
Weekplan: Massively Parallel Computation

Philip Bille Inge Li Gørtz Eva Rotenberg

References and Reading

[1] Massively Parallel Algorithms, M. Ghaffari, 2019.

[2] Parallel Algorithms, Chapter 6, M. Ghaffari, 2019.

[3] Scribe notes from "Algorithms for Massive Data Science", Ben Mosely, 2019.

We recommend reading [1] for an overview of the area. We recommend reading [2] sections 6.7-6.9 and the
scribe notes [3] in detail.

Exercises

1 Summing with other Parameters Consider the sum problem from the lectures and the parameters P and S.
Solve the following exercises.

1.1 Give an efficient algorithm when S = Θ(N3/4) and P = Θ(N1/4).

1.2 Give an efficient algorithm when S = Θ(N1/4) and P = Θ(N3/4) .

1.3 Give an efficient algorithm when S = Θ(N !) and P = Θ(N1−!).

2 Sorting Properties and Output Solve the following exercises.

2.1 [w] The single round algorithm for sorting in the MPC model is often called “quicksort” or “generalized
quicksort”. Why? What is the connection to quicksort?

2.2 The output of the MPC sorting algorithm is not in the required format. Show how to convert it to the required
format in O(1) additional rounds.

3 Prefix Sum, Distinct Elements, and Word Count Solve the following exercises. Assume S = P = !Θ(!N)

3.1 Let A be an array of N integers distributed among processors. Each entry in A is stored as (i, A[i]). Show
how to compute the prefix sum of A (the array P[i] =

"
j≤i A[j]) efficiently in the MPC model. The array P

should be represented similar to A.

3.2 Let L be a list of N integers, show how to compute the number of distinct elements in L in the MPC model.

3.3 Let W be a list of N strings each of constant length. The word count of W is the list of pairs of distinct words
and their frequency in W . Computing the word count is a classic “hello world”-exercise for the MapReduce
framework. Show how to implement it efficiently in the MPC model.

4 Sorting Analysis Solve the following exercises.

4.1 Carefully verify that each step of the sorting algorithm satisfies the bounds on S and P.

4.2 Show that |X |≤ 4P ln N whp. Hint: First compute the expected size of X and then apply a Chernoff bound.

1

5 Minimum Spanning Tree Correctness Show that the MPC minimum spanning tree algorithm correctly out-
puts a minimum spanning tree. Hint: show that the discarded edges cannot be part of an MST using standard
properties of MSTs.

6 Dynamic Programming Let S and T be strings of length N and consider the classic O(N2) time solution for
computing the longest common subsequence of S and T . Show how to implement the algorithm efficiently on the
MPC model. Assume S = P = !Θ(!N).

7 [∗] String Matching Let P and T be strings of lengths M and N , respectively. The string matching problem
is to determine if P occurs as a substring of T . Show how to solve the string matching problem efficiently on the
MPC model. Assume S = P = !Θ(!N). Further, assume that T and P are partitioned into equal sized substrings of
size O(S) and stored distributed among the processors. Solve the following exercises.

7.1 Solve the string matching problem with the assumption that M < S.

7.2 Solve the string matching problem for any M ≤ N . Hint: use Karp-Rabin fingerprints to efficiently hash
substrings.

2

