Hashing

- Hashing Recap
- Dictionaries
- Perfect Hashing
- String Hashing

Philip Bille

Hashing

- Hashing Recap
- Dictionaries
- Perfect Hashing
- String Hashing

Hashing Recap

- Hash function idea.
- Want a random, crazy, chaotic function that maps a large universe to a small range. The function should distribute the items "evenly."
- Hash function.
- Let H be a family of functions mapping a universe U to $\{0, \ldots, m-1\}$.
- A hash function h is a function chosen randomly from H .
- Typically $m \ll|U|$.
- Goals.
- Low collision probability: for any $x \neq y$, we want $\operatorname{Pr}(\mathrm{h}(\mathrm{x})=\mathrm{h}(\mathrm{y}))$ to be small.
- Fast evaluation.
- Small space.

Hashing Recap

- Universal hashing.
- Let H be a family of functions mapping a universe U to $\{0, \ldots, \mathrm{~m}-1\}$.
- H is universal if for any $x \neq y$ in U and h chosen uniformly at random from H

$$
\operatorname{Pr}(h(x)=h(y)) \leq \frac{1}{m}
$$

- Examples.
- Multiply-mod-prime.
- $h_{a, b}(x)=a x+b \bmod p$ with $H=\left\{h_{a, b} \mid a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p-1\}\right\}$.
- Multiply-shift.
- $h_{a}(x)=\left(a x \bmod 2^{k}\right) \gg(k-l)$ with $H=\left\{h_{a} \mid a\right.$ is an odd integer in $\left.\left\{1, \ldots, 2^{k}-1\right\}\right\}$

Hashing

- Hashing Recap
- Dictionaries
- Perfect Hashing
- String Hashing

Dictionaries

- Dictionary problem. Maintain a dynamic set of integers $S \subseteq U$ subject to following operations - LOOKUP(x): return true if $x \in S$ and false otherwise.
- INSERT(x): set $S=S \cup\{x\}$
- Delete (x) : set $S=S \backslash\{x\}$
- Satellite information. Information associated with each integer.
- Applications. Lots of practical applications and key component in other algorithms and data structures.
- Challenge. Can we get a compact data structure with fast operations.

Chained Hashing

- Chained hashing.
- Choose universal hash function h from U to $\{0, . ., m-1\}$, where $m=\Theta(n)$.
- Initialize an array $A[0, \ldots, m-1]$.
- $A[i]$ stores a linked list containing the keys in S whose hash value is i.

- Space. $O(m+n)=O(n)$

Chained Hashing

- Operations.
- LOOKUP(x): Compute $h(x)$. Scan $A[h(x)]$. Return true if x is in list and false otherwise.
- INSERT(x): Compute $h(x)$. Scan $A[h(x)]$. Add x to the front of list if it is not there already.
- $\operatorname{Delete}(x)$: Compute $h(x)$. Scan $A[h(x)]$. Remove x from list if it is there.

- Time. $\mathrm{O}(1+|\mathrm{A}[\mathrm{h}(\mathrm{x})]|)$

Chained Hashing

- What is the expected length of $A[h(x)]$?
. Let $I_{y}= \begin{cases}1 & \text { if } h(y)=h(x) \\ 0 & \text { if } h(y) \neq h(x)\end{cases}$
- $E(|A[h(x)]|)=E\left(\sum_{y \in S} I_{y}\right)=\sum_{y \in S} E\left(I_{y}\right)=1+\sum_{y \in S \backslash\{x\}} \operatorname{Pr}(h(x)=h(y)) \leq 1+(n-1) \cdot \frac{1}{m}=O(1)$
- Theorem. We can solve the dictionary problem in $O(n)$ space and constant expected time per operation.

Hashing

- Hashing
- Dictionaries
- Perfect Hashing
- String Hashing

Static Dictionaries and Perfect Hashing

- Static dictionary problem. Given a set $S \subseteq U=\{0, .,, u-1\}$ of size n for preprocessing support the following operation
- LOOKUP(x): return true if $x \in S$ and false otherwise.
- Challenge. Can we do better than (dynamic) dictionary solution?
- Perfect Hashing. A perfect hash function for S is a collision-free hash function on S.
- Perfect hash function in $\mathrm{O}(\mathrm{n})$ space and $\mathrm{O}(1)$ evaluation time \Rightarrow solution with $\mathrm{O}(\mathrm{n})$ space and O(1) worst-case lookup time.
- Do perfect hash functions with $\mathrm{O}(\mathrm{n})$ space and $\mathrm{O}(1)$ evaluation time exist for any set S ?

Static Dictionaries and Perfect Hashing

- Goal. Perfect hashing in linear space and constant worst-case time.
- Solution in 3 steps.
- Solution 1. Collision-free but with too much space.
- Solution 2. Many collisions but linear space.
- Solution 3: FKS scheme [Fredman, Komlós, Szemerédi 1984]. Two-level solution. Combines solution 1 and 2.

