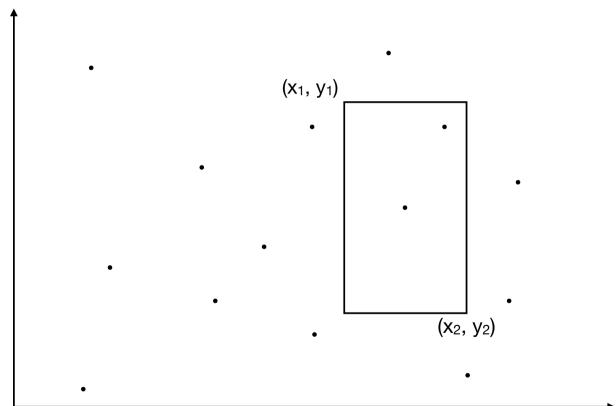
- Range reporting problem
- 1D range reporting
- · 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees

- Range reporting problem
- 1D range reporting
- · 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees

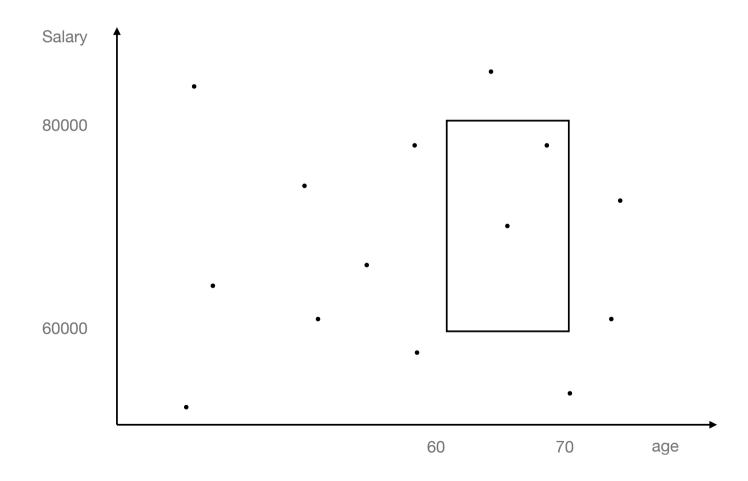
Range Reporting Problem

- 2D range reporting problem. Preprocess at set of points $P \subseteq \Re^2$ to support
 - report(x_1 , y_1 , x_2 , y_2): Return the set of points in R \cap P, where R is rectangle given by (x_1 , y_1) and (x_2 , y_2).



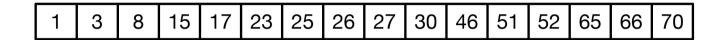
Applications

 Relational databases. SELECT all employees between 60 and 70 years old with a montly salary between 60000 and 80000 DKr



- Range reporting problem
- 1D range reporting
- · 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees

- 1D range reporting. Preprocess a set of n points P ⊆ ℜ to support:
 - report(x_1, x_2): Return the set of points in interval [x_1, x_2]
- Output sensitivity. Time should depend on the size of the output.
- · Simplifying assumption. Only comparison-based techniques (e.g. no hashing or bittricks).
- Solutions?



- Sorted array. Store P in sorted order.
- Report(x_1, x_2): Binary search for predecessor of x_1 . Traverse array until > x_2 .
- Time. O(log n + occ)
- · Space. O(n)
- Preprocessing. O(n log n)

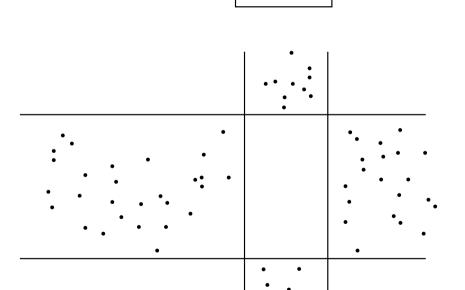
- Theorem. We can solve the 1D range reporting problem in
 - · O(n) space.
 - O(log n + occ) time for queries.
 - O(n log n) preprocessing time.
- Optimal in comparison-based model.

- Range reporting problem
- 1D range reporting
- · 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees

- · Goal. 2D range reporting with
 - O(n log n) space and O(log n + occ) query time or
 - O(n) space and $O(\sqrt{n} + occ)$ query time.
- Solution in 4 steps.
 - · Generalized 1D range reporting.
 - · 2D range trees.
 - 2D range trees with bridges.
 - · kD trees.

