Traveling salesman problem

Inge Li Gortz

Traveling Salesman Problem (TSP)

Cik Cii

CK j

- Set of cities {1,...,n}
* cjj = 0: cost of traveling from i to j.
* Cij a metric:
* ci=0
* Cjj = Cji
* Cjj<Cik + Ck (triangle inequality)

« Goal: Find a tour of minimum cost visiting every city exactly once.

Traveling Salesman Problem (TSP)

- Set of cities {1,...,n}
* cjj = 0: cost of traveling from i to j.
* Cjj a metric:

* ci=0

* Cjj = Cji

* Cjj < Cik + Ckj

« Goal: Find a tour of minimum cost visiting every city exactly once.

Double tree algorithm

« MST is a lower bound on TSP.
 Deleting an edge e from OPT gives a spanning tree.
* OPT = OPT - ce = MST.

Double tree algorithm

* Double tree algorithm
« Compute MST T.
* Double edges of T

- Construct Euler tour T (a tour visiting every edge exactly once).

Double tree algorithm

* Double tree algorithm
« Compute MST T.
* Double edges of T

- Construct Euler tour T (a tour visiting every edge exactly once).

Double tree algorithm

* Double tree algorithm
« Compute MST T.
* Double edges of T

- Construct Euler tour T (a tour visiting every edge exactly once).
 Shortcut T such that each vertex only visited once (t’)
* length(T’) < length(t) = 2 cost(T) < 2 OPT.

- The double tree algorithm is a 2-approximation algorithm for TSP.

Christofides’ algorithm

+ Christofides’ algorithm
« Compute MST T.

* No need to double all edges:

« Enough to turn it into an Eulerian graph: A graph Eulerian if there is a traversal of all edges
visiting every edge exactly once.

« G Eulerian iff G connected and all nodes have even degree.
« Consider set O of all odd degree vertices in T.
+ Find minimum cost perfect matching M on O.
+ Matching: no edges share an endpoint.
+ Perfect: all vertices matched.
« Perfect matching on O exists: Number of odd vertices in a graph is even.

« T + M is Eulerian (all vertices have even degree).

Christofides’ algorithm

 Christofides’ algorithm
« Compute MST T.
« O = {odd degree vertices in T}.
- Compute minimum cost perfect matching '/ on O.

« Construct Euler tour T

 Shortcut such that each vertex only visited once (t)

Christofides’ algorithm

 Christofides’ algorithm
« Compute MST T.
« O = {odd degree vertices in T}.

- Compute minimum cost perfect matching '/ on O.

« Construct Euler tour T

 Shortcut such that each vertex only visited once (t)

Christofides’ algorithm

/

S

 Christofides’ algorithm
« Compute MST T.
« O = {odd degree vertices in T}.

- Compute minimum cost perfect matching M on O.

« Construct Euler tour t
 Shortcut such that each vertex only visited once (1)

* length(t’) < length(t) = cost(T) + cost(M) < OPT + cost(\V).

Analysis of Christofides’ algorithm

-+ cost(M) < OPT/2.
« OPTo = OPT restricted to O.
« OPT, < OPT.

Analysis of Christofides’ algorithm

-+ cost(M) < OPT/2.
« OPTo = OPT restricted to O.
« OPT, < OPT.

Analysis of Christofides’ algorithm

+ cost(M) < OPT/2:
« OPT, = OPT restricted to O.
« OPT, < OPT.
- can partition OPT, into two perfect matchings O+ and Os..
+ cost(M) < min(cost(O1), cost(O2)) < OPT/2.
* length(T’) < length(t) = cost(T) + cost(M) < OPT + OPT/2 = 3/2 OPT.

 Christofides’ algorithm is a 3/2-approximation algorithm for TSP.

Set cover

Set cover problem

« Set U of n elements.

« Subsets of U: S4,...,Sm.

- Each set S has a weight wi > 0.

« Set cover. A collection of subsets C whose union is equal to U.
« Goal. find set cover of minimum weight.

Set Cover

Set Cover

Set Cover

Set Cover

Set Cover

Set Cover: Greedy algorithm

3/2

4/5

2/3 1 1/2 3/7
2

4
y

Set Cover: Greedy algorithm

wy
|Sz N R| 1/2 1/2 3/2 4/5

1

S St

Set Cover: Greedy algorithm

wy
|Sz N R| 1/2 1/2 3/2 4/5

1

S St

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

Set Cover: Greedy algorithm

: - i R . H

O : H s Lo P
.... K : G Tl Ll

Do A 5 - HE DN L HE R

Set cover: greedy algorithm

Greedy-set-cover
SetR:=Uand C =0
whileR # J

ws
Select the set Si minimizing

S N R

Delete the elements from S; from R.
Add S; to C.

endwhile

Return C.

« Greedy-set-cover is an O(log n)-approximation algorithm:
* polynomial time v
- valid solution v~
« factor O(log n)

Greedy set cover analysis

¢, = w;/(S; N R). element e got covered when we picked set i. cost of e is.
cost(C) = Z W, = Z c(e)
ieC ecU
Enumerate elements ¢, e,, ..., ¢, in order they were covered.
OPT
Show c(e;) < ———
n—k+1

e, covered in round i. Let S; be set picked in round i.

Consider elements R not covered in round i. Optimal alg. can cover R at cost at most OPT, since it can cover all at
cost OPT. => inround i OPT can cover R with an average cost per element of OPT/|R|.

w; OPT
Must exist a set that has cost efficiency at most average. S] smallest cost efficiency in round i: ! <
ISSAR| — [R]
|R| >n—k+1.
e, covered by §; in round .
w; OPT OPT
cley) = < <
|S;N R |R | n—k+1
Thus
< OPT o 1 1 1

cost(C) = cle) < ———— = OPT - — =O0PT- | —+ +:-+1)=0PT-H

(©) eEZU()];n—k+1];n—k+1 (n n—1) 8

Hn = O(log n)

Greedy set cover analysis:

Set Cover: Greedy algorithm - tight example

Cost 1/n 1/(n-D1/(N-2) oo 1 14X

S Q00000 O

Set Cover: Greedy algorithm - tight example

Cost 1/n 1/(n-D1/(N-2) oo 1 14X

S Q00000 O

OPT = 1+x

Set Cover: Greedy algorithm - tight example

w .

m 1n 1/(n-1)1/(n-2) 1 (tha)(n-2)

Cost 1/n 1/(n-D1/(N-2) oo 1 14X

9000000

OPT = 1+x
Greedy = 1/n + 1/(n-1) + 1/(n-2) = Hn

