
Philip Bille

External Memory II
• Access Path Traversal

• Searching with Fast Updates

External Memory II
• Access Path Traversal

• Searching with Fast Updates

Access Path Traversal
• Access Path Traversal.

• Data structure D stores a dynamic set of items.

• Can only access D by following an access path of length P ≥ B.

• We want to support the following operations.

• search(x): lookup x in D.

• insert(x): insert x into D.

• delete(x): remove x from D.

• Twist.

• Each operation must start at the top of the access path.

• How many I/Os for each operation? Ignore I/Os on D.

start

D

P = 4

Access Path Traversal
• Solution 1. Direct traversal.

• search(x): traverse path and lookup x in D.

• insert(x): traverse path and insert x into D.

• delete(x) traverse path and delete x from D.

• I/Os. O(P)

start

D

P = 4

Access Path Traversal
• Solution 2. Buffered updates.

• Add buffers of size Θ(B) to each edge stored in O(1) blocks.

• Buffers store delayed updates to D. A delayed update is a

message to insert or delete an item.

start

D

P = 4

Access Path Traversal
• search(x).

• Traverse path and check buffers for delayed updates on x
(remove duplicate delayed updates on x).

• Return x if we find a delayed insert on x on the path.

• Otherwise, search x in D and return the result.

• I/Os. O(P)

start

D

P = 4

Access Path Traversal
• insert(x) or delete(x).

• Insert delayed insert/delete into the first buffer on the path. If
full, flush and recurse on the next node in the path.

• If we flush the last buffer on the path, insert/delete items in D.

• I/O intuition.

• Flush moves Θ(B) message together in O(1) I/Os.

• A message moves at most P times.

• ⇒ O(P/B + 1) = O(P/B) amortized I/Os.

start

D

P = 4

Access Path Traversal
• insert(x) or delete(x).

• Insert delayed insert/delete into the first buffer on the path. If
full, flush and recurse on the next node in the path.

• If we flush the last buffer on the path, insert/delete items in D.

• I/Os. Amortized analysis via accounting method. Assign extra

credits to items to pay for future operations. Credits must always
be non-negative.

• Amortized cost is ≤ credits + actual cost of operation.

• Assign cP/B credits to each delayed update for appropriate

constant c>1.

• When a delayed update enters a buffer, we leave Θ(1/B) of the

credits with the buffer.

• When we flush a buffer, we use the Θ(B · 1/B) = Θ(1) credits to

pay for the flush.

• ⇒ We can pay for all flushes.

• ⇒ Amortized I/Os is credits + actual cost = O(P/B + 1) = O(P/B).

start

D

P = 4

External Memory II
• Access Path Traversal

• Searching with Fast Updates

Searching
• Searching. Maintain a set S ⊆ U = {0, ..., u-1} supporting

• search(x): determine if x ∈ S

• predecessor(x): return largest element in S ≤ x.

• successor(x): return smallest element in S ≥ x.

• insert(x): set S = S ∪ {x}

• delete(x): set S = S - {x}

0 u-1

xpredecessor(x) successor(x)

Searching
• Applications.

• Relational data bases.

• File systems.

B-tree

• B-tree of order δ = ϴ(B) with N keys.

• Keys in leaves. Routing elements in internal nodes.

• Degree between δ/2 and δ.

• Root degree between 2 and δ.

• Leaves store between δ/2 and δ keys.

• All leaves have the same depth.

• Height. ϴ(logδ (N/B)) = ϴ(logB N)

• Search and update. O(logB N) I/Os.

δ = 4

-treeBε

• Idea.

• Speed up updates by buffering them at each node along the path to a leaf.

• Move many updates together in each I/O.

• Search (almost) as before.

• ∈ (0, 1] is a parameter.

• Solution in 2 steps.

• Focus on -tree (= 1/2).

• Searching in O(logB N) I/Os.

• Updates in O((logB N)/) amortized.

• Generalize to any .

ε

𝖡 ε

𝖡

ε

-tree𝖡

• -tree with N keys.

• B-tree of degree ϴ() with buffers of size ϴ() at each edge.

• Buffer stores delayed updates in subtree.

• Nodes and child buffers stored together in O(1) blocks.

• Height. ϴ(log N) = ϴ(logB N)

𝖡
𝖡 𝖡

𝖡

-tree𝖡

• search(x)

• Find leaf using routing elements. Check buffers along path for delayed updates on x (remove

duplicate delayed updates on x).

• Return x if we find delayed insert on path.

• Otherwise, return "yes" if x in leaf or "no" if not.

• I/Os. O(logB N).

-tree𝖡

• insert(x) or delete(x)

• Insert delayed insert/delete into first buffer on path. If full, flush and recurse on next node in

path. If we fill leaf, rebalance tree as B-tree.

• I/O intuition.

• A flush moves messages together in O(1) I/Os.

• A message moves at most O(logB N) times.

• ⇒ O((logB N)/) amortized I/Os.

𝖡

𝖡

-tree𝖡

• insert(x) or delete(x)

• Insert delayed insert/delete into first buffer on path. If full, flush and recurse on next node in

path. If we fill leaf, rebalance tree as B-tree.

• I/Os.

• Assign (clogB N)/ credits to each update for appropriate constant c > 1.

• Put O(1/) credits each node on the path to pay for flush and rebalancing.

• When we flush a buffer, we use O(· 1/) = O(1) credits.

• ⇒ Amortized cost is = O((logB N)/)

𝖡
𝖡

𝖡 𝖡
𝖡

-treeBε

• -tree with N keys.

• B-tree of degree ϴ() with buffers of size ϴ() at each edge.

• Searching. I/Os.

• Updates. I/Os.

𝖡ε

𝖡ε 𝖡𝟣−ε

𝖮 (log𝖡 𝖭
ε)

𝖮 (log𝖡 𝖭
ε𝖡𝟣−ε)

𝖡ε

𝖡𝟣−ε

-treeBε

Search Update

B-tree

-tree

 -tree𝖡ε

𝖮(log𝖡 𝖭)

𝖮 (log𝖡 𝖭
ε𝖡𝟣−ε)𝖮 (log𝖡 𝖭

ε)

𝖡

𝖮(log𝖡 𝖭)

𝖮 (log𝖡 𝖭

𝖡)𝖮(log𝖡 𝖭)

External Memory II
• Access Path Traversal

• Searching with Fast Updates

