Traveling salesman problem

Inge Li Gørtz

Traveling Salesman Problem (TSP)

- Set of cities {1,...,n}
- $c_{ij} \ge 0$: cost of traveling from i to j.
- c_{ij} a metric:
 - $c_{ii} = 0$
 - $C_{ij} = C_{ji}$
 - $c_{ij} \le c_{ik} + c_{kj}$ (triangle inequality)
- Goal: Find a tour of minimum cost visiting every city exactly once.

Traveling Salesman Problem (TSP)

- Set of cities {1,...,n}
- $c_{ij} \ge 0$: cost of traveling from i to j.
- c_{ij} a metric:
 - $c_{ii} = 0$
 - $C_{ij} = C_{ji}$
 - $C_{ij} \leq C_{ik} + C_{kj}$
- Goal: Find a tour of minimum cost visiting every city exactly once.

- MST is a lower bound on TSP.
 - Deleting an edge e from OPT gives a spanning tree.
 - OPT \geq OPT $c_e \geq$ MST.

- Double tree algorithm
 - Compute MST T.
 - Double edges of T
 - Construct Euler tour **t** (a tour visiting every edge exactly once).

- Double tree algorithm
 - Compute MST T.
 - Double edges of T
 - Construct Euler tour **t** (a tour visiting every edge exactly once).

- Double tree algorithm
 - Compute MST T.
 - Double edges of T
 - Construct Euler tour t (a tour visiting every edge exactly once).
 - Shortcut τ such that each vertex only visited once (τ')
- length(τ ') \leq length(τ) = 2 cost(T) \leq 2 OPT.
- The double tree algorithm is a 2-approximation algorithm for TSP.

- · Christofides' algorithm
 - Compute MST T.
 - No need to double all edges:
 - Enough to turn it into an Eulerian graph: A graph Eulerian if there is a traversal of all edges visiting every edge exactly once.
 - G Eulerian iff G connected and all nodes have even degree.
 - Consider set O of all odd degree vertices in T.
 - Find minimum cost perfect matching M on O.
 - Matching: no edges share an endpoint.
 - Perfect: all vertices matched.
 - Perfect matching on O exists: Number of odd vertices in a graph is even.
 - T + M is Eulerian (all vertices have even degree).

- Christofides' algorithm
 - Compute MST T.
 - O = {odd degree vertices in T}.
 - Compute minimum cost perfect matching M on O.
 - Construct Euler tour T
 - Shortcut such that each vertex only visited once (τ')

- Christofides' algorithm
 - Compute MST T.
 - O = {odd degree vertices in T}.
 - Compute minimum cost perfect matching M on O.
 - Construct Euler tour T
 - Shortcut such that each vertex only visited once (τ')

- Christofides' algorithm
 - Compute MST T.
 - O = {odd degree vertices in T}.
 - Compute minimum cost perfect matching M on O.
 - Construct Euler tour T
 - Shortcut such that each vertex only visited once (τ')
- $length(\tau) \le length(\tau) = cost(T) + cost(M) \le OPT + cost(M)$.

Analysis of Christofides' algorithm

- $cost(M) \le OPT/2$.
 - OPT_o = OPT restricted to O.
 - OPT $_0 \le OPT$.

Analysis of Christofides' algorithm

- $cost(M) \le OPT/2$.
 - OPT_o = OPT restricted to O.
 - $OPT_0 \le OPT$.

Analysis of Christofides' algorithm

- $cost(M) \le OPT/2$:
 - OPT_o = OPT restricted to O.
 - OPT $_{o} \leq$ OPT.
 - can partition OPT₀ into two perfect matchings O₁ and O₂.
 - $cost(M) \le min(cost(O_1), cost(O_2)) \le OPT/2$.
- $length(\tau) \le length(\tau) = cost(T) + cost(M) \le OPT + OPT/2 = 3/2 OPT.$
- Christofides' algorithm is a 3/2-approximation algorithm for TSP.

Set cover

Set cover problem

- Set U of n elements.
- Subsets of U: S₁,...,S_m.
- Each set S_i has a weight $w_i \ge 0$.
- Set cover. A collection of subsets C whose union is equal to U.
- Goal. find set cover of minimum weight.

Greedy-set-cover

Set R := U and $C := \emptyset$

while $R \neq \emptyset$

Select the set S_i minimizing $\frac{w_i}{|S_i \cap R|}$

Delete the elements from S_i from R.

Add S_i to C.

endwhile

Return C.

- Greedy-set-cover is an O(log n)-approximation algorithm:
 - polynomial time
 - valid solution
 - factor O(log n)

Greedy set cover analysis

• $c_e = w_i/(S_i \cap R)$. element e got covered when we picked set i. cost of e is.

$$\mathbf{.}\quad \mathrm{cost}(C) = \sum_{i \in C} w_i = \sum_{e \in U} c(e)$$

- Enumerate elements $e_1, e_2, ..., e_n$ in order they were covered.
- $\bullet \quad \text{Show } c(e_k) \le \frac{OPT}{n-k+1}$
 - e_k covered in round i. Let S_i be set picked in round i.
 - Consider elements R not covered in round i. Optimal alg. can cover R at cost at most OPT, since it can cover all at cost OPT. => in round i OPT can cover R with an average cost per element of OPT/|R|.
 - Must exist a set that has cost efficiency at most average. S_j smallest cost efficiency in round i: $\frac{w_j}{|S_j \cap R|} \leq \frac{OPT}{|R|}$
 - $|R| \ge n k + 1$.
 - e_k covered by S_j in round i.

$$c(e_k) = \frac{w_j}{|S_i \cap R|} \le \frac{OPT}{|R|} \le \frac{OPT}{n - k + 1}$$

Thus

$$\text{.} \ \, \cos(C) = \sum_{e \in U} c(e) \leq \sum_{k=1}^n \frac{OPT}{n-k+1} = OPT \cdot \sum_{k=1}^n \frac{1}{n-k+1} = OPT \cdot \left(\frac{1}{n} + \frac{1}{n-1} + \dots + 1\right) = OPT \cdot H_n$$

• $H_n = O(\log n)$

Greedy set cover analysis:

Set Cover: Greedy algorithm - tight example

Set Cover: Greedy algorithm - tight example

$$OPT = 1+x$$

Set Cover: Greedy algorithm - tight example

OPT =
$$1+x$$

Greedy = $1/n + 1/(n-1) + 1/(n-2) \dots = H_n$