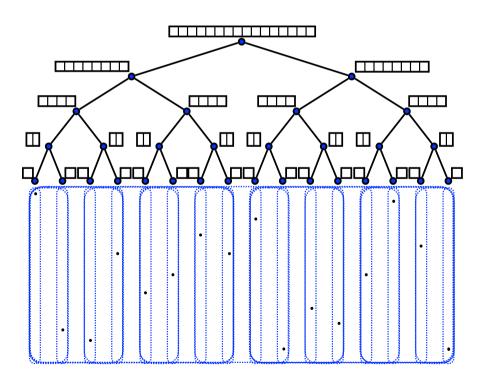
Generalized 1D Range Reporting

- Data structure.
 - Sorted array over x-coordinate
 - Sorted array over y-coordinate
- Report(x₁, y₁, x₂, y₂):
 - · Compute all points R_x in x-range.
 - · Compute all points R_y in y-range.
 - $\bullet \ \ Return \ R_x \cap R_y$
- · Time?



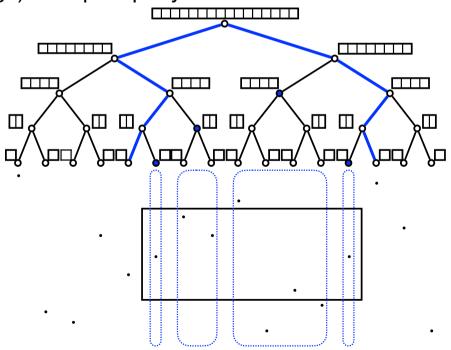
2D Range Trees

- Data structure.
 - Perfectly balanced binary tree over x-coordinate.
 - Each node v stores array of points below v sorted by y coordinate.
- Space?
 - O(n log n).
- Preprocessing time. O(n log n)



2D Range Trees

- Report(x_1, y_1, x_2, y_2): Find paths to predecessor of x_1 and successor of x_2 .
 - At each off-path node do 1D query on y-range.
 - · Return union of results.
- Time?
 - Predecessor + successor: O(log n)
 - < 2log n 1D queries: O(log n + occ in subrange) time per query.
 - \Rightarrow total O(log² n + occ) time.

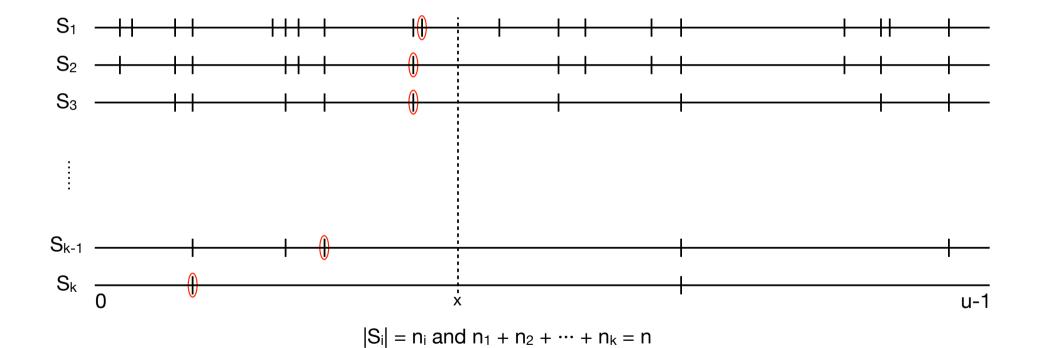


- Theorem. We can solve the 2D range reporting problem in
 - · O(n log n) space.
 - O(log² n + occ) time for queries.
 - O(n log n) preprocessing time.
- Challenge. Do we really need the log² n term for queries? Can we get (optimal) O(log n + occ) instead?

- Range reporting problem
- 1D range reporting
- · 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees

Predecessor in Nested Sets

- Predecessor problem in nested sets. Let $S = \{S_1, S_2, ..., S_k\}$ be a family of sets from universe U such that $U \supseteq S_1 \supseteq S_2 \supseteq \cdots \supseteq S_k$.
 - predecessor(x): return the predecessor of x in each of S₁, S₂, ..., S_k.

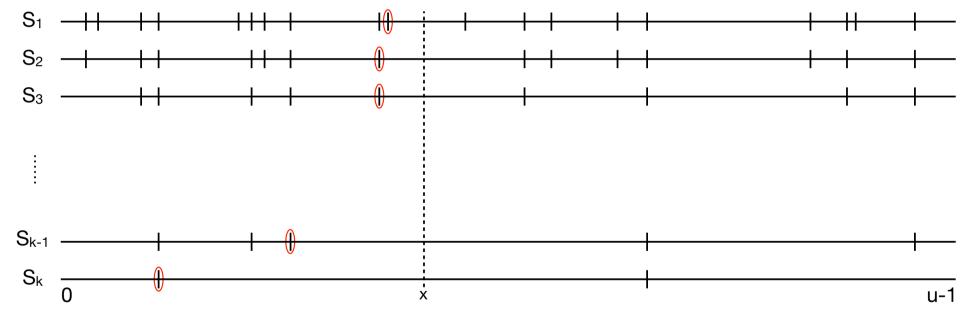


Predecessor in Nested Sets

- Goal. Predecessor in nested sets with O(n) space and O(log n + k) query time.
- Solution in 3 steps.
 - Sorted arrays. Slow and linear space.
 - Tabulation. Fast but too much space.
 - Sorted arrays with bridges. Fast and little space.

