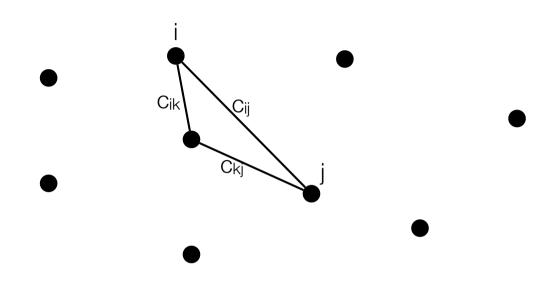
Traveling salesman problem

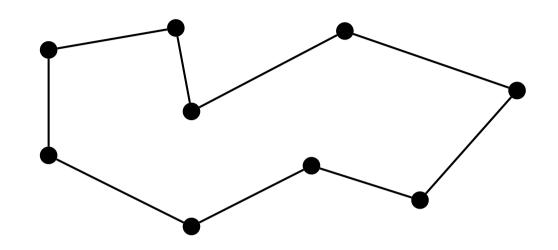
Inge Li Gørtz

Traveling Salesman Problem (TSP)

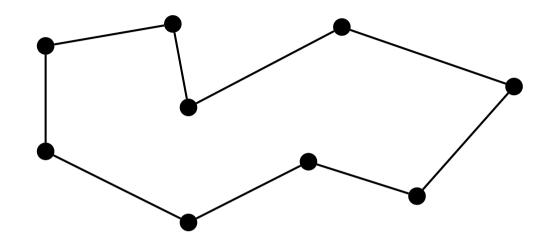


- Set of cities {1,...,n}
- $c_{ij} \ge 0$: cost of traveling from i to j.
- c_{ij} a metric:
 - $c_{ii} = 0$
 - $C_{ij} = C_{ji}$
 - $c_{ij} \le c_{ik} + c_{kj}$ (triangle inequality)
- Goal: Find a tour of minimum cost visiting every city exactly once.

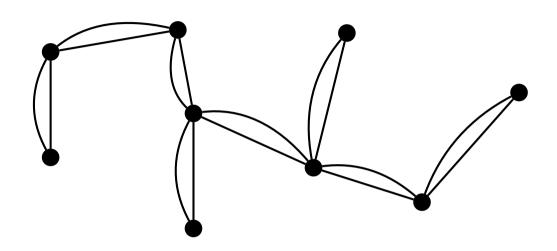
Traveling Salesman Problem (TSP)



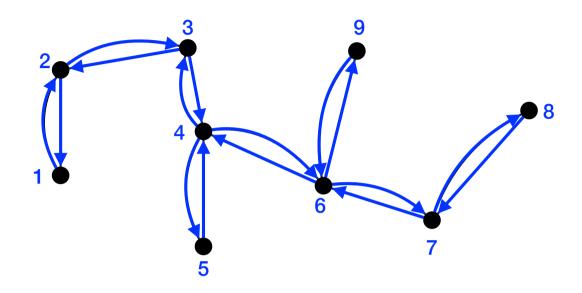
- Set of cities {1,...,n}
- $c_{ij} \ge 0$: cost of traveling from i to j.
- c_{ij} a metric:
 - $c_{ii} = 0$
 - $C_{ij} = C_{ji}$
 - $C_{ij} \leq C_{ik} + C_{kj}$
- Goal: Find a tour of minimum cost visiting every city exactly once.



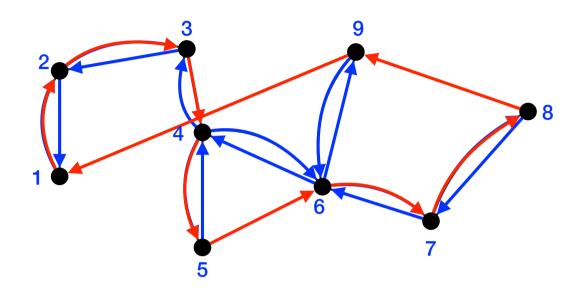
- MST is a lower bound on TSP.
 - Deleting an edge e from OPT gives a spanning tree.
 - OPT \geq OPT $c_e \geq$ MST.



