External Memory |

- Access Path Traversal
- Searching with Fast Updates

Philip Bille

External Memory |

- Access Path Traversal

Access Path Traversal

- Access Path Traversal.
- Data structure D stores a dynamic set of items.

- Can only access D by following an access path of length P > B.

- We want to support the following operations.
- search(x): lookup x in D.
- insert(x): insert x into D.
- delete(x): remove x from D.
- Twist.
- Each operation must start at the top of the access path.
- How many I/Os for each operation? Ignore I/0Os on D.

Access Path Traversal

- Solution 1. Direct traversal.
- search(x): traverse path and lookup x in D.
- insert(x): traverse path and insert x into D.

- delete(x) traverse path and delete x from D.

+ 1/Os. O(P)

Access Path Traversal

- Solution 2. Buffered updates.
- Add buffers of size O(B) to each edge stored in O(1) blocks.

- Buffers store delayed updates to D. A delayed update is a
message to insert or delete an item.

Access Path Traversal

- search(x).

- Traverse path and check buffers for delayed updates on x
(remove duplicate delayed updates on x).

- Return x if we find a delayed insert on x on the path.
- Otherwise, search x in D and return the result.
- 1/0s. O(P)

Access Path Traversal

- insert(x) or delete(x).

- Insert delayed insert/delete into the first buffer on the path. If
full, flush and recurse on the next node in the path.

- If we flush the last buffer on the path, insert/delete items in D.
* 1/O intuition.

- Flush moves O(B) message together in O(1) 1/Os.

- A message moves at most P times.

- = O(P/B + 1) = O(P/B) amortized I/Os.

Access Path Traversal

- insert(x) or delete(x).

- Insert delayed insert/delete into the first buffer on the path. If
full, flush and recurse on the next node in the path.

- If we flush the last buffer on the path, insert/delete items in D.

- 1/0s. Amortized analysis via accounting method. Assign extra
credits to items to pay for future operations. Credits must always
be non-negative.

- Amortized cost is < credits + actual cost of operation.

- Assign cP/B credits to each delayed update for appropriate
constant c>1.

- When a delayed update enters a buffer, we leave O(1/B) of the
credits with the buffer.

- When we flush a buffer, we use the ©(B - 1/B) = ©(1) credits to
pay for the flush.

- = We can pay for all flushes.

- = Amortized I/Os is credits + actual cost = O(P/B + 1) = O(P/B).

External Memory |

- Searching with Fast Updates

Searching

- Searching. Maintainaset S ¢ U = {0, ..., u-1} supporting
- search(x): determineif x e S
- predecessor(x): return largest element in S < x.
- successor(x): return smallest element in S > x.
- insert(x): set S = S u {x}
- delete(x): set S =S - {x}

predecessor(x) X successor(x)

Searching

- Applications.
- Relational data bases.
- File systems.

B-tree

@0) Ese9)@e) @s) (@se) @s00) @s) (@se) @) @e

- B-tree of order 6 = ©(B) with N keys.
+ Keys in leaves. Routing elements in internal nodes.
« Degree between 6/2 and 6.
* Root degree between 2 and 6.
+ Leaves store between 6/2 and 6 keys.
+ All leaves have the same depth.
+ Height. ©(logs (N/B)) = ©(logs N)
« Search and update. O(logs N) I/Os.

Bé-tree

- |ldea.
- Speed up updates by buffering them at each node along the path to a leaf.
- Move many updates together in each /0.
- Search (almost) as before.
- €€ (0, 1] is a parameter.
- Solution in 2 steps.
- Focus on y/B-tree (€ = 1/2).
-+ Searching in O(logs N) I/Os.
- Updates in O((logs N)/4/B) amortized.

- Generalize to any &.

\/B-tree

EEEE EE | | | |m
(e0e®) ?é % (e0®®)
ZN 7\
[BE |[m REEEIERET- EI"Y | (0 | [

. \/g—tree with N keys.

- B-tree of degree 6(\/§) with buffers of size 6(\/§) at each edge.
+ Buffer stores delayed updates in subtree.
* Nodes and child buffers stored together in O(1) blocks.

« Height. ©(log; N) = ©(logs N)

\/B-tree

EEEE EE | | | |m
(e0e®) ?é % (e0®®)
ZN 7\
[BE |[m REEEIERET- EI"Y | (0 | [

+ search(x)

« Find leaf using routing elements. Check buffers along path for delayed updates on x (remove
duplicate delayed updates on x).

* Return x if we find delayed insert on path.
+ Otherwise, return "yes" if x in leaf or "no" if not.
« 1/0s. O(logse N).

\/B-tree

EEEE EE | | | |m
(e0e®) ?é % (e0®®)
ZN 7\
[BE |[m REEEIERET- EI"Y | (0 | [

* insert(x) or delete(x)

- Insert delayed insert/delete into first buffer on path. If full, flush and recurse on next node in
path. If we fill leaf, rebalance tree as B-tree.

« |/O intuition.

- A flush moves 1/ B messages together in O(1) I/Os.
« A message moves at most O(logs N) times.

. = O((logs N)/»/B) amortized I/Os.

\/B-tree

EEEE EE | | | |m
(e0e®) ?é % (e0®®)
ZN 7\
[BE |[m REEEIERET- EI"Y | (0 | [

* insert(x) or delete(x)

- Insert delayed insert/delete into first buffer on path. If full, flush and recurse on next node in
path. If we fill leaf, rebalance tree as B-tree.

* |/Os.

- Assign (clogs N)/A/ B credits to each update for appropriate constant ¢ > 1.
- Put O(‘I/\/E) credits each node on the path to pay for flush and rebalancing.
- When we flush a buffer, we use O(\/E ° ‘I/\/g) = O(1) credits.

« = Amortized cost is = O((logs N)/\/E)

Bé-tree

B€

B1—8

- B®-tree with N keys.
- B-tree of degree ©(B?) with buffers of size ©(B'~¢) at each edge.

loge N
.Searching.0< 5B >I/Os.

£

logg N
. Updates. O 1/Os.
8B1—8

Bé-tree

Search Update
B-tree O(logg N) O(logg N)

logn N

\/B-tree O(logg N) of =2e
/B
logr N loge N

Bé-tree O(S8 O gB_
£ eB1—¢

External Memory |

- Access Path Traversal
- Searching with Fast Updates