Solution 1: Collision-Free, Quadratic Space

- Data structure.
- Array A of size n^{2}.
- Universal hash function mapping U to $\left\{0, \ldots, n^{2}-1\right\}$. Choose randomly during preprocessing until collision-free on S. Store each $x \in S$ at position $A[h(x)]$.
- Space. O(n²).

Solution 1: Collision-Free, Quadratic Space

- Queries.
- LOOKUP(x): Check A[h(x)].
- Time. O(1).
- Preprocessing time?

Solution 1: Collision-Free, Quadratic Space

- Analysis.
. Let $I_{x, y}= \begin{cases}1 & \text { if } h(y)=h(x) \\ 0 & \text { if } h(y) \neq h(x)\end{cases}$
- Let $\mathrm{C}=$ total number of collisions on S .
$\cdot E(C)=E\left(\sum_{x, y \in S, x \neq y} I_{x, y}\right)=\sum_{x, y \in S, x \neq y} E\left(I_{x, y}\right)=\sum_{x, y \in S, x \neq y} \operatorname{Pr}(h(x)=h(y)) \leq\binom{ n}{2} \frac{1}{n^{2}}<\frac{1}{2}$
- \Rightarrow With probability $1 / 2$ we get perfect hashing function. If not perfect try again.
- \Longrightarrow Expected number of trials before we get a perfect hash function is $\mathrm{O}(1)$.
- Theorem. We can solve the static dictionary problem in
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space and $\mathrm{O}\left(\mathrm{n}^{2}\right)$ expected time preprocessing time.
- $\mathrm{O}(1)$ worst-case query time.

Solution 2: Many Collisions, Linear Space.

- As solution 1 but with an array of length n . What is the expected number of collisions?
$E(C)=E\left(\sum_{x, y \in S, x \neq y} I_{x, y}\right)=\sum_{x, y \in S, x \neq y} E\left(I_{x, y}\right)=\sum_{x, y \in S, x \neq y} \operatorname{Pr}(h(x)=h(y)) \leq\binom{ n}{2} \frac{1}{n}<\frac{n}{2}$

Solution 3: FKS-Scheme.

- Data structure. Two-level solution.
- At level 1 use solution with many collisions and linear space.
- Resolve each collisions at level 1 with collision-free solution at level 2.
- Space?

Solution 3: FKS-Scheme.

- Queries.
- LOOKUP(X): Check level 1 to find the correct level 2 dictionary. Lookup in level 2 dictionary.
- Time. O(1).

Solution 3: FKS-Scheme.

- Space analysis. What is the the total size of level 1 and level 2 hash tables?
- Let $\mathrm{S}_{\mathrm{i}}=\{\mathrm{x} \in \mathrm{S} \mid \mathrm{h}(\mathrm{x})=\mathrm{i}\}$
- Let $\mathrm{C}=$ total number of collisions on level 1 .
. $\mathrm{C}=\sum\binom{\left|\mathrm{S}_{\mathrm{i}}\right|}{2}$ by construction.
- $\mathrm{C}=\mathrm{O}(\mathrm{n})$ by solution 2 .
- Space.

$$
\begin{aligned}
O\left(n+\sum_{i}\left|S_{i}\right|^{2}\right) & =O\left(n+\sum_{i}\left(\left|S_{i}\right|+2\binom{\left|S_{i}\right|}{2}\right)\right) \\
& =O\left(n+\sum_{i}\left|S_{i}\right|+2 \sum_{i}\binom{\left|S_{i}\right|}{2}\right)=O(n+n+2 n)=O(n)
\end{aligned}
$$

Static Dictionaries and Perfect Hashing

- FKS scheme.
- $O(n)$ space and $O(n)$ expected preprocessing time.
- Lookups with two evaluations of a universal hash function.
- Theorem. We can solve the static dictionary problem for a set S of size n in
- $O(n)$ space and $O(n)$ expected preprocessing time.
- O(1) worst-case time per lookup.
- Multilevel data structures.
- FKS is example of multilevel data structure technique. Combine different solutions for same problem to get an improved solution.

Hashing

- Hashing Recap
- Dictionaries
- Perfect Hashing
- String Hashing

String Hashing

- Define hash function on strings.
- Goals.
- Low collision probability.
- Fast evaluation.
- Small space.
- Fast string manipulation.

String Hashing

- Karp-Rabin Fingerprint.
- Let S be a string of length n. We view characters as digits and S as an integer.
- Let p is a prime number. Pick uniformly at random integer $z \in\{0, \ldots, p-1\}$.
- The Karp-Rabin fingerprint of S is

$$
\begin{aligned}
\phi_{\mathrm{p}, \mathrm{z}}(\mathrm{~S}) & =\mathrm{S}[1] z^{\mathrm{n}-1}+\mathrm{S}[2] z^{\mathrm{n}-2}+\cdots+S[n-1] z^{1}+S[n] \bmod p \\
& =\left(\sum_{i=1}^{n} S[i] \cdot z^{n-i}\right) \bmod p
\end{aligned}
$$

- The fingerprint of S is the polynomial over the field Z_{p} evaluated at the random integer z.