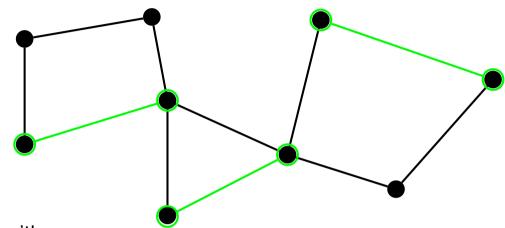
- Double tree algorithm
 - Compute MST T.
 - Double edges of T
 - Construct Euler tour **t** (a tour visiting every edge exactly once).



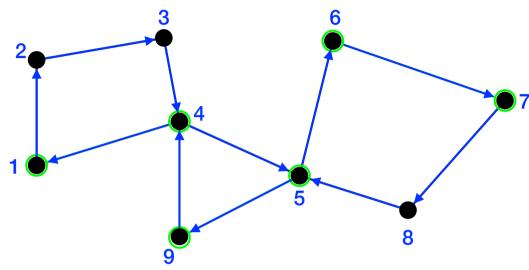
- Double tree algorithm
 - Compute MST T.
 - Double edges of T
 - Construct Euler tour **t** (a tour visiting every edge exactly once).



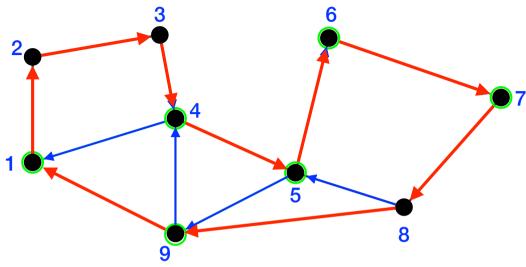
- Double tree algorithm
 - Compute MST T.
 - Double edges of T
 - Construct Euler tour t (a tour visiting every edge exactly once).
 - Shortcut τ such that each vertex only visited once (τ')
- length(τ ') \leq length(τ) = 2 cost(T) \leq 2 OPT.
- The double tree algorithm is a 2-approximation algorithm for TSP.



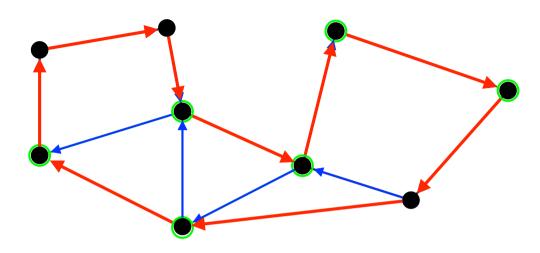
- · Christofides' algorithm
 - Compute MST T.
 - No need to double all edges:
 - Enough to turn it into an Eulerian graph: A graph Eulerian if there is a traversal of all edges visiting every edge exactly once.
 - G Eulerian iff G connected and all nodes have even degree.
 - Consider set O of all odd degree vertices in T.
 - Find minimum cost perfect matching M on O.
 - Matching: no edges share an endpoint.
 - Perfect: all vertices matched.
 - Perfect matching on O exists: Number of odd vertices in a graph is even.
 - T + M is Eulerian (all vertices have even degree).



