]$.
- When item x arrives increment counter $h_i(x)$ of in all rows.

Frequency Estimation

• Frequency estimation. Construct a sketch such that can estimate the frequency f_i of any element $i \in [n]$.

CountMin Sketch

- Fixed array of counters of width w and depth d. Counters all initialized to be zero.
- Pariwise independent hash function for each row $h_i : [n] \rightarrow [w]$.
- When item x arrives increment counter $h_i(x)$ of in all rows.

CountMin Sketch

- Fixed array of counters of width w and depth d. Counters all initialized to be zero.
- Pariwise independent hash function for each row $h_i : [n] \rightarrow [w]$.
- When item x arrives increment counter $h_i(x)$ of in all rows.
- Estimate frequency of y: return minimum of all entries y hash to.

CountMin Sketch

- Fixed array of counters of width w and depth d. Counters all initialized to be zero.
- Pariwise independent hash function for each row $h_i : [n] \rightarrow [w]$.
- When item x arrives increment counter $h_i(x)$ of in all rows.
- Estimate frequency of y: return minimum of all entries y hash to.

CountMin Sketch: Analysis

- Claim. $\hat{f}_i \leq f_i + 2m/w$ with probability at least $1-(1/2)^d$
- Consider a fixed element *i*. $Z_j = C(h_j(i))$
- Let $b = h_i(i)$. Then

$$Z_j = \sum_{s:h_j(s)=b} f_s$$

Expected value of Z_j

$$E[Z_j] = E\left[\sum_{s:h_j(s)=b} f_s\right] \qquad \qquad = f_i + \frac{1}{w} \sum_{s:s \neq i} f_s \qquad \qquad \leq f_i + \frac{m}{w}$$

-h₄(v)

Want to bound

$$\begin{split} P[Z_j \ge f_i + 2m/w] &= P[Z_j - f_i \ge 2m/w] \\ &= \le \frac{E[Z_j - f_i]}{2m/w} = \frac{E[Z_j] - f_i}{2m/w} \le \frac{(f_i + m/w) - f_i}{2m/w} = \frac{1}{2} \end{split}$$

CountMin Sketch				
Algorithm 1: CountMin				
Initialize d independent hash function	ns $h_j : [n] \to [w].$			
Set counter $C_j(b) = 0$ for all $j \in [d]$ a	and $b \in [w]$.			
if Import(n) then				
for $i = 1$, n do				
$ C_i(h_i(x)) = +1$				
end				
else if $Frequency(i)$ then				
return $\hat{f}_i = \min_{j \in [d]} C_j(h_j(i))$				
end				
end				
		h₁(y)	h ₂ (y)	
• The estimator \hat{f}_i has the following	h ₁	Å		▲
property:	ha	×		
• $\hat{f}_i \ge f_i$				d
Ê < E L Ore (en uith and behilder at	n ₃			
• $J_i \leq J_i + 2m/w$ with probability at	h₄		*	h₄(y)
$1 = (1/2)^{n}$	h3(v)			→
		W		

CountMin Sketch: Analysis

- Claim. $\hat{f}_i \leq f_i + 2m/w$ with probability at least $1-(1/2)^d$
- Consider a fixed element *i*. We have $P[Z_j f_i \ge 2m/w] \le 1/2$.
- What is the probability that $\hat{f}_i \ge f_i + 2m/w$?
- $P[\hat{f}_i \ge f_i + 2m/w] = P[Z_1 \ge f_i + 2m/w]$

$$= P[Z_1 \ge f_i + 2m/w] \cdot P[Z_2 \ge f_i + 2m/w] \cdot \dots \cdot P[Z_d \ge f_i + 2m/w]$$

$$\leq \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$
$$= \left(\frac{1}{2}\right)^{d}$$

Thus

$$P[\hat{f}_i \le f_i + 2m/w] \ge 1 - \left(\frac{1}{2}\right)^{\alpha}$$

Applications of CountMin Sketch

- We can use the CountMin Sketch to solve e.g.:
 - · Heavy hitters: List all heavy hitters (elements with frequency at least m/k).
 - Range(a,b): Return (an estimate of) the number of elements in the stream with value between a and b.

