- · Access Path Traversal
- Searching with Fast Updates

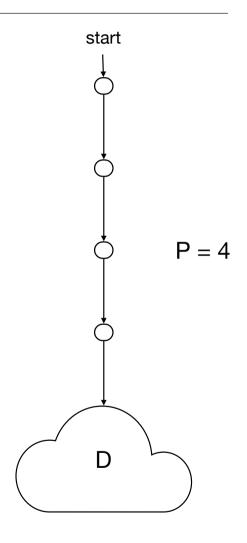
- · Access Path Traversal
- · Searching with Fast Updates

Access Path Traversal.

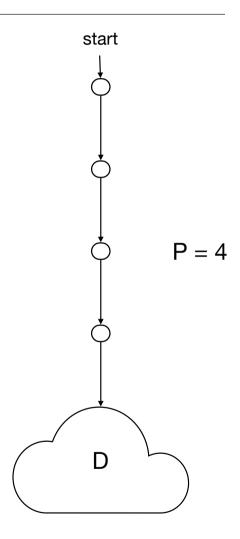
- Data structure D stores a dynamic set of items.
- Can only access D by following an access path of length $P \ge B$.
- We want to support the following operations.
 - search(x): lookup x in D.
 - insert(x): insert x into D.
 - · delete(x): remove x from D.

Twist.

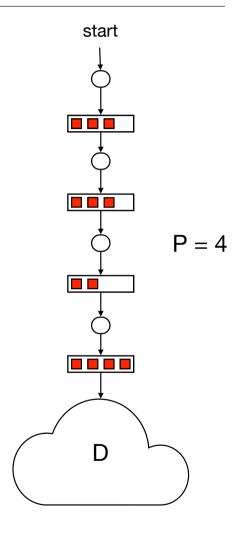
- Each operation must start at the top of the access path.
- How many I/Os for each operation? Ignore I/Os on D.



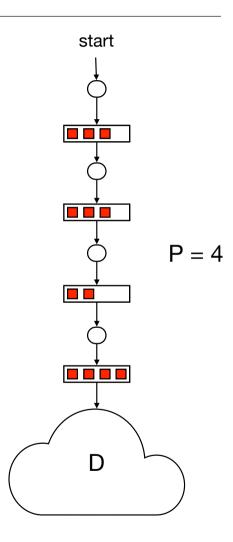
- Solution 1. Direct traversal.
 - search(x): traverse path and lookup x in D.
 - insert(x): traverse path and insert x into D.
 - delete(x) traverse path and delete x from D.
- I/Os. O(P)



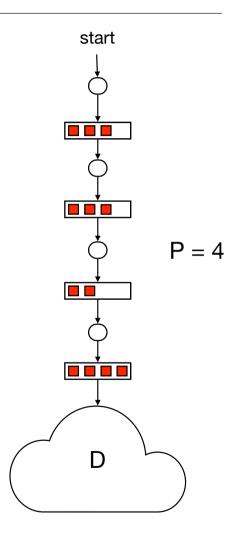
- Solution 2. Buffered updates.
 - Add buffers of size $\Theta(B)$ to each edge stored in O(1) blocks.
 - Buffers store delayed updates to D. A delayed update is a message to insert or delete an item.



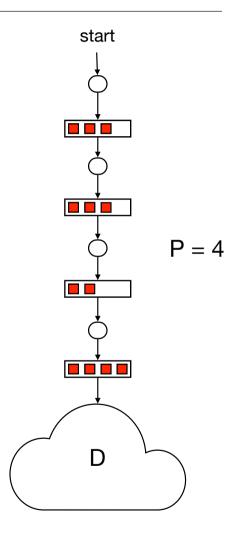
- search(x).
 - Traverse path and check buffers for delayed updates on x (remove duplicate delayed updates on x).
 - Return x if we find a delayed insert on x on the path.
 - Otherwise, search x in D and return the result.
- I/Os. O(P)



- insert(x) or delete(x).
 - Insert delayed insert/delete into the first buffer on the path. If full, flush and recurse on the next node in the path.
 - If we flush the last buffer on the path, insert/delete items in D.
- I/O intuition.
 - Flush moves Θ(B) message together in O(1) I/Os.
 - A message moves at most P times.
 - $\bullet \Rightarrow O(P/B + 1) = O(P/B)$ amortized I/Os.