- Christofides' algorithm
 - Compute MST T.
 - O = {odd degree vertices in T}.
 - Compute minimum cost perfect matching M on O.
 - Construct Euler tour T
 - Shortcut such that each vertex only visited once (τ')

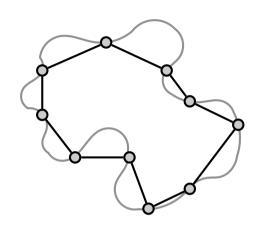


- Christofides' algorithm
 - Compute MST T.
 - O = {odd degree vertices in T}.
 - Compute minimum cost perfect matching M on O.
 - Construct Euler tour T
 - Shortcut such that each vertex only visited once (τ')



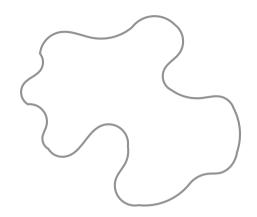
- Christofides' algorithm
 - Compute MST T.
 - O = {odd degree vertices in T}.
 - Compute minimum cost perfect matching M on O.
 - Construct Euler tour T
 - Shortcut such that each vertex only visited once (τ')
- $\operatorname{length}(\tau') \leq \operatorname{length}(\tau) = \operatorname{cost}(T) + \operatorname{cost}(M) \leq \operatorname{OPT} + \operatorname{cost}(M)$.

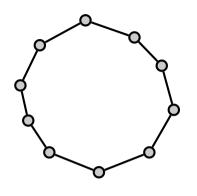
Analysis of Christofides' algorithm



- $cost(M) \le OPT/2$.
 - OPT_o = OPT restricted to O.
 - OPT $_0 \le OPT$.

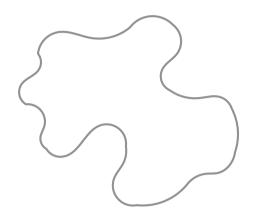
Analysis of Christofides' algorithm





- $cost(M) \le OPT/2$.
 - OPT_o = OPT restricted to O.
 - $OPT_0 \le OPT$.

Analysis of Christofides' algorithm



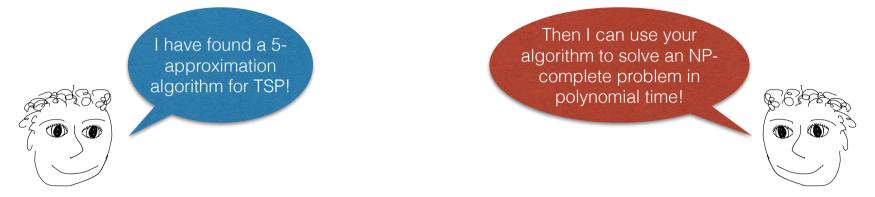
- $cost(M) \le OPT/2$:
 - OPT_o = OPT restricted to O.
 - OPT $_{o} \leq$ OPT.
 - can partition OPT₀ into two perfect matchings O₁ and O₂.
 - $cost(M) \le min(cost(O_1), cost(O_2)) \le OPT/2$.
- $length(\tau) \le length(\tau) = cost(T) + cost(M) \le OPT + OPT/2 = 3/2 OPT.$
- Christofides' algorithm is a 3/2-approximation algorithm for TSP.

Hardness of Approximation

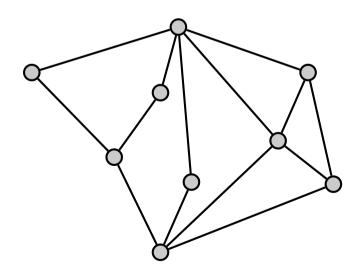
Inge Li Gørtz

TSP: Inapproximability

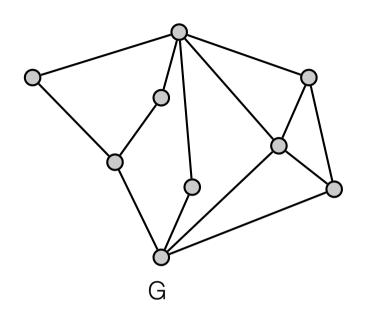
• There is no α-approximation algorithm for the non-metric TSP for unless P=NP.

