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Predecessors
• Predecessor problem. Maintain a set S ⊆ U = {0, ..., u-1} supporting


• predecessor(x): return the largest element in S that is ≤ x.

• successor(x): return the smallest element in S that is ≥ x.

• insert(x): set S = S ∪ {x}

• delete(x): set S = S - {x}

0 u-1

xpredecessor(x) successor(x)



Predecessors
• Applications.


• Simplest version of nearest neighbor problem.

• Several applications in other algorithms and data structures. 

• Central problem for internet routing.



Predecessors
• Routing IP-Packets


• Where should we forward the packet to?

• To address matching the longest prefix of 192.110.144.123.

• Equivalent to predecessor problem. 

• Best practical solutions based on advanced predecessor data structures [Degermark, 

Brodnik, Carlsson, Pink 1997] 

192.110.144.123

192.110.142.255

192.110.144.120

192.150.111.000

?



Predecessors
• Which solutions do we know?
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van Emde Boas
• Goal. Static predecessor with O(log log u) query time.

• Solution in 5 steps.


• Bitvector. Very slow

• Two-level bitvector. Slow.

• ….

• van Emde Boas [Boas 1975]. Fast. 



Solution 1: Bitvector

• Data structure. Bitvector. 

• Predecessor(x): Walk left.

• Time. O(u)

u-10



Solution 2: Two-Level Bitvector

• Data structure. Top bitvector +  bottom bitvectors. 

• Predecessor(x): Walk left in bottom + walk left in top + walk left bottom.


• Time. .

𝗎

𝖮 ( 𝗎 + 𝗎 + 𝗎) = 𝖮 ( 𝗎)

𝗎

𝗎 𝗎 𝗎 𝗎



Solution 3: Two-Level Bitvector with less Walking

• Data structure. Solution 2 with min and max for each bottom structure.

• Predecessor(x):  Let hi(x) and lo(x) denote index of x in top and bottom. 


• If hi(x) in top and lo(x) ≥ min in bottom[lo(x)] walk left in bottom.

• if hi(x) in top and lo(x) < min or hi(x) not in top walk left in top. Return max at first non-empty 

position in top.

• We either walk in bottom or top.


• Time. .


• Observation. Query is walking left in vector of size . Why not walk using a  
predecessor data structure?

𝖮 ( 𝗎)
𝗎 + 𝖮(𝟣)

𝗎

𝗎 𝗎 𝗎 𝗎



Solution 4: Two-Level Bitvector within Top and Bottom

• Data structure. Apply solution 3 to top and bottom structures of solution 3.


• Walking left in vector of size  now takes  time.


• Each level adds O(1) extra work. 

• Time. .

• Why not do this recursively?

𝗎 𝖮 ( 𝗎) = 𝖮 (𝗎𝟣/𝟦)

𝖮 (𝗎𝟣/𝟦)



Solution 5: van Emde Boas

• Data structure. Apply recursively until size of vectors is constant.


• Time. .


• Space. O(u) 

𝖳(𝗎) = 𝖳 ( 𝗎) + 𝖮(𝟣) = 𝖮(log log 𝗎)



van Emde Boas
• Theorem. We can solve the static predecessor problem in


• O(u) space.

• O(log log u) time.


• Combined with perfect hashing we can reduce space to O(n) [Mehlhorn and Näher 1990].

• Easy to add insert and delete. 
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Tries
• Goal. Static predecessor with O(n) space and O(log log u) query time.

• Equivalent to van Emde Boas but different perspective. Simpler?

• Solution in 3 steps.


• Trie. Slow and too much space.

• X-fast trie. Fast but too much space.

• Y-fast trie. Fast and little space.



Tries

• Trie. Tree T of prefixes of binary representation of keys in S.

• Depth of T is log u

• Number of nodes in T is O(n log u).

S = {0, 2, 8, 11, 14} = {00002, 00102, 10002, 10112, 11102}
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Solution 1: Top-down Traversal

• Data structure. 

• T as binary tree with min and max for each node + keys ordered in a linked list.


• Predecessor(x): Top-down traversal to find the longest common prefix of x with T. 

• x branches of T to right ⟹ Predecessor(x) is max of sibling branch. 

• x branches of T to left ⟹ Successor(x) is min of sibling branch. Use linked list to get 

predecessor(x). 

• Time. O(log u)

• Space. O(n log u)

S = {0, 2, 8, 11, 14} = {00002, 00102, 10002, 10112, 11102}
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Solution 2: X-Fast Trie

• Data structure. 

• For each level store a dictionary of prefixes of keys + solution 1.

• Example. d1 = {0,1}, d2 = {00, 10, 11}, d3 = {000, 001, 100, 101, 111}, d4 = S


• Space. O(n log u) 

S = {0, 2, 8, 11, 14} = {00002, 00102, 10002, 10112, 11102}
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Solution 2: X-Fast Trie

• Predecessor(x): Binary search over levels to find longest matching prefix with x. 

• Example. Predecessor( 9 = 10012 ): 


• 102 in d2 exists ⟹ continue in bottom 1/2 of tree.

• 1002 in d3 exists ⟹ continue in bottom 1/4 of tree. 

• 10012 in d4 does not exist ⟹ 1002 is longest prefix.

S = {0, 2, 8, 11, 14} = {00002, 00102, 10002, 10112, 11102}
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Solution 2: X-Fast Trie

Lookup most significant half of x in hash 
table for depth log u/2 and recurse on top 
or bottom.

log u

log u

2

log u

2

• Time. O(log log u)



Solution 2: X-Fast Trie

• Theorem. We can solve the static predecessor problem in 

• O(log log u) time

• O(n log u) space.


• How do we get linear space?

S = {0, 2, 8, 11, 14} = {00002, 00102, 10002, 10112, 11102}
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Solution 3: Y-Fast Trie

• Bucketing. 

• Partition S into O(n / log u) groups of log u consecutive keys.

• Compute S’ = set of split keys between groups. |S’| = O(n/log u)


• Data structure. x-fast trie over S’ + balanced binary search trees for each group.

• Space.  


• x-fast trie: O(|S’| log u) = O(n/ log u ⋅ log u) = O(n). 

• Balanced binary search trees: O(n).

• ⟹ O(n) in total.

x-fast trie 

BBSTs

0 u-1



Solution 3: Y-Fast Trie

• Predecessor(x): 

• Compute s = predecessor(x) in x-fast trie. 

• Compute predecessor(x) in BBST to the left or right of s. 


• Time. 

• x-fast trie: O(log log u)

• balanced binary search tree: O(log (group size)) = O(log log u).

• ⟹ O(log log u) in total. 

x-fast trie 

BBSTs

0 u-1
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Solution 3: Y-Fast Trie
• Theorem. We can solve the static predecessor problem in


• O(n) space.

• O(log log u) time.


• Theorem. We can solve the dynamic predecessor problem in

• O(n) space

• O(log log u) expected time for predecessor and updates.

From dynamic hashing
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