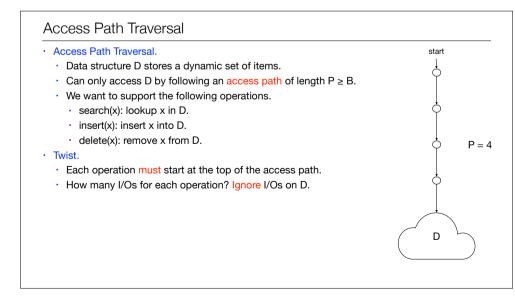
External Memory II

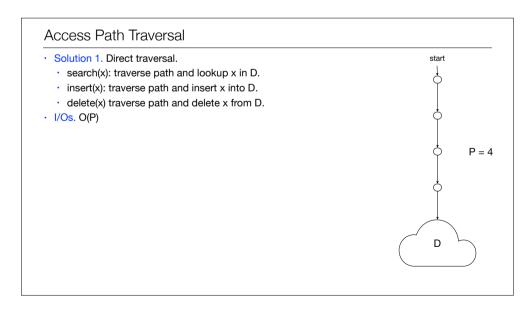
- Access Path Traversal
- Searching with Fast Updates

Philip Bille

External Memory II

- Access Path Traversal
- Searching with Fast Updates

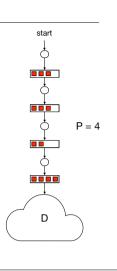




Access Path Traversal

· Solution 2. Buffered updates.

- Add buffers of size $\Theta(B)$ to each edge stored in O(1) blocks.
- Buffers store delayed updates to D. A delayed update is a message to insert or delete an item.



Access Path Traversal • search(x). • Traverse path and check buffers for delayed updates on x (remove duplicate delayed updates on x). • start • Return x if we find a delayed insert on x on the path. • Otherwise, search x in D and return the result. • I/Os. O(P) P = 4

Access Path Traversal • insert(x) or delete(x). start · Insert delayed insert/delete into the first buffer on the path. If Ċ full, flush and recurse on the next node in the path. • If we flush the last buffer on the path, insert/delete items in D. I/O intuition. • Flush moves Θ(B) message together in O(1) I/Os. · A message moves at most P times. ģ P = 4 $\cdot \Rightarrow O(P/B + 1) = O(P/B)$ amortized I/Os. Ē D

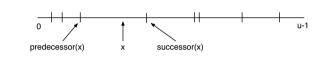
 insert(x) or delete(x). 	start
 Insert delayed insert/delete into the first buffer on the path. If full, flush and recurse on the next node in the path. 	¢
If we flush the last buffer on the path, insert/delete items in D.	
 I/Os. Amortized analysis via accounting method. Assign extra credits to items to pay for future operations. Credits must always be non-negative. 	
 Amortized cost is ≤ credits + actual cost of operation. 	Ý P=
 Assign cP/B credits to each delayed update for appropriate constant c>1. 	
 When a delayed update enters a buffer, we leave O(1/B) of the credits with the buffer. 	
• When we flush a buffer, we use the $\Theta(B \cdot 1/B) = \Theta(1)$ credits to pay for the flush.	
$\cdot \Rightarrow$ We can pay for all flushes.	

External Memory II

- Access Path Traversal
- Searching with Fast Updates

Searching

- Searching. Maintain a set S ⊆ U = {0, ..., u-1} supporting
 - · search(x): determine if $x \in S$
 - predecessor(x): return largest element in $S \le x$.
 - · successor(x): return smallest element in $S \ge x$.
 - · insert(x): set $S = S \cup \{x\}$
 - delete(x): set $S = S \{x\}$



Searching B-tree · Applications. · Relational data bases. 000 δ = 4 File systems. • $(\mathbf{0}\mathbf{0}\mathbf{0})$ í 👝 • B-tree of order $\delta = \Theta(B)$ with N keys. • Keys in leaves. Routing elements in internal nodes. • Degree between $\delta/2$ and δ . Root degree between 2 and δ. • Leaves store between $\delta/2$ and δ keys. · All leaves have the same depth. • Height. $\Theta(\log_{\delta} (N/B)) = \Theta(\log_{B} N)$ • Search and update. O(log_B N) I/Os.