String Hashing

- Theorem. (Collision probability) Let S and T be distinct strings of length s, and let p be a prime. For a random $z \in\{0, \ldots, p-1\}$:

$$
\operatorname{Pr}\left(\phi_{\mathrm{p}, \mathrm{z}}(\mathrm{~S})=\phi_{\mathrm{p}, \mathrm{z}}(\mathrm{~T})\right) \leq \frac{\mathrm{s}}{\mathrm{p}}
$$

- Proof.

$$
\left.\begin{array}{rl}
\operatorname{Pr}\left(\phi_{p, z}(S)=\phi_{p, z}(T)\right) & =\operatorname{Pr}\left(\sum_{i=1}^{s} \mathrm{~S}[i] \cdot z^{s-i}=\sum_{i=1}^{s} T[i] \cdot z^{s-i} \bmod p\right) \\
& =\operatorname{Pr}\left(\sum_{i=1}^{s}(S[i]-T[i]) \cdot z^{s-i}=0 \bmod p\right)
\end{array}\right\}
$$

- \Rightarrow It has at most $\mathrm{s}-1$ roots \Rightarrow The probability that our random z is one of those is at most ($\mathrm{s}-1$)/p $<\mathrm{s} / \mathrm{p}$.

String Hashing

- Consider substrings of S of length s.

	$S[i, i+s-1]$	

$$
S[i+1, s]
$$

- Fingerprint computation. We can compute $\phi_{\mathrm{p}, \mathrm{z}}(\mathrm{S}[\mathrm{i}, \mathrm{i}+\mathrm{s}-1])$ in $\mathrm{O}(\mathrm{s})$ time.
- Proof. See exercises.
- Rolling property. $\phi_{p, z}(S[i+1, i+s])=\left(\phi_{p, z}(S[i, i+s-1])-S[i] z^{s-1}\right) z+S[i+s] \bmod p$
- Proof. See exercises.
- \Rightarrow We can compute $\phi_{\mathrm{p}, \mathrm{z}}(\mathrm{S}[\mathrm{i}+1, \mathrm{i}+\mathrm{s}])$ from $\phi_{\mathrm{p}, \mathrm{z}}(\mathrm{S}[\mathrm{i}, \mathrm{i}+\mathrm{s}-1])$ in constant time.

String Hashing

- String matching. Given strings S and P, determine if P is a substring in S.

$$
\begin{gathered}
S=\text { yabbadabbado } \\
P=a b b a
\end{gathered}
$$

- What solutions do we know? $|P|=m,|S|=n$.
- Brute force comparison: O(nm) time
- Knuth-Morris-Pratt algorithm [KMP1977]: O(n + m) time.

String Hashing

$$
\begin{gathered}
\mathrm{S}=\text { yabbadabbado } \\
\mathrm{P}=\mathrm{abba}
\end{gathered}
$$

- Karp-Rabin Algorithm.
- Pick $\mathrm{p} \geq \mathrm{m}^{2}$.
- Compute $\phi(\mathrm{P})$.
- Compute and compare $\phi(\mathrm{S}[\mathrm{i}, \mathrm{i}+\mathrm{m}-1])$ with $\phi(\mathrm{P})$ for all i .
- If fingerprints match, verify using brute-force comparison. Return "yes!" if we match.
- Time.
- Let F be the number of collisions, i.e., $\mathrm{S}[\mathrm{i}, \mathrm{i}+\mathrm{m}-1] \neq \mathrm{P}$ but $\phi(\mathrm{S}[\mathrm{i}, \mathrm{i}+\mathrm{m}-1])=\phi(\mathrm{P})$.
- $\Rightarrow \mathrm{O}(\mathrm{n}+\mathrm{m}+\mathrm{Fm})$.

String Hashing

$$
\begin{gathered}
S=\text { yabbadabbado } \\
P=a b b a
\end{gathered}
$$

- Expected number of collisions.
- The probability of collision at a single substring is $m / p \leq 1 / m$.
- \Rightarrow Expected number of collision on all $n-m+1$ substrings $\leq(n-m+1) / m<n / m$.
- Expected time is $\mathrm{O}(\mathrm{n}+\mathrm{m}+\mathrm{mn} / \mathrm{m})=\mathrm{O}(\mathrm{n}+\mathrm{m})$.

String Hashing

- Theorem. We can solve the string matching problem in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time expected time.
- String matching with Karp-Rabin fingerprints.
- Simple, practical, fast.
- More techniques \Rightarrow Fast reporting, small space, real-time, streaming, etc.

Hashing

- Hashing
- Dictionaries
- Perfect Hashing
- String Hashing

