
Weekplan: Hashing

Philip Bille

References and Reading

[1] Notes on universal hashing, Peter Bro Miltersen.

[2] Notes on string matching, Jeff Erickson.

[3] Universal Classes of Hash Functions, J. Carter and M. Wegman, J. Comp. Sys. Sci., 1977.

[4] Storing a Sparse Table with O(1) Worst Case Access Time, M. Fredman, J. Komlos and E. Szemeredi, J.
ACM., 1984.

[5] Efficient randomized pattern-matching algorithms, R. Karp, M. O. Rabin, IBM J. Res. Dev, 1987.

[6] Notes on Discrete Probability, Jeff Erickson.

We recommend reading [1] and [2] in detail. The research papers [3], [4], and [5] provide background on
universal hashing, perfect hashing, and string hashing. The notes in [6] provide a concise refresh of basic discrete
probability.

Exercises

1 [w] Streaming Statistics An IT-security friend of yours wants a high-speed algorithm to count the number
of distinct incoming IP-addresses in his router to help detect denial-of-service attacks. Can you help him?

2 [w] Dense Set Hashing A set S ⊆ U = {0, . . . , u − 1} is called dense if |S| = Θ(u). Suggest a simple and
efficient dictionary data structure for dense sets.

3 [w] Multi-Set Hashing A multi-set is a set M , where each element may occur multiple times. Design an
efficient data structure supporting the following operations:

• add(x): Add an(other) occurrence of x to M .

• remove(x): Remove an occurrence of x from M . If x does not occur in M do nothing.

• report(x): Return the number of occurrences of x .

4 Properties of Universal Hashing Let h ∈ H be a hash function from a universal family mapping U =
{0, . . . , u− 1} to M = {0, . . . , m− 1}. Solve the following exercises.

4.1 If h has no collision on U , how large must m be?

4.2 Suppose m≥ u. Is the identity function f (x) = x a universal hash function?

4.3 A family G of hash functions mapping U to M is family of pair-wise independent hash function if for any g ∈ G,

Pr(g(x) = α∧ g(y) = β) = 1/m2 ∀x ∕= y ∈ U , ∀α,β ∈ M .

Show that any family of pairwise independent hash functions is a family of universal hash functions.

1

5 Linear Space Hashing The chained hashing solution for the dynamic dictionary problem presented assume
that m= Θ(n). Solve the following exercises.

5.1 What is the space and time of chained hashing without this assumption? State your answer in terms of n
and m.

5.2 Suppose that we do not know n in advance (as in the exercise streaming statistics where we do not know
how many distinct IP-address we will see). Give a solution that achieves O(n) space and constant time
without assuming m= Θ(n). Hint: Think dynamic arrays.

6 Graph Adjacency Let G be a graph with n vertices and m edges. We want to represent G efficiently and
support the following operation.

• adjacent(v, w): Return true if nodes v are w are adjacent and false otherwise.

Solve the following exercises:

6.1 Analyse the space and query time in terms of n and m for the classic adjacency matrix and adjacency list
representation.

6.2 Design a data structure that improves both the adjacency matrix and adjacency list.

7 Perfect Hashing Analysis Consider the 2-level FKS perfect hashing scheme. A friend suggest the following
two "optimizations" to the data structure. What happens to the performance of the data structure for each of
these?

7.1 Modify level 1 of the data structure to map U to an array of size n

n instead of n to further decrease the
probability of collisions.

7.2 Replace the universal hash function with a faster near-universal hash function on both levels. Near-universal
hashing is the same as universal hashing except that ≤ 1/m guarantee on the probability is changed to
≤ 2/m.

8 String Hashing and String Matching

8.1 Show how to compute a fingerprint of a string of length s in time O(s).

8.2 Show the rolling property.

8.3 Given a string S of length n and a set of k strings = P1, P2, . . . , Pk all of length m, the multi-string matching
problem is to decide if any of the strings in occurs in S. Give a fast algorithm for this problem.

8.4 Let S, T , R be three strings such that S = T ⊙ R, where ⊙ denotes concatenation. Show that given the
fingerprint of any two strings, we can efficiently compute the third’s fingerprint.

9 Basic Probability Theory Refresh Bonus In case your knowledge of probability theory is rusty. Solve the
following self-help exercises.

9.1 Prove linearity of expectation.

9.2 Prove that the expectation of the indicator function for h(x) = h(y) (1 if h(x) = h(y) and 0 otherwise) is
equal to the probability that h(x) = h(y).

9.3 Show that the expected number of trials to get a perfect hashing function using an array of size n2 is ≤ 2.

2

