Massively Parallel Computation

- Computational Model
- Summing
- Sorting
- Minimum Spanning Tree

Philip Bille

Computational Model

- Massively Parallel Computation (MPC) model.
- P processors each with space S .
- Typically $\mathrm{S}=\mathrm{N}^{\varepsilon}$ and $\mathrm{P}=\mathrm{N}^{1-\varepsilon}$.
- Synchronous computation in rounds.
- Round = local computation + communication.
- Communication into a processor is $<\mathrm{S}$.
- Complexity model.
- Rounds and space (\Rightarrow communication)
- Computation is free (!)
- Implementations.
- Map Reduce
- Bulk-Synchronous parallel
$\mathrm{N}=$ problem size
$\mathrm{P}=$ number of processors
$\mathrm{S}=$ space on each processor

Massively Parallel Computation

- Computational Model

- Summing
- Sorting
- Minimum Spanning Tree

Massively Parallel Computation

- Computational Model
- Summing
- Sorting
- Minimum Spanning Tree

Summing

$7,42,3,1,18,2,9,10,11,4,51,6,3,24,92,56,19,8,5,22,33$ 426

- Sum. Given a list of N integers $\mathrm{A}_{0}, \mathrm{~A}_{1}, \ldots, \mathrm{~A}_{\mathrm{N}-1}$ compute their sum.
- Input distributed arbitrarily among processors.

Summing

7, 42, 3
1, 18, 2
$9,10,11 \quad 4,51,6$
3, 24, 92

. Assume $S=\Theta(\sqrt{N})$ and $P=\Theta(\sqrt{N})$

- Sum.
- Each processor computes local sum and sends to processor 0.
- Compute global sum at processor 0.
- Rounds. 2.

Sorting

$7,42,3,1,18,2,9,10,11,4,51,6,3,24,92,56,19,8,5,22,33$
(7,8), (42,18), (3,3), (1,1), (18,13),(2,2), (9,10), (10, 11), (11,12),(4,5), $(51,19)$, (6,7), (3,4), (24,16), (92,21), $(56,20),(19,14),(8,9),(5,6),(22,15),(33,17)$

- Sorting. Given a list of N integers $A_{0}, A_{1}, \ldots, A_{N-1}$ compute list $\left(A_{0}, \operatorname{rank}\left(A_{0}\right)\right)$, $\left(A_{1}\right.$, $\left.\operatorname{rank}\left(\mathrm{A}_{1}\right)\right), \ldots,\left(\mathrm{A}_{\mathrm{N}-1}, \operatorname{rank}\left(\mathrm{~A}_{\mathrm{N}-1}\right)\right)$
- Input and output distributed arbitrarily among processors.

Sorting
7, 42, 3
1, 18, 2
9, 10, $114,51,6$
3, 24, 92
56, 19, 8

. Goal. Sorting in $\mathrm{O}(1)$ rounds whp. with $\mathrm{S}=\tilde{\Theta}(\sqrt{\mathrm{N}})$ and $\mathrm{P}=\tilde{\Theta}(\sqrt{\mathrm{N}})$.

- Idea.
- Sample $\tilde{\Theta}(\sqrt{\mathrm{N}})$ items and use sample to partition items into $\tilde{\Theta}(\sqrt{\mathrm{N}})$ ranges.
- Distribute items according to ranges and sort each range locally.

Sorting

- Sample.
- Each processor samples its items with probability 2P $\ln N / N$ and sends these to processor 0.
- Processor 0 broadcasts the set of samples to all processors.
- Let X be the set of samples. $|X| \leq 4 P \ln N$ whp.

Sorting

- Compute local histogram.
- Each processor counts number of items in ranges defined by X
- Each histogram uses $\mathrm{O}(|\mathrm{X}|)$ space.

