Streaming 2: Distinct element count

Philip Bille Inge Li Gørtz Eva Rotenberg

Reminder: hashing

Kiddie definition: A hash function is a function from U to [m]. A hash function is a random variable in the set of functions $U \rightarrow [m]$. Question: If |U| = u and |[m]| = m, how many functions $U \rightarrow [m]$? In practise, h is chosen uniform at random from a subset of $f : U \rightarrow [m]$. 2-independent hashing: For all $x \neq y \in U$, $q, r \in [m]$, $P[h(x) = r \land h(y) = q] = \frac{1}{m^2}$.

Distinct element count

 $z \leftarrow 0$, for $\underline{a_i \text{ in stream}}$ do $| z = \max\{z, 0s(h(a_i))\}$ end return $2^{z+0.5}$

Imagine you want to count element <u>types</u> (e.g. colours, see figure). Challenge: A random dice roll that depends on the input. Solution: Hashing.

Take a 2-independent hash function h.

Use z = the number of trailing 0s in the hash values h(x) seen so far. Estimate: count $\simeq 2^{z+\frac{1}{2}}$. (we denote this \hat{d} , estimator of d) Question: After seeing one element, what is the expected value of \hat{d} ? Assume we have an algorithm taking up *s* bits space and deterministically, exactly able to report the number of distinct elements. Then, given any binary sequence *x* of length *n*, we can do the following: Let the algorithm stream through a sequence consisting of $i : x_i = 1$. Example: x = 1001101 Stream: 1,4,5,7.

Then, the state of the algorithm must be some configuration reflecting this information.

Now, regardless of what x was, we can recover x by streaming the following sequence: $1, 2, 3, 4, \ldots$, each time noticing whether the number of distinct elements goes up.

Thus, the state of the algorithm must have been able to distinguish between all different strings of length $n \Rightarrow s = n$.

Exercise: How does this encoding encode $x' = 0100111 \in \{0, 1\}^7$?

Lemma: \hat{d} deviates from d by a factor 3 with prob. $\leq 2\frac{\sqrt{2}}{3}$. Not very impressive. Still interesting! What if we run k independent copies of the algorithm and return the median, m? m > 3d means k/2 of the copies exceed 3d. Expected: only $k\frac{\sqrt{2}}{3}$ exceed 3d. Since they are independent, we can use Chernoff. \Rightarrow prob. $2^{-\Omega(k)}$. How well does $\hat{d} = 2^{z+\frac{1}{2}}$ estimate d? $X_{r,i}$: indicator variable for > r zeros in the hash value h(i). $\mathbb{E}[X_{r,i}] = P[r \text{ coinflips turn head}] = \left(\frac{1}{2}\right)^{r}$. $Y_r = \sum_{i \in \text{stream}} X_{r,i}$: number of seen elements with $\geq r$ 0s. $\mathbb{E}[Y_r] = d \cdot \mathbb{E}[X_{r*}] = \frac{d}{2r}$ $Var[Y_r] = \sum_i Var[X_{r,j}] \le \sum_i \mathbb{E}[X_{r,j}^2] = \sum_i \mathbb{E}[X_{r,j}] = \frac{d}{2^r} (i \in \text{stream})$ $P[Y_r > 0] = P[Y_r > 1] \stackrel{\text{Markov}}{\leq} \frac{\mathbb{E}[Y_r]}{\mathbb{E}[Y_r]} = \frac{d}{2r}$ $P[Y_r = 0] \le P[|Y_r - \mathbb{E}[Y_r]| \ge \frac{d}{2^r}] \stackrel{\text{Chebysh.}}{\le} \frac{\mathbb{E}[Y_r]}{(d/2^r)^2} \le \frac{1}{(d/2^r)}$ Now, the probability of \hat{d} being within a factor 3 of d. $P[\hat{d} > 3d] = P[z > a]$ for some a with $2^{a+1/2} > 3d$. $= P[Y_a > 0] \le \frac{d}{2^a} = \frac{3 \cdot d \cdot \sqrt{2}}{3 \cdot 2^a \cdot \sqrt{2}} = \frac{\sqrt{2}}{3} \cdot \frac{3d}{2^{a+\frac{1}{2}}} \le \frac{\sqrt{2}}{3}.$ Similarly, $P[\hat{d} < d/3] < \frac{\sqrt{2}}{2}$.