
Traveling salesman problem
Inge Li Gørtz

• Set of cities {1,…,n}

• cij ≥ 0: cost of traveling from i to j.

• cij a metric:


• cii = 0

• cij = cji 

• cij ≤ cik + ckj       (triangle inequality)


• Goal: Find a tour of minimum cost visiting every city exactly once.
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• Set of cities {1,…,n}

• cij ≥ 0: cost of traveling from i to j.

• cij a metric:


• cii = 0

• cij = cji 

• cij ≤ cik + ckj


• Goal: Find a tour of minimum cost visiting every city exactly once.

Traveling Salesman Problem (TSP)

• MST is a lower bound on TSP.

• Deleting an edge e from OPT gives a spanning tree.

• OPT ≥ OPT - ce ≥ MST.

Double tree algorithm



• Double tree algorithm

• Compute MST T.

• Double edges of T

• Construct Euler tour 𝞃 (a tour visiting every edge exactly once).
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• Double tree algorithm

• Compute MST T.

• Double edges of T

• Construct Euler tour 𝞃 (a tour visiting every edge exactly once).


• Shortcut 𝞃 such that each vertex only visited once (𝞃’)


• length(𝞃’) ≤ length(𝞃) = 2 cost(T) ≤ 2 OPT.


• The double tree algorithm is a 2-approximation algorithm for TSP.
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• Christofides’ algorithm

• Compute MST T.

• No need to double all edges:


• Enough to turn it into an Eulerian graph: A graph Eulerian if there is a traversal of all edges 
visiting every edge exactly once. 
• G Eulerian iff G connected and all nodes have even degree.


• Consider set O of all odd degree vertices in T. 

• Find minimum cost perfect matching M on O. 


• Matching: no edges share an endpoint.

• Perfect: all vertices matched.

• Perfect matching on O exists: Number of odd vertices in a graph is even. 


• T + M is Eulerian (all vertices have even degree).

Christofides’ algorithm



• Christofides’ algorithm

• Compute MST T.

• O = {odd degree vertices in T}. 

• Compute minimum cost perfect matching M on O. 

• Construct Euler tour 𝞃


• Shortcut such that each vertex only visited once (𝞃’) 
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• Christofides’ algorithm

• Compute MST T.

• O = {odd degree vertices in T}. 

• Compute minimum cost perfect matching M on O. 

• Construct Euler tour 𝞃


• Shortcut such that each vertex only visited once (𝞃’) 


• length(𝞃’) ≤ length(𝞃) = cost(T) + cost(M) ≤ OPT + cost(M).

Christofides’ algorithm

• cost(M) ≤ OPT/2.

• OPTo = OPT restricted to O.

• OPTo ≤ OPT.

Analysis of Christofides’ algorithm
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• cost(M) ≤ OPT/2:

• OPTo = OPT restricted to O.

• OPTo ≤ OPT.

• can partition OPTo into two perfect matchings O1 and O2.

• cost(M) ≤ min(cost(O1), cost(O2)) ≤ OPT/2.


• length(𝞃’) ≤ length(𝞃) = cost(T) + cost(M) ≤ OPT + OPT/2 = 3/2 OPT.


• Christofides’ algorithm is a 3/2-approximation algorithm for TSP.

Analysis of Christofides’ algorithm

Hardness of Approximation
Inge Li Gørtz

• There is no α-approximation algorithm for the non-metric TSP for unless P=NP.


• Hamiltonian cycle. Given G=(V,E). Is there a cycle visiting every vertex exactly once?

TSP: Inapproximability 

I have found a 5-
approximation 

algorithm for TSP!

Then I can use your 
algorithm to solve an NP-

complete problem in 
polynomial time!



• G has a Hamiltonian cycle          ⇔        optimal cost of TSP in G’ is n = 9. 

• G has no Hamiltonian cycle        ⇔       optimal cost of TSP in G’ is at least n - 1 + 5n + 1                  

                                                                  =  6n   =   8 + 46 = 54

TSP: Inapproximability 

??? If there is a HC in G 
then the 5-approximation 
algorithm returns a tour of 

cost ≤ 45. 

If there is no HC in 
G then the 5-approximation 
algorithm returns a tour of 

cost ≥ 54. 

G G’

— cost 1
— cost 5n+1  

= 46

• G has a Hamiltonian cycle          ⇔        optimal cost of TSP in G’ is n. 

• G has no Hamiltonian cycle        ⇔       optimal cost of TSP in G’ ≥ n -1 + (αn + 1) 

                                            =  (α+1)n

TSP: Inapproximability 
But maybe I can find 
a 10-approximation 

algorithm?

Not unless P = NP!

We can replace 5n + 1 
with αn +1 to show there exits no 
α-approxmation algorithm unless 

P = NP

G G’

— cost 1
— cost αn+1  

• There is no α-approximation algorithm for the k-center problem for α < 2 unless 
P=NP.


• Proof. Reduction from dominating set.

• Dominating set. Given G=(V,E) and k. Is there a (dominating) set S ⊆ V of size k, such 

that each vertex is either in S or adjacent to a vertex in S?

• Given instance of the dominating set problem construct instance of k-center 

problem:

• Complete graph G’ on V.

• All edges from E has weight 1, all new edges have weight 2.

• Radius in k-center instance 1 or 2.

• G has an dominating set of size k <=> opt solution to the k-center problem has 

radius 1.

• Use α-approximation algorithm A: 


• opt = 1 => A returns solution with radius at most α < 2.

• opt = 2 => A returns solution with radius at least 2.

• Can use A to distinguish between the 2 cases.

k-center: Inapproximability 