Sorting

- $_{+}^{+}{ }_{-}^{+}{ }_{-}=$
- Compute global histogram.
- Each processor sends count for range ito processor i mod P.
- Processor i sums counts for range i mod P and sends sum to processor 0 .
- Processor 0 constructs global count.
- Each processor is responsible for counting $|\mathrm{X}| / \mathrm{P}=\mathrm{O}(\log \mathrm{N})$ ranges and receives $\mathrm{O}(\mathrm{P} \log \mathrm{N})$ integers.

Sorting

$x-1|1 \quad| \quad \mid$

- Exchange.
- Assign each range defined by X ' to a processor
- Each processor sends each of its items to processor assigned to corresponding range.
- Each processor locally sorts its items.
- Output sorted sequence

Sorting

- Select.
- Processor 0 selects $X^{\prime} \subseteq X$ such that each range defined by X^{\prime} contains $O(N / P)$ items from I and $\left|X^{\prime}\right|=O(P)$.
- Processor 0 broadcasts X^{\prime} to all machines.
- Sampling lemma $\Longrightarrow X^{\prime}$ exists whp.

Sorting

. Theorem. Sorting in $O(1)$ rounds whp. with $S=\tilde{\Theta}(\sqrt{N})$ and $P=\tilde{\Theta}(\sqrt{N})$.

Massively Parallel Computation

- Computational Model
- Summing
- Sorting
- Minimum Spanning Tree

Minimum Spanning Tree

- Let G be graph with n nodes and m edges.
- Goal. MST in $O(1 / \varepsilon)$ rounds whp. for $S=\Theta\left(n^{1+\varepsilon}\right)$ and $P=\Theta(m / S)=\Theta\left(m / n^{1+\varepsilon}\right)$
- Idea.
- Repeatly filter edges not part of MST in rounds.
- When all edges fit on one processor compute the MST directly.

Minimum Spanning Tree

- Minimum spanning tree. Given a connected, weighted, undirected graph compute the minimum spanning tree (MST).
- Input given as list of edges with weights. Output edges in MST.
- Input and output distributed arbitrarily among processors.

Minimum Spanning Tree

- Shuffle.
- Let m^{\prime} be the current edges. Initially, $\mathrm{m}^{\prime}=\mathrm{m}$.
- Choose $\mathrm{k}=2 \mathrm{~m}^{\prime} / \mathrm{n}^{1+\varepsilon}$ active processors.
- Distribute edges among active processors randomly.
- Let E_{i} be the edges at processor i. $\left|\mathrm{E}_{\mathrm{i}}\right|=\mathrm{n}^{1+\varepsilon}$ whp.

Minimum Spanning Tree

- Filter. Active processor i:
- computes a local minimum spanning forest of $G=\left(V, E_{i}\right)$.
- discards all other edges in E_{i}

Minimum Spanning Tree

- Correctness
- Edges in E_{i} that are not in the local minimum spanning forest are not in the MST.

Minimum Spanning Tree

- Repeat.
- Repeat shuffle and filter step until remaining edges fit on a single machine.
- Then compute MST.

Minimum Spanning Tree

- Rounds.
- Total edges remaining after a round is $\leq \mathrm{k}(\mathrm{n}-1)=\frac{2 \mathrm{~m}^{\prime}}{\mathrm{n}^{1+\varepsilon}}(\mathrm{n}-1)<\frac{2 \mathrm{~m}^{\prime}}{\mathrm{n}^{\varepsilon}}$
- \Longrightarrow A round reduces edges by factor n^{ε}
$\cdot \Longrightarrow$ After $\mathrm{O}(1 / \varepsilon)$ rounds the remaining edges is $<\mathrm{n}^{1+\varepsilon}$.

Minimum Spanning Tree

- Theorem. MST in $\mathrm{O}(1 / \varepsilon)$ rounds whp. for $S=\Theta\left(\mathrm{n}^{1+\varepsilon}\right)$ and $\mathrm{P}=\Theta\left(\mathrm{m} / \mathrm{n}^{1+\varepsilon}\right)$

Massively Parallel Computation

- Computational Model
- Summing
- Sorting
- Minimum Spanning Tree