Solution 1: Sorted Arrays

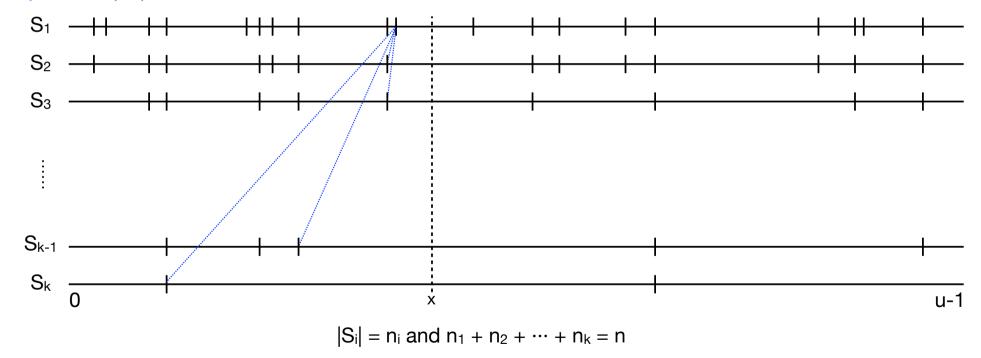
- Data structure. Sorted arrays for each set.
- Predecessor(x): Binary search in each array.
- Time. $O(\log n_1 + \log n_2 + \cdots + \log n_k) = O(k \log n)$
- · Space. O(n)



$$|S_i| = n_i \text{ and } n_1 + n_2 + \dots + n_k = n$$

Solution 2: Tabulation

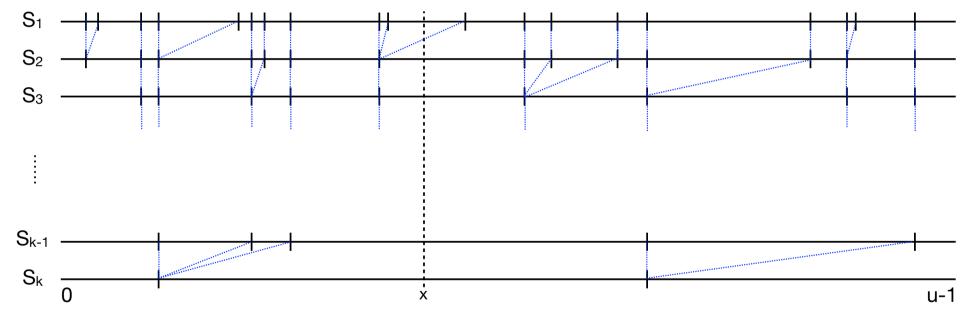
- Data structure. Sorted array on S₁ + each entry stores k-1 predecessors in S₂, ..., S_k.
- Predecessor(x): Binary search in S₁ array + report predecessors.
- Time. $O(\log n_1 + k) = O(\log n + k)$
- Space. O(nk)



Challenge. Can we get the best of both worlds?

Solution 3: Sorted Arrays with Bridges

- Data structure. Sorted arrays for each set + bridges.
- Predecessor(x): Binary search in S₁ array + traverse bridges and report elements.
- Time. $O(\log n_1 + k) = O(\log n + k)$
- · Space. O(n)