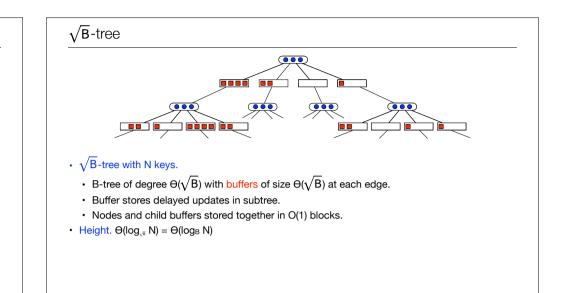
B^{ε} -tree

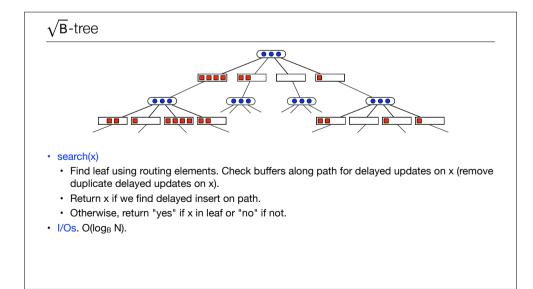
· Idea.

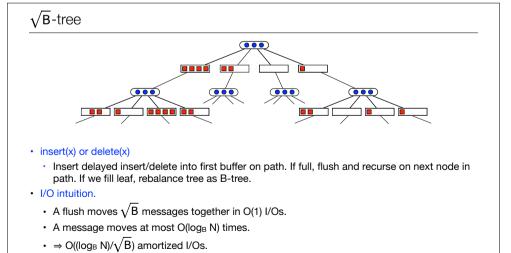
- Speed up updates by buffering them at each node along the path to a leaf.
- · Move many updates together in each I/O.
- Search (almost) as before.
- $\varepsilon \in (0, 1]$ is a parameter.

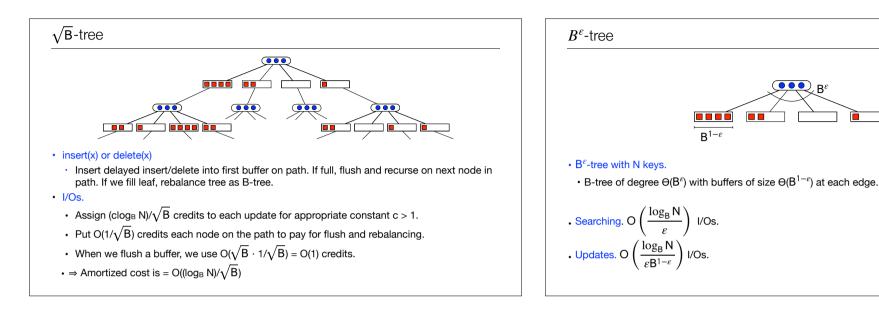
· Solution in 2 steps.

- Focus on \sqrt{B} -tree ($\varepsilon = 1/2$).
 - Searching in O(log_B N) I/Os.
 - Updates in O((log_B N)/ \sqrt{B}) amortized.
- Generalize to any ε .









SearchUpdateB-tree $O(\log_B N)$ $O(\log_B N)$ \sqrt{B} -tree $O(\log_B N)$ $O\left(\frac{\log_B N}{\sqrt{B}}\right)$ B^e -tree $O\left(\frac{\log_B N}{\varepsilon}\right)$ $O\left(\frac{\log_B N}{\varepsilon B^{1-\varepsilon}}\right)$	External Memory II • Access Path Traversal • Searching with Fast Updates	
---	--	--