Traveling salesman problem

Inge Li Gortz

Traveling Salesman Problem (TSP)

« Set of cities {1,...,n}
+ cjj = 0: cost of traveling from i to j.

* cjja metric:
*ci=0
* Cij = Cji

* Cj<Cik+Ck (triangle inequality)
+ Goal: Find a tour of minimum cost visiting every city exactly once.

Traveling Salesman Problem (TSP)

« Set of cities {1,...,n}

* cjj = 0: cost of traveling from i to j.

* cijja metric:
*ci=0
* Cij=Gij

* Cij < Cik + Ckj

« Goal: Find a tour of minimum cost visiting every city exactly once.

Double tree algorithm

+ MST is a lower bound on TSP.
+ Deleting an edge e from OPT gives a spanning tree.
+ OPT = OPT - ce= MST.

Double tree algorithm

» Double tree algorithm
+ Compute MST T.
» Double edges of T

*+ Construct Euler tour T (a tour visiting every edge exactly once).

Double tree algorithm

+ Double tree algorithm
* Compute MST T.
» Double edges of T
+ Construct Euler tour T (a tour visiting every edge exactly once).

Double tree algorithm

» Double tree algorithm
+ Compute MST T.
» Double edges of T

+ Construct Euler tour T (a tour visiting every edge exactly once).

+ Shortcut T such that each vertex only visited once (t’)
* length(t’) < length(t) = 2 cost(T) < 2 OPT.

» The double tree algorithm is a 2-approximation algorithm for TSP.

Christofides’ algorithm

+ Christofides’ algorithm
+ Compute MST T.
« No need to double all edges:

» Enough to turn it into an Eulerian graph: A graph Eulerian if there is a traversal of all edges
visiting every edge exactly once.

« G Eulerian iff G connected and all nodes have even degree.
+ Consider set O of all odd degree vertices in T.
+ Find minimum cost perfect matching M on O.
« Matching: no edges share an endpoint.
« Perfect: all vertices matched.
« Perfect matching on O exists: Number of odd vertices in a graph is even.

» T+ Mis Eulerian (all vertices have even degree).

Christofides’ algorithm Christofides’ algorithm

+ Christofides’ algorithm + Christofides’ algorithm

+ Compute MST T. + Compute MST T.

* O = {odd degree vertices in T}. + O = {odd degree vertices in T}.

+ Compute minimum cost perfect matching | on O. + Compute minimum cost perfect matching |/ on O.

-+ Construct Euler tour © + Construct Euler tour T

* Shortcut such that each vertex only visited once (t’) + Shortcut such that each vertex only visited once (t’)
Christofides’ algorithm Analysis of Christofides’ algorithm

~_
/

™~

+ Christofides’ algorithm - cost(M) < OPT/2.
+ Compute MST T. + OPT, = OPT restricted to O.
» O = {odd degree vertices in T}. + OPT, < OPT.

+ Compute minimum cost perfect matching M on O.
» Construct Euler tour T

+ Shortcut such that each vertex only visited once (t’)

+ length(t’) < length(t) = cost(T) + cost(M) < OPT + cost(M).

Analysis of Christofides’ algorithm

« cost(M) < OPT/2.
* OPT, = OPT restricted to O.
+ OPTo < OPT.

Analysis of Christofides’ algorithm
L
N/
0\\0 :

+ cost(M) < OPT/2:
+ OPT, = OPT restricted to O.
+ OPT, < OPT.
+ can partition OPT, into two perfect matchings O+ and Oo.
+ cost(M) < min(cost(O1), cost(O2)) < OPT/2.
* length(t’) < length(t) = cost(T) + cost(M) < OPT + OPT/2 = 3/2 OPT.

+ Christofides’ algorithm is a 3/2-approximation algorithm for TSP.

Set cover

Set cover problem

+ Set U of n elements.

» Subsets of U: Sy,...,Sm.

+ Each set Si has a weight wi> 0.

+ Set cover. A collection of subsets C whose union is equal to U.
+ Goal. find set cover of minimum weight.

Set Cover Set Cover

Set Cover Set Cover

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Us s s s s msssssmns

Set cover: greedy algorithm

Greedy-set-cover
SetR:=Uand C:=0
while R = @
PR Wi
Select the set S; minimizing ISnER|

Delete the elements from S; from R.
Add Sito C.

endwhile

Return C.

» Greedy-set-cover is an O(log n)-approximation algorithm:
* polynomial time v
+ valid solution v~
« factor O(log n)

Greedy set cover analysis

+ ¢, =w/(5;NR). element e got covered when we picked set i. cost of e is.
. cost(C) = Z w; = Z c(e)
ieC eeU
+ Enumerate elements ¢y, e,, ..., ¢, in order they were covered.
OPT
n—k+1

« ¢, covered inround i. Let S,- be set picked in round i.

. Showc(e) <

« Consider elements R not covered in round i. Optimal alg. can cover R at cost at most OPT, since it can cover all at
cost OPT. => in round i OPT can cover R with an average cost per element of OPT/|R].

w; OPT
. Must exist a set that has cost efficiency at most average. Sj smallest cost efficiency in round i ! <—
ISR~ |R]
- |R|>2n—k+1.
+ ¢ covered by S in round i.
i OPT OPT
. cle) = <—=
|S;inR]| |R| n—k+1
« Thus
- OPT < 1 1 1
cost(C) =) c(e) < = OPT - —OPT-(=+——+..+1)=0PT-H
. © 2’()_z’n—k+1 2’n—k+1 (n n—1) "
celU k=1 k=1
+ Hn=0O(log n)

Greedy set cover analysis:

Set Cover: Greedy algorithm - tight example

Cost 1/n 1(n-D1(N-2) .o 1 1+x

S

Set Cover: Greedy algorithm - tight example

Cost 1/n 1(n-D)1/(n-2) ..o 1 1+x

OPT = 1+x

Set Cover: Greedy algorithm - tight example

Wy

ISR 1/n 1/(n-1)1/(n-2) 1 ((H)(n-2)
Cost 1/n 1Y(n-D1(N-2) oo R Y
S

OPT = 1+4x

