Weekplan: Hashing

Philip Bille

References and Reading

[1] Notes on universal hashing, Peter Bro Miltersen.
[2] Notes on string matching, Jeff Erickson.
[3] Universal Classes of Hash Functions, J. Carter and M. Wegman, J. Comp. Sys. Sci., 1977.
[4] Storing a Sparse Table with O(1) Worst Case Access Time, M. Fredman, J. Komlos and E. Szemeredi, J. ACM., 1984.
[5] Efficient randomized pattern-matching algorithms, R. Karp, M. O. Rabin, IBM J. Res. Dev, 1987.
[6] Notes on Discrete Probability, Jeff Erickson.
We recommend reading [1] and [2] in detail. The research papers [3], [4], and [5] provide background on universal hashing, perfect hashing, and string hashing. The notes in [6] provide a concise refresh of basic discrete probability.

Exercises

1 [w] Streaming Statistics An IT-security friend of yours wants a high-speed algorithm to count the number of distinct incoming IP-addresses in his router to help detect denial-of-service attacks. Can you help him?

2 [w] Dense Set Hashing A set $S \subseteq U=\{0, \ldots, u-1\}$ is called dense if $|S|=\Theta(u)$. Suggest a simple and efficient dictionary data structure for dense sets.

3 [w] Multi-Set Hashing A multi-set is a set M, where each element may occur multiple times. Design an efficient data structure supporting the following operations:

- $\operatorname{add}(x):$ Add an(other) occurrence of x to M.
- remove (x) : Remove an occurrence of x from M. If x does not occur in M do nothing.
- report (x) : Return the number of occurrences of x.

4 Properties of Universal Hashing Let $h \in H$ be a hash function from a universal family mapping $U=$ $\{0, \ldots, u-1\}$ to $M=\{0, \ldots, m-1\}$. Solve the following exercises.
4.1 If h has no collision on U, how large must m be?
4.2 Suppose $m \geq u$. Is the identity function $f(x)=x$ a universal hash function?
4.3 A family G of hash functions mapping U to M is family of pair-wise independent hash function if for any $g \in G$,

$$
\operatorname{Pr}(g(x)=\alpha \wedge g(y)=\beta)=1 / m^{2} \quad \forall x \neq y \in U, \quad \forall \alpha, \beta \in M
$$

Show that any family of pairwise independent hash functions is a family of universal hash functions.

5 Linear Space Hashing The chained hashing solution for the dynamic dictionary problem presented assume that $m=\Theta(n)$. Solve the following exercises.
5.1 What is the space and time of chained hashing without this assumption? State your answer in terms of n and m.
5.2 Suppose that we do not know n in advance (as in the exercise streaming statistics where we do not know how many distinct IP-address we will see). Give a solution that achieves $O(n)$ space and constant time without assuming $m=\Theta(n)$. Hint: Think dynamic arrays.

6 Graph Adjacency Let G be a graph with n vertices and m edges. We want to represent G efficiently and support the following operation.

- adjacent (v, w) : Return true if nodes v are w are adjacent and false otherwise.

Solve the following exercises:
6.1 Analyse the space and query time in terms of n and m for the classic adjacency matrix and adjacency list representation.
6.2 Design a data structure that improves both the adjacency matrix and adjacency list.

7 Perfect Hashing Analysis Consider the 2-level FKS perfect hashing scheme. A friend suggest the following two "optimizations" to the data structure. What happens to the performance of the data structure for each of these?
7.1 Modify level 1 of the data structure to map U to an array of size $n \sqrt{n}$ instead of n to further decrease the probability of collisions.
7.2 Replace the universal hash function with a faster near-universal hash function on both levels. Near-universal hashing is the same as universal hashing except that $\leq 1 / m$ guarantee on the probability is changed to $\leq 2 / m$.

8 String Hashing and String Matching

8.1 Show how to compute a fingerprint of a string of length s in time $O(s)$.
8.2 Show the rolling property.
8.3 Given a string S of length n and a set of k strings $\mathscr{P}=P_{1}, P_{2}, \ldots, P_{k}$ all of length m, the multi-string matching problem is to decide if any of the strings in \mathscr{P} occurs in S. Give a fast algorithm for this problem.
8.4 Let S, T, R be three strings such that $S=T \odot R$, where \odot denotes concatenation. Show that given the fingerprint of any two strings, we can efficiently compute the third's fingerprint.

9 Basic Probability Theory Refresh Bonus In case your knowledge of probability theory is rusty. Solve the following self-help exercises.
9.1 Prove linearity of expectation.
9.2 Prove that the expectation of the indicator function for $h(x)=h(y)$ (1 if $h(x)=h(y)$ and 0 otherwise) is equal to the probability that $h(x)=h(y)$.
9.3 Show that the expected number of trials to get a perfect hashing function using an array of size n^{2} is ≤ 2.