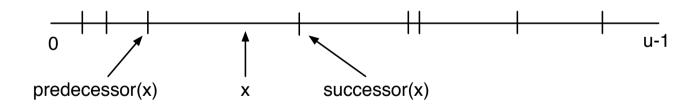
- insert(x) or delete(x).
 - Insert delayed insert/delete into the first buffer on the path. If full, flush and recurse on the next node in the path.
 - If we flush the last buffer on the path, insert/delete items in D.
- I/Os. Amortized analysis via accounting method. Assign extra credits to items to pay for future operations. Credits must always be non-negative.
- Amortized cost is ≤ credits + actual cost of operation.
- Assign cP/B credits to each delayed update for appropriate constant c>1.
 - When a delayed update enters a buffer, we leave $\Theta(1/B)$ of the credits with the buffer.
 - When we flush a buffer, we use the $\Theta(B \cdot 1/B) = \Theta(1)$ credits to pay for the flush.
 - → We can pay for all flushes.
 - → Amortized I/Os is credits + actual cost = O(P/B + 1) = O(P/B).



- Access Path Traversal
- Searching with Fast Updates

Searching

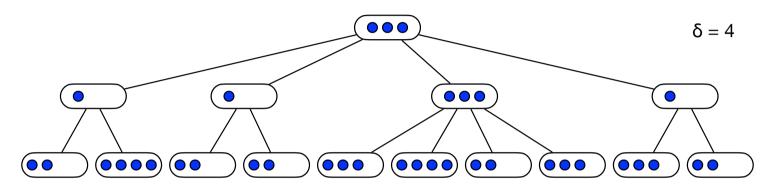
- Searching. Maintain a set S ⊆ U = {0, ..., u-1} supporting
 - search(x): determine if $x \in S$
 - predecessor(x): return largest element in $S \le x$.
 - successor(x): return smallest element in $S \ge x$.
 - insert(x): set $S = S \cup \{x\}$
 - delete(x): set $S = S \{x\}$



Searching

- · Applications.
 - · Relational data bases.
 - · File systems.

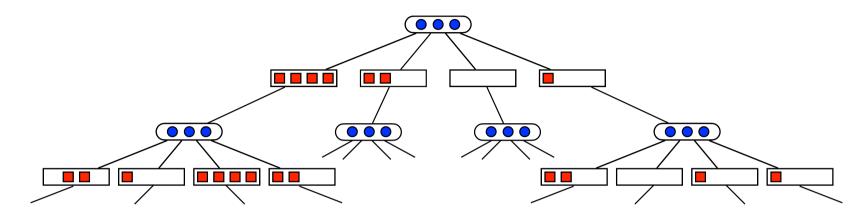
B-tree



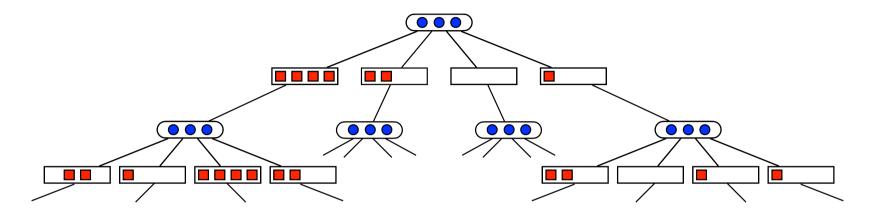
- B-tree of order $\delta = \Theta(B)$ with N keys.
 - Keys in leaves. Routing elements in internal nodes.
 - Degree between $\delta/2$ and δ .
 - Root degree between 2 and δ.
 - Leaves store between $\delta/2$ and δ keys.
 - · All leaves have the same depth.
- Height. $\Theta(\log_{\delta}(N/B)) = \Theta(\log_{B}N)$
- Search and update. O(log_B N) I/Os.

B^{ε} -tree

- · Idea.
 - Speed up updates by buffering them at each node along the path to a leaf.
 - Move many updates together in each I/O.
 - · Search (almost) as before.
 - $\varepsilon \in (0, 1]$ is a parameter.
- Solution in 2 steps.
 - Focus on \sqrt{B} -tree ($\varepsilon = 1/2$).
 - Searching in O(log_B N) I/Os.
 - Updates in O((log_B N)/ \sqrt{B}) amortized.
 - Generalize to any ε .

