
Weekplan: Suffix Trees I

Philip Bille and Inge Li Gørtz

References and Reading

[1] Tries and Suffix Trees. Inge Li Gørtz.

[2] Algorithms on Strings, Trees, and Sequences, Chap. 5-9, D. Gusfield

We recommend reading [1] in detail. [2] provides an extensive list of applications of suffix trees.

Exercises

1 [w] Suffix Trees Draw the suffix tree T for the string mississippi$. Write edge labels (substrings) and
leaf labels (suffix number). Illustrate how a search for "issi"works.

2 [w] Substring Counting Let S = s0s1 · · · sn−1 be a string of length n over an alphabet Σ. We are interested in
a data structure for S that supports the following query.

• count(P): return the number of occurrences of P in S.

Give a data structure that supports count(P) queries efficiently.

3 Repeats Solve the following exercises. Assume you have an efficient black-box algorithm for computing the
suffix tree of a string.

3.1 A repeat in a string S is a substring R that occurs at least twice in S. Show how to efficiently compute the
length of a longest substring of S that is a repeat.

3.2 Given a string S of length n and an integer k, show how to efficiently find the smallest substring of S occurring
exactly k times. Analyze the time and space consumption of your algorithm.

4 Longest Common Extensions Let S be a string of length n over alphabet Σ. The longest common extension
problem is to preprocess S into data structure to support queries of the following form:

• LCE(i,j): Return the length of the longest common prefix of S[i, n] and S[ j, n].

5 DNA contamination [2] Various laboratory processes used to isolate, purity, clone, copy, maintain, probe, or
sequence a DNA string can course unwanted DNA to become inserted into the string of interest or mixed together
with a collection of strings. Often, the DNA sequences from many of the possible contaminants are known. This
motivates the following computational problem:

Given a string S1 (the newly isolated and sequenced string of DNA) and a string S2 (the combined sources of
possible contamination), find all substrings of S2 that occur in S1 and that are longer than some given length ℓ.
These substrings are candidates for unwanted pieces of S2 that have contaminated the desired DNA string. Give
an efficient algorithm to solve the problem.

6 Reversible substrings Let S = s1s2 · · · sn be a string of length n over a constant size alphabet Σ. A reversible
substring of S is a substring of odd length that reads the same from left-to-right and right-to-left. Give an efficient
algorithm that computes the length of the longest reversible substring of S.

1



7 Lexicographically smallest shift In chemical databases for circular molecules, each molecule is represented
by a circular string of chemical characters. To allow faster lookup and comparisons of molecules, one wants to
store each circular string by a canonical linear string. A natural choice for a canonical linear strings the one that
is lexicographically smallest. That gives the following computational problem.

Assume we are given a string T = x1 . . . xn of length n. A shift of T by s, 0 ≤ s < n, is the string T s =
xs+1 xs+2 . . . xn x1 x2 . . . xs. In this problem we want to find the lexicographically smallest shift, i.e. the shift s where
T s is lexicographically smallest among T 0, . . . , T n−1. Eg. T 2 = T 7 = a a b a b a a b a b are the lexicographically
smallest shifts of the string

T = a b a a b a b a a b

7.1 State all s where T s is a lexicographically smallest shift of the string

T = b c a b a a b c a b a a b c a b a a

7.2 Describe an algorithm that given a string T of length n over an alphabet of size O(1) computes all s where
T s is a lexicographically smallest shift of T . State the algorithms running time.

2


