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Computational Model
• Massively Parallel Computation (MPC) model. 


• P processors each with space S.

• Typically  and .

• Synchronous computation in rounds.

• Round = local computation + 

communication. 

• Communication into a processor is < S.


• Complexity model.

• Rounds and space (⟹ communication)


• Computation is free (!)

• Implementations. 


• Map Reduce 

• Bulk-Synchronous parallel

𝖲 = 𝖭ε 𝖯 = 𝖭𝟣−ε

N = problem size

P = number of processors

S = space on each processor
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• Sum. Given a list of N integers A0, A1,..., AN-1 compute their sum. 

• Input distributed arbitrarily among processors.

Summing

426

7, 42, 3,1, 18, 2, 9, 10, 11, 4, 51, 6, 3, 24, 92, 56, 19, 8, 5, 22, 33



• Assume  and 


• Sum. 

• Each processor computes local sum and sends to processor 0. 

• Compute global sum at processor 0. 


• Rounds. 2.

𝖲 = Θ ( 𝖭) 𝖯 = Θ ( 𝖭)

Summing

7, 42, 3 1, 18, 2 9, 10, 11 4, 51, 6 3, 24, 92 56, 19, 8 5, 22, 33
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• Sorting. Given a list of N integers A0, A1,..., AN-1 compute list (A0, rank(A0)), (A1, 
rank(A1)), ..., (AN-1, rank(AN-1)) 


• Input and output distributed arbitrarily among processors. 

Sorting

(7,8), (42,18), (3,3), (1,1), (18,13),(2,2), (9,10), (10, 11), (11,12),(4,5),(51,19), 
(6,7), (3,4), (24,16), (92,21), (56, 20), (19,14), (8,9), (5, 6), (22,15), (33, 17)

7, 42, 3,1, 18, 2, 9, 10, 11, 4, 51, 6, 3, 24, 92, 56, 19, 8, 5, 22, 33



Sorting

• Goal. Sorting in O(1) rounds whp. with  and .

• Idea. 


• Sample  items and use sample to partition items into  ranges.

• Distribute items according to ranges and sort each range locally. 

𝖲 = Θ̃ ( 𝖭) 𝖯 = Θ̃ ( 𝖭)
Θ̃( 𝖭) Θ̃( 𝖭)

7, 42, 3 1, 18, 2 9, 10, 11 4, 51, 6 3, 24, 92 56, 19, 8 5, 22, 33



• Sample. 

• Each processor samples its items with probability  and sends these to  

processor 0. 

• Processor 0 broadcasts the set of samples to all processors.

• Let X be the set of samples.  whp. 

𝟤𝖯 ln 𝖭/𝖭

|𝖷 | ≤ 𝟦𝖯 ln 𝖭

Sorting

X



• Lemma. Let I be the sorted input. Consider a partition of I into P ranges of N/P 
consecutive items. Then, all ranges contain at least one item from X whp.  


• Proof. 


• 


• ⟹ 


• ⟹ 

Pr (range contains no items) = (𝟣 −
𝟤𝖯 ln 𝖭

𝖭 )
𝖭
𝖯

≤ 𝖾−𝟤 ln 𝖭 =
𝟣

𝖭𝟤

Pr (some range contain no items) = 𝖯 ⋅
𝟣

𝖭𝟤
<

𝟣
𝖭

Pr (all ranges contain at least 1 item) > 𝟣 −
𝟣
𝖭

Sorting 

Pr we don't 
sample item

Pr we don't sample 
item in range

(𝟣 + 𝗑)𝗋 ≤ 𝖾𝗋𝗑

I

X



• Compute local histogram. 

• Each processor counts number of items in ranges defined by X.

• Each histogram uses O(|X|) space. 

Sorting

X



• Compute global histogram. 

• Each processor sends count for range i to processor i mod P. 

• Processor i sums counts for range i mod P and sends sum to processor 0.

• Processor 0 constructs global count.

• Each processor is responsible for counting  ranges and receives 

 integers. 
|𝖷 | /𝖯 = 𝖮(log 𝖭)

𝖮(𝖯 log 𝖭)

Sorting
+ + + =

+ + + =

+ + + =

..
.

+ + + =

+ + + =



• Select.

• Processor 0 selects  such that each range defined by X' contains O(N/P) 

items from I and |X'| = O(P). 

• Processor 0 broadcasts X' to all machines.  

• Sampling lemma ⟹ X' exists whp. 

𝖷′ ⊆ 𝖷

Sorting

I

X

X'



• Exchange.

• Assign each range defined by X' to a processor. 

• Each processor sends each of its items to processor assigned to corresponding 

range. 

• Each processor locally sorts its items.

• Output sorted sequence.  

Sorting

I

X

X'



Sorting

• Theorem. Sorting in O(1) rounds whp. with  and .
𝖲 = Θ̃ ( 𝖭) 𝖯 = Θ̃ ( 𝖭)

7, 42, 3 1, 18, 2 9, 10, 11 4, 51, 6 3, 24, 92 56, 19, 8 5, 22, 33
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• Minimum spanning tree. Given a connected, weighted, undirected graph compute 
the minimum spanning tree (MST).


• Input given as list of edges with weights. Output edges in MST. 

• Input and output distributed arbitrarily among processors. 

Minimum Spanning Tree



• Let G be graph with n nodes and m edges. 

• Goal. MST in  rounds whp. for  and 


• Idea. 

• Repeatly filter edges not part of MST in rounds. 

• When all edges fit on one processor compute the MST directly. 

𝖮(𝟣/ε) 𝖲 = Θ(𝗇𝟣+ε) 𝖯 = Θ(𝗆/𝖲) = Θ(𝗆/𝗇𝟣+ε)

Minimum Spanning Tree



• Shuffle. 

• Let m' be the current edges. Initially, m' = m.


• Choose  active processors. 

• Distribute edges among active processors randomly.

• Let Ei be the edges at processor i.  whp. 

𝗄 = 𝟤𝗆′ /𝗇𝟣+ε

|𝖤𝗂 | = 𝗇𝟣+ε

Minimum Spanning Tree

k



• Filter. Active processor i: 

• computes a local minimum spanning forest of G = (V, Ei). 

• discards all other edges in Ei 

Minimum Spanning Tree



• Repeat. 

• Repeat shuffle and filter step until remaining edges fit on a single machine. 

• Then compute MST.

Minimum Spanning Tree



• Correctness. 

• Edges in Ei that are not in the local minimum spanning forest are not in the MST. 

Minimum Spanning Tree



• Rounds. 


• Total edges remaining after a round is 


• ⟹ A round reduces edges by factor 


• ⟹ After   rounds the remaining edges is < .

≤ 𝗄(𝗇 − 𝟣) =
𝟤𝗆′ 

𝗇𝟣+ε
(𝗇 − 𝟣) <

𝟤𝗆′ 

𝗇ε

𝗇ε

𝖮(𝟣/ε) 𝗇𝟣+ε

Minimum Spanning Tree



• Theorem. MST in  rounds whp. for  and 𝖮(𝟣/ε) 𝖲 = Θ(𝗇𝟣+ε) 𝖯 = Θ(𝗆/𝗇𝟣+ε)

Minimum Spanning Tree
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