• Exercise.

- How can we solve heavy hitters with a single CountMin sketch?
- · What is the space and query time?

CountMin Sketch: Analysis

- Use $w = 2/\varepsilon$ and $d = \lg(1/\delta)$.
- The estimator \hat{f}_i has the following property:
 - $\hat{f}_i \ge f_i$ • $\hat{f}_i \le f_i + \varepsilon m$ with probability at least $1 - \delta$
- Space. $O(dw) = O(2\lg(1/\delta)/\varepsilon) = O(\lg(1/\delta)/\varepsilon)$ words.
- Query and processing time. $O(d) = O(\lg(1/\delta))$

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
 - · On a level: Treat all elements in same interval as the same element.

Heavy Hitters

- · Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
 - On a level: Treat all elements in same interval as the same element.
- · To find heavy hitters:
 - · traverse tree from root.
 - only visit children with frequency $\geq m/k$.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
 - · On a level: Treat all elements in same interval as the same element.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
 - · On a level: Treat all elements in same interval as the same element.
- To find heavy hitters:
 - · traverse tree from root.
 - only visit children with frequency \ge m/k.

Heavy Hitters

- · Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
 - On a level: Treat all elements in same interval as the same element.
- · To find heavy hitters:
 - · traverse tree from root.
 - only visit children with frequency $\geq m/k$.

Heavy Hitters

- · Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
 - · On a level: Treat all elements in same interval as the same element.
- To find heavy hitters:
 - · traverse tree from root.
 - only visit children with frequency $\geq m/k$.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
 - · On a level: Treat all elements in same interval as the same element.
- To find heavy hitters:
 - · traverse tree from root.
 - only visit children with frequency $\geq m/k$.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
 - On a level: Treat all elements in same interval as the same element.
- · To find heavy hitters:
 - · traverse tree from root.
 - only visit children with frequency \geq m/k.

Heavy Hitters

- Heavy Hitters. Store a CountMin Sketch for each level in the tree of dyadic intervals
 - On a level: Treat all elements in same interval as the same element.
- To find heavy hitters:
 - traverse tree from root.
 - only visit children with frequency $\geq m/k$.
- Analysis.
 - Time.
 - Number of intervals queried: $O(k \lg n)$.
 - Query time: $O(k \lg n \cdot \lg(1/\delta))$
 - Space.

 $O\left(\lg n \cdot \frac{1}{\epsilon} \lg\left(\frac{1}{\delta}\right)\right)$ words.

Count Sketch

Algorithm 2: C Initialize d inde	ountSketc	h nash functions h_j	$: [n] \to [w].$			
Initialize d inde	Initialize d independent hash functions $s_j : [n] \to \{\pm 1\}$.					
Set counter C []	[0, 0] = 0 10 S not omn	r all $j \in [a]$ and by	$b \in [w].$			
if Incert(x)	thon	iy uo				
$\int \frac{1}{\int for i} =$	1 d do					
C[j]	$h_i(x) = +$	$s_i(i)$				
end	.)()]	JUI				
else if Freq	else if $Frequency(i)$ then					
$\hat{f}_{ii} = C($	$\hat{f}_{ii} = C(h_i(i)) \cdot s_i(i)$					
return	$\mathbf{return} \widetilde{f}_{ii} = \text{median}_{i \in [d]} \hat{f}_{ii}$					
end	end $f_{j} = f_{j}$					
end						
		Space	Erro	or		
Coun	t-Min	$O\left(\frac{1}{\epsilon}\log n\right)$	ϵF_1 (one-sided	1)		
Coun	t-Sketch	$O\left(\frac{1}{\epsilon^2}\log n\right)$	$\epsilon \sqrt{F_2}$ (two-sided	1)		