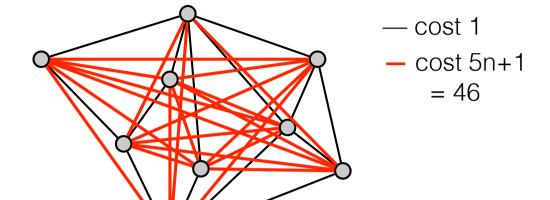


• Hamiltonian cycle. Given G=(V,E). Is there a cycle visiting every vertex exactly once?



TSP: Inapproximability



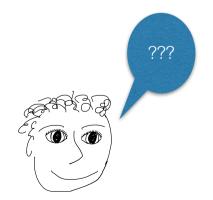


- G has a Hamiltonian cycle
- \Leftrightarrow optimal cost of TSP in G' is n = 9.

G'

• G has no Hamiltonian cycle

optimal cost of TSP in G' is at least n - 1 + 5n + 1



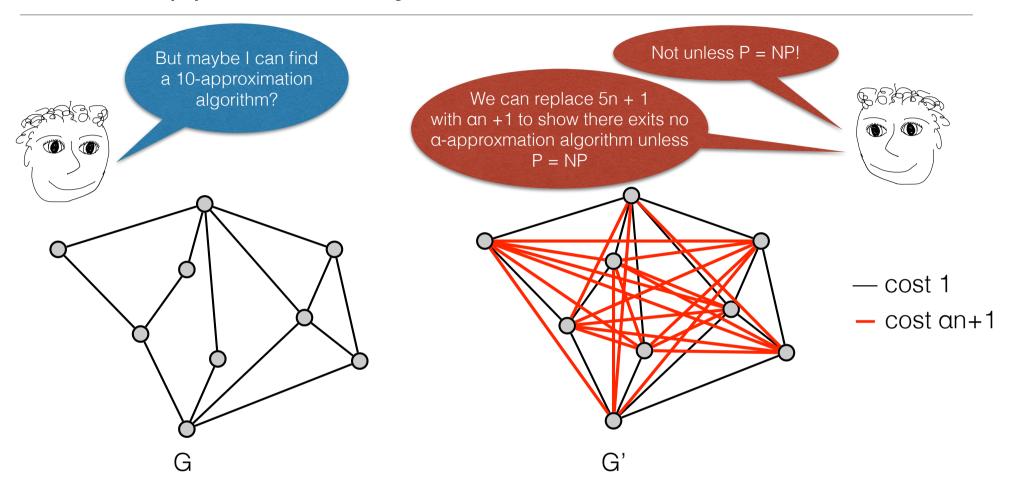
If there is a HC in G then the 5-approximation algorithm returns a tour of cost ≤ 45.

 \Leftrightarrow

= 6n = 8 + 46 = 54

If there is **no** HC in G then the 5-approximation algorithm returns a tour of cost ≥ 54.

TSP: Inapproximability



- G has a Hamiltonian cycle
- \Leftrightarrow optimal cost of TSP in G' is n.
- G has no Hamiltonian cycle
- \Leftrightarrow optimal cost of TSP in $G' \ge n 1 + (\alpha n + 1)$

$$= (\alpha+1)n$$

k-center: Inapproximability

- There is no α -approximation algorithm for the k-center problem for $\alpha < 2$ unless P=NP.
- Proof. Reduction from dominating set.
- Dominating set. Given G=(V,E) and k. Is there a (dominating) set S ⊆ V of size k, such that each vertex is either in S or adjacent to a vertex in S?
- Given instance of the dominating set problem construct instance of k-center problem:
 - Complete graph G' on V.
 - All edges from E has weight 1, all new edges have weight 2.
 - Radius in k-center instance 1 or 2.
 - G has an dominating set of size k <=> opt solution to the k-center problem has radius 1.
 - Use α-approximation algorithm A:
 - opt = 1 => A returns solution with radius at most α < 2.
 - opt = 2 => A returns solution with radius at least 2.
 - Can use A to distinguish between the 2 cases.