Weekplan: Lowest Common Ancestors and Range Minimum Queries

Inge Li Gørtz

References and Reading

[1] The LCA problem revisited, M. A. Bender, M. Farach-Colton, Latin American Symposium 2000.
[2] Scribe notes from MIT
[3] Fast Algorithms for Finding Nearest Common Ancestors, D. Harel and R. E. Tarjan, SIAM J. Comput., 13(2), 338-355.
[4] Competitive Programmer's Handbook, section 9.3, Antti Laaksonen.
We recommend reading [1], [2] and [4] in detail before the lecture. [3] provides background on LCA.

Exercises

1 Sparse table Show that we can find the results for all power-of-two intervals in $O(n \log n)$ time.
2 [w] RMQ Consider the array $A=[3,4,5,4,5,4,5,4,3,2,1,0,1,0,1,2,3,4,3,4,3,2,1,2,3,2,3,4,5,6,7,6]$.
2.1 Give the arrays A^{\prime} and B used for the sparse table in the two level ± 1 RMQ data structure. Use block size 3.
2.2 Construct the sparse table solution for A^{\prime}.
2.3 How many different tabulation tables do we need to store (how many different describing sequences/normalized blocks are there)?

3 Size of blocks In the ± 1 RMQ data structure we divided the array into blocks of length $\frac{1}{2} \log n$. What happens if we instead use a block size of

- $\log n$
- $\frac{3}{4} \log n$

4 Reduction between RMQ and LCA In the lecture we saw how to reduce RMQ to LCA via a Cartesian tree and from LCA to RMQ.
4.1 Build the Cartesian tree T for the array $A=[3,5,1,3,8,6,9,2,42,4,7,12]$.
4.2 Reduce LCA on T to $\pm 1 \mathrm{RMQ}$. That is, construct the array for the $\pm 1 \mathrm{RMQ}$ instance.

5 Distance Queries in Trees Let T be a unrooted tree in which each edge has an integer weight. The distance between two nodes u and v is the sum of edge weights on the path between u and v. Give a linear-space data structure for T that can report the distance between any pair of nodes in constant time.
$6[w]$ Segment tree Construct the RMQ segment tree for the array $A=[4,2,7,3,5,1,2,8,9,8,4,5,3,6,9,3]$.

7 Range Updates In the range update problem we want to preprocess an array A to efficiently support the following operations:

- $\operatorname{ADD}(i, j, k):$ Add k to each of the entries $A[i] \ldots A[j]$.
- Lookup(i): Return the value $A[i]$.

Give an efficient solution to solve the range update problem.
8 Range Smallest and Range Uniqueness Let A be an array of length n. Consider the following queries:

- $\operatorname{RS}(i, j, t):$ return all integers $\leq t$ in $A[i, j]$.
- $\operatorname{RU}(i, j)$: return the unique set of integers in $A[i, j]$. (i.e. only report every occurring integer in the interval once).

Solve the following exercises.
8.1 [w] Compute the result of $\operatorname{RS}(4,10,3)$, and $\operatorname{RU}(4,10)$ on the array $A=[4,1,3,2,1,4,4,3,3,1,2,5$]
8.2 Give a compact data structure that supports $R S$ queries. Your query time should be output-sensitive.
8.3 Define the predecessor array P of A as the array P such that $P[i]=\max \{0 \leq j<i, A[j]=A[i]\} \cup\{-1\}$. Draw the predecessor array P of example array from exercise 8.1.
8.4 [*] Give a compact data structure that supports RU queries on A. Your query time should be output-sensitive. Hint: find a way to use the predecessor array.

