Weekplan: Predecessors

Philip Bille

References and Reading

- [1] Predecessor Search, G. Navarro and J. Rojas-Ledesma, ACM Comput. Sur. 2020. Sec. 3.1 up to and including "Y-fast tries: linear space and faster (amortized) updates.".
- [2] Log-Logarithmic Worst-Case Range Queries are Possible in Space $\Theta(n)$, Dan E. Willard, Inf. Process. Lett., 1983
- [3] Preserving Order in a Forest in less than Logarithmic Time, P. van Emde Boas, FOCS, 1975
- [4] Time-space trade-offs for predecessor search, M. Patrascu and M. Thorup, STOC 2006

We recommend reading [1] and [2] in detail. The paper [3] is the original introduction of the vEB structure and [4] covers the current state-of-the-art results for the predecessor problem.

Exercises

1 The Google Egg Interview Problem You are given 2 identical eggs and a 100-floor building. You want compute the highest floor from which an egg (identical to yours) can be dropped without breaking. Solve the following exercises.

- 1.1 How few drops can you do it with? You are allowed to break the 2 eggs in the process.
- **1.2** Give a bound on the number of drops for a building with *x* floors.
- **1.3** [*] Show how to achieve a good bound (maybe roughly the same as in 2?) even when you do not know the number of floors in advance.

2 Range Reporting Give a data structure for a set $S \subseteq U = \{0, ..., u-1\}$ of *n* values that supports the following operation:

• report(x, y): return all values in S between x and y, that is, the set of values $\{z \mid z \in S, x \le z \le y\}$.

The goal is a data structure with fast *output-sensitive* query bounds, that is, the query time should be on the form O(f(n, u) + occ), where occ is the number of elements returned by the query and f(n, u) is a fast as possible.

3 van Emde Boas Bounds Show that $T(u) = T(\sqrt{u}) + O(1) = O(\log \log u)$. *Hint:* consider the binary representation of *u*.

4 X-fast Tries Let $S = \{8, 9, 13, 16, 20, 26\}$ be a set S from a universe $U = \{0, \dots, 31\}$. Solve the following exercises.

4.1 [*w*] Draw the x-fast trie of *S*, including the trie structure and the contents of the dictionary.

4.2 [*w*] Show each step of predecessor searches for 8, 14, 21, and 30.

5 Z-Fast Tries An fellow student suggest a modification of the y-fast trie which he proudly names the *z-fast trie*. The z-fast trie partitions *S* into groups of $\log^6 u$ consecutive values (recall y-fast tries partitions into groups of log *u* values). How does z-fast tries compare to y-fast tries?

- 6 Dynamic Y-Fast Tries Solve the following exercises.
- **6.1** Show how to add insert and delete operation to the presented static solution for y-fast tries. Predecessor queries should take $O(\log \log u)$ expected time and updates should take $O(\log \log u)$ amortized expected time, i.e., any sequence of k updates should take $O(k \log \log u)$ expected time. The space should be O(n).
- **6.2** A friend of yours is not happy with y-fast tries and want to make x-fast tries dynamic instead. He claims that he can maintain the x-fast trie data structure in the same time bounds as above. Prove or disprove his claim.

7 Shortest Paths Let *G* be a graph with *n* vertices and $m \ge n$ weighted edges. The edge weights are from the set $U = \{0, ..., u-1\}$ and u > m. Show how to compute the shortest path between two vertices in $O(m \log \log u)$ expected time.

8 The Bomberman Problem Let *A* be a 2*D* array of size $u \times u$. We consider efficient data structures for placing and exploding bombs within *A*. Let $b_{i,j}$ and $b'_{i',j'}$ be two bombs at positions (i, j) and (i', j') in *A* and let *t* be an integer, $1 \le t \le u$. We define the bombs to be *connected with threshold t* if one of the following holds:

- i = i' and $|j j'| \le t$,
- j = j' and $|i i'| \le t$, or
- if there is a bomb $b''_{i'',i''}$ such that both *b* and *b'* are connected with threshold *t* to *b''*.

We want to support the following operations on A:

- place(*i*, *j*): Place a bomb at position (*i*, *j*) in *A*.
- explode($b_{i,i}$, t): Remove all bombs connected with threshold t to $b_{i,i}$.

Given a data structure that supports the above operations efficiently. The complexity for explode should depend on the number k of bombs removed.

9 List Jumping Let *L* be a list of *n* sorted integers in increasing order from the range $U = \{0, ..., u-1\}$. We are interested in supporting successor queries on *L* when already have a pointer to some element within *L*. The time for successor should depend on the distance between the query and element we have a pointer to. Specifically, we want to support the following operation on *L*. Let *e* be an element of *L* and let *x* be an integer from *U* such that value of element *e* is smaller than *x*.

• succ(*x*, *e*): Return the successor of *x*

Solve the following exercises. Define d(x, e) to be the *number* of elements between *e* and *x*, i.e., the number of elements in *L* after *e* that are smaller than *x*. Define D(x, e) to be the difference between the *value* of *e* and *x*.

- **9.1** Show how to augment *L* with additional pointers to support succ(x, e) in $O(n \log n)$ space and $O(\log d(x, e))$ time.
- **9.2** [*] Improve the above bound. Give a data structure that supports succ(x, e) in O(n) space and $O(\log d(x, e))$ time. *Hint:* start by building a complete binary tree on top of *L*. Connect nodes on the same level.
- **9.3** [**] Give a compact data structure that supports succ(x, e) in $O(\log \log D(x, e))$ time. Assume you can support successor queries for sets of size $O(\log u)$ in constant time and linear space (such a data structure is a called a *fusion node* or *atomic heap*). *Hint:* Combine the idea from exercise 2 with *y*-fast tries.