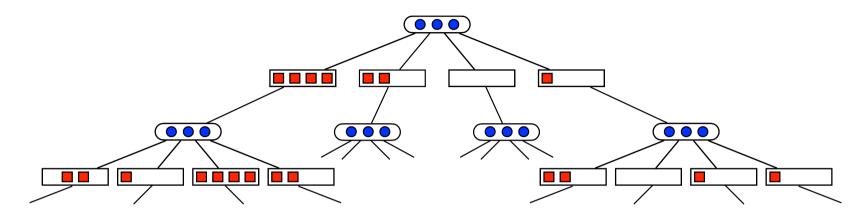


- \sqrt{B} -tree with N keys.
 - B-tree of degree $\Theta(\sqrt{B})$ with buffers of size $\Theta(\sqrt{B})$ at each edge.
 - Buffer stores delayed updates in subtree.
 - Nodes and child buffers stored together in O(1) blocks.
- Height. $\Theta(\log_{\sqrt{B}} N) = \Theta(\log_B N)$

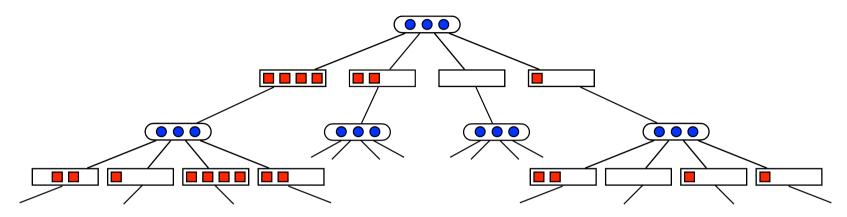


search(x)

- Find leaf using routing elements. Check buffers along path for delayed updates on x (remove duplicate delayed updates on x).
- Return x if we find delayed insert on path.
- Otherwise, return "yes" if x in leaf or "no" if not.
- I/Os. O(log_B N).

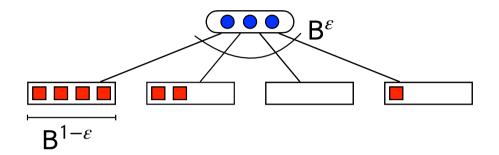


- insert(x) or delete(x)
 - Insert delayed insert/delete into first buffer on path. If full, flush and recurse on next node in path. If we fill leaf, rebalance tree as B-tree.
- I/O intuition.
 - A flush moves \sqrt{B} messages together in O(1) I/Os.
 - A message moves at most O(log_B N) times.
 - \Rightarrow O((log_B N)/ \sqrt{B}) amortized I/Os.



- insert(x) or delete(x)
 - Insert delayed insert/delete into first buffer on path. If full, flush and recurse on next node in path. If we fill leaf, rebalance tree as B-tree.
- I/Os.
 - Assign (clog_B N)/ \sqrt{B} credits to each update for appropriate constant c > 1.
 - Put $O(1/\sqrt{B})$ credits each node on the path to pay for flush and rebalancing.
 - When we flush a buffer, we use $O(\sqrt{B} \cdot 1/\sqrt{B}) = O(1)$ credits.
 - \Rightarrow Amortized cost is = O((log_B N)/ \sqrt{B})

B^{ε} -tree



- B^{ε} -tree with N keys.
 - B-tree of degree $\Theta(B^{\varepsilon})$ with buffers of size $\Theta(B^{1-\varepsilon})$ at each edge.
- . Searching. O $\left(\frac{\log_{\mathsf{B}}\mathsf{N}}{\varepsilon}\right)$ I/Os.
- Updates. O $\left(\frac{\log_{\mathsf{B}}\mathsf{N}}{\varepsilon\mathsf{B}^{1-\varepsilon}}\right)$ I/Os.

	Search	Update
B-tree	O(log _B N)	O(log _B N)
\sqrt{B} -tree	O(log _B N)	$O\left(\frac{\log_B N}{\sqrt{B}}\right)$
$B^{arepsilon}$ -tree	$O\left(\frac{\log_{B}N}{\varepsilon}\right)$	$O\left(\frac{\log_{B} N}{\varepsilon B^{1-\varepsilon}}\right)$

- · Access Path Traversal
- Searching with Fast Updates