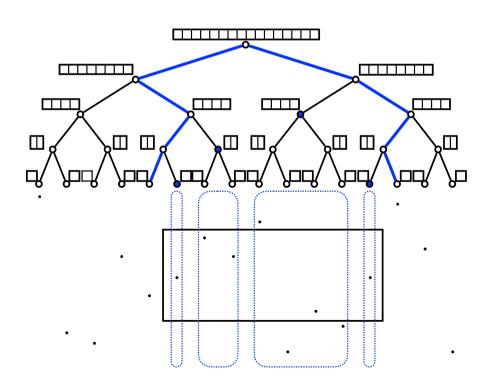


$$|S_i| = n_i$$
 and $n_1 + n_2 + \cdots + n_k = n$

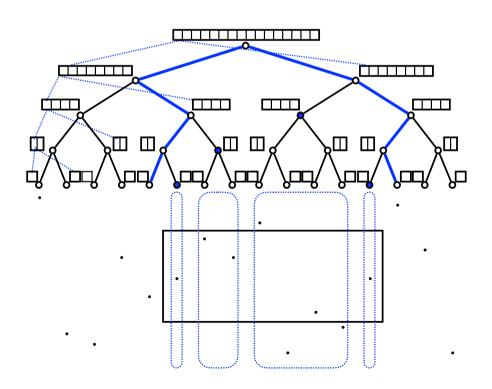
Predecessor in Nested Sets

- Theorem. We can solve the predecessor in nested sets problem in
 - · O(n) space.
 - $O(\log n + k)$ query time.
 - O(n log n) preprocessing time.
- Extensions.
 - Predecessor ⇒ 1D range reporting.
 - More tricks ⇒ works for non-nested sets. Called fractional cascading.
- · Challenge. How can we use predecessor in nested sets for 2D range reporting?

- · Goal. 2D range reporting in O(n log n) space and O(log n) time
- · Idea. Consider node v with children v_I and v_r.
 - Arrays at v₁ and v_r are subsets of array at v.
 - All searches in arrays during a query are on the same y-range.



- Data structure. 2D range tree with bridges.
 - Each point in array at v stores bridges to arrays in v₁ and v_r.
- Report(x₁, y₁, x₂, y₂): As 2D range tree query
 - Binary search in root array + traverse bridges for remaining 1D queries.
- Time. O(log n + occ)
- · Space. O(nlog n)
- Preprocessing. O(nlog n)

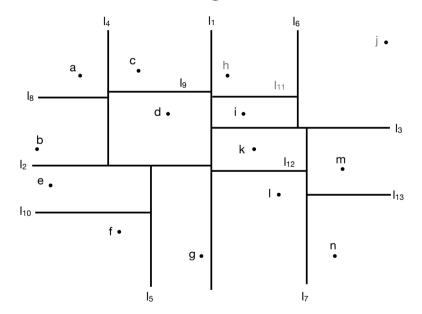


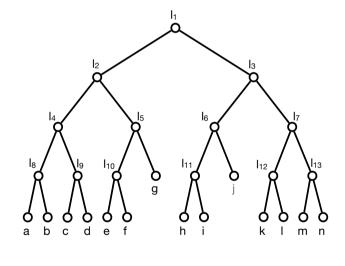
- Theorem. We can solve the 2D range reporting problem in
 - · O(n log n) space
 - O(log n + occ) time for queries.
 - O(n log n) preprocessing time.
- What can we do with only linear space?

- Range reporting problem
- 1D range reporting
- · 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees

kD Trees

- The 2D tree (k = 2).
 - · A balanced binary tree over point set P.
 - Recursively partition P into rectangular regions containing (roughly) same number of points.
 Partition by alternating horizontal and vertical lines.
 - · Each node in tree stores region and line.

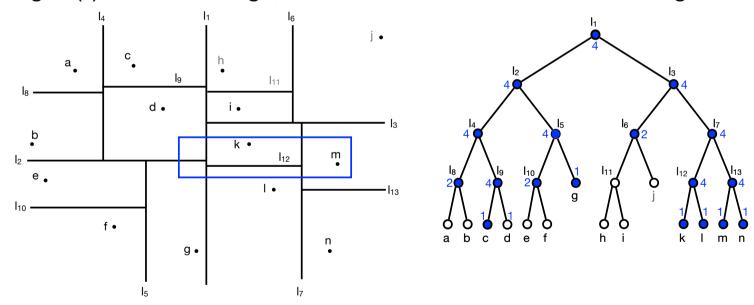




- · Space. O(n)
- Preprocessing. O(n log n)

kD Trees

- Report(x₁, y₁, x₂, y₂): Traverse 2D tree starting at the root. At node v:
 - Case 1. v is a leaf: report the unique point in region(v) if contained in range.
 - Case 2. region(v) is disjoint from range: stop.
 - Case 3. region(v) is contained in range: report all points in region(v).
 - Case 4. region(v) intersects range, and v is not a leaf. Recurse left and right.



· Time. $O(\sqrt{n})$

kD trees

- Theorem. We can solve the 2D range reporting problem in
 - · O(n) space
 - $O(\sqrt{n} + occ)$ time
 - O(n log n) preprocessing

- Theorem. We can solve 2D range reporting in either
 - O(n log n) space and O(log n + occ) query time
 - O(n) space and $O(\sqrt{n} + occ)$ query time.
- Extensions.
 - More dimensions.
 - Inserting and deleting points.
 - Using word RAM techniques.
 - · Other shapes (circles, triangles, etc.)

- Range reporting problem
- 1D range reporting
- · 2D range reporting
 - Range trees
 - Predecessor in nested sets
 - kD trees