
Philip Bille

Predecessor
• Predecessor Problem

• van Emde Boas

• Tries

Predecessor
• Predecessor Problem

• van Emde Boas

• Tries

Predecessors
• Predecessor problem. Maintain a set S ⊆ U = {0, ..., u-1} supporting

• predecessor(x): return the largest element in S that is ≤ x.

• successor(x): return the smallest element in S that is ≥ x.

• insert(x): set S = S ∪ {x}

• delete(x): set S = S - {x}

0 u-1

xpredecessor(x) successor(x)

Predecessors
• Applications.

• Simplest version of nearest neighbor problem.

• Several applications in other algorithms and data structures.

• Central problem for internet routing.

Predecessors
• Routing IP-Packets

• Where should we forward the packet to?

• To address matching the longest prefix of 192.110.144.123.

• Equivalent to predecessor problem.

• Best practical solutions based on advanced predecessor data structures [Degermark,

Brodnik, Carlsson, Pink 1997]

192.110.144.123

192.110.142.255

192.110.144.120

192.150.111.000

?

Predecessors
• Which solutions do we know?

Predecessor
• Predecessor Problem

• van Emde Boas

• Tries

van Emde Boas
• Goal. Static predecessor with O(log log u) query time.

• Solution in 5 steps.

• Bitvector. Very slow

• Two-level bitvector. Slow.

• ….

• van Emde Boas [Boas 1975]. Fast.

Solution 1: Bitvector

• Data structure. Bitvector.

• Predecessor(x): Walk left.

• Time. O(u)

u-10

Solution 2: Two-Level Bitvector

• Data structure. Top bitvector + bottom bitvectors.

• Predecessor(x): Walk left in bottom + walk left in top + walk left bottom.

• Time. .

𝗎

𝖮 (𝗎 + 𝗎 + 𝗎) = 𝖮 (𝗎)

𝗎

𝗎 𝗎 𝗎 𝗎

Solution 3: Two-Level Bitvector with less Walking

• Data structure. Solution 2 with min and max for each bottom structure.

• Predecessor(x): Let hi(x) and lo(x) denote index of x in top and bottom.

• If hi(x) in top and lo(x) ≥ min in bottom[lo(x)] walk left in bottom.

• if hi(x) in top and lo(x) < min or hi(x) not in top walk left in top. Return max at first non-empty

position in top.

• We either walk in bottom or top.

• Time. .

• Observation. Query is walking left in vector of size . Why not walk using a
predecessor data structure?

𝖮 (𝗎)
𝗎 + 𝖮(𝟣)

𝗎

𝗎 𝗎 𝗎 𝗎

Solution 4: Two-Level Bitvector within Top and Bottom

• Data structure. Apply solution 3 to top and bottom structures of solution 3.

• Walking left in vector of size now takes time.

• Each level adds O(1) extra work.

• Time. .

• Why not do this recursively?

𝗎 𝖮 (𝗎) = 𝖮 (𝗎𝟣/𝟦)

𝖮 (𝗎𝟣/𝟦)

Solution 5: van Emde Boas

• Data structure. Apply recursively until size of vectors is constant.

• Time. .

• Space. O(u)

𝖳(𝗎) = 𝖳 (𝗎) + 𝖮(𝟣) = 𝖮(log log 𝗎)

van Emde Boas
• Theorem. We can solve the static predecessor problem in

• O(u) space.

• O(log log u) time.

• Combined with perfect hashing we can reduce space to O(n) [Mehlhorn and Näher 1990].

• Easy to add insert and delete.

Predecessor
• Predecessor Problem

• van Emde Boas

• Tries

Tries
• Goal. Static predecessor with O(n) space and O(log log u) query time.

• Equivalent to van Emde Boas but different perspective. Simpler?

• Solution in 3 steps.

• Trie. Slow and too much space.

• X-fast trie. Fast but too much space.

• Y-fast trie. Fast and little space.

Tries

• Trie. Tree T of prefixes of binary representation of keys in S.

• Depth of T is log u

• Number of nodes in T is O(n log u).

S = {0, 2, 8, 11, 14} = {00002, 00102, 10002, 10112, 11102}

1

1

111

1

0

0

0

0 0 0

0

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Solution 1: Top-down Traversal

• Data structure.

• T as binary tree with min and max for each node + keys ordered in a linked list.

• Predecessor(x): Top-down traversal to find the longest common prefix of x with T.

• x branches of T to right ⟹ Predecessor(x) is max of sibling branch.

• x branches of T to left ⟹ Successor(x) is min of sibling branch. Use linked list to get

predecessor(x).

• Time. O(log u)

• Space. O(n log u)

S = {0, 2, 8, 11, 14} = {00002, 00102, 10002, 10112, 11102}

1

1

111

1

0

0

0

0 0 0

0

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Solution 2: X-Fast Trie

• Data structure.

• For each level store a dictionary of prefixes of keys + solution 1.

• Example. d1 = {0,1}, d2 = {00, 10, 11}, d3 = {000, 001, 100, 101, 111}, d4 = S

• Space. O(n log u)

S = {0, 2, 8, 11, 14} = {00002, 00102, 10002, 10112, 11102}

1

1

111

1

0

0

0

0 0 0

0

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Solution 2: X-Fast Trie

• Predecessor(x): Binary search over levels to find longest matching prefix with x.

• Example. Predecessor(9 = 10012):

• 102 in d2 exists ⟹ continue in bottom 1/2 of tree.

• 1002 in d3 exists ⟹ continue in bottom 1/4 of tree.

• 10012 in d4 does not exist ⟹ 1002 is longest prefix.

S = {0, 2, 8, 11, 14} = {00002, 00102, 10002, 10112, 11102}

1

1

111

1

0

0

0

0 0 0

0

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Solution 2: X-Fast Trie

Lookup most significant half of x in hash
table for depth log u/2 and recurse on top
or bottom.

log u

log u

2

log u

2

• Time. O(log log u)

Solution 2: X-Fast Trie

• Theorem. We can solve the static predecessor problem in

• O(log log u) time

• O(n log u) space.

• How do we get linear space?

S = {0, 2, 8, 11, 14} = {00002, 00102, 10002, 10112, 11102}

1

1

111

1

0

0

0

0 0 0

0

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Solution 3: Y-Fast Trie

• Bucketing.

• Partition S into O(n / log u) groups of log u consecutive keys.

• Compute S’ = set of split keys between groups. |S’| = O(n/log u)

• Data structure. x-fast trie over S’ + balanced binary search trees for each group.

• Space.

• x-fast trie: O(|S’| log u) = O(n/ log u ⋅ log u) = O(n).

• Balanced binary search trees: O(n).

• ⟹ O(n) in total.

x-fast trie

BBSTs

0 u-1

Solution 3: Y-Fast Trie

• Predecessor(x):

• Compute s = predecessor(x) in x-fast trie.

• Compute predecessor(x) in BBST to the left or right of s.

• Time.

• x-fast trie: O(log log u)

• balanced binary search tree: O(log (group size)) = O(log log u).

• ⟹ O(log log u) in total.

x-fast trie

BBSTs

0 u-1

Solution 3: Y-Fast Trie
• Theorem. We can solve the static predecessor problem in

• O(log log u) time

• O(n) space.

Solution 3: Y-Fast Trie
• Theorem. We can solve the static predecessor problem in

• O(n) space.

• O(log log u) time.

• Theorem. We can solve the dynamic predecessor problem in

• O(n) space

• O(log log u) expected time for predecessor and updates.

From dynamic hashing

Predecessor
• Predecessor Problem

• van Emde Boas

